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Júĺıus Atlason, jatlason@umich.edu
Marina A. Epelman, mepelman@umich.edu

Department of Industrial and Operations Engineering
University of Michigan

Ann Arbor, MI 48109-2117, USA

Shane G. Henderson, sgh9@cornell.edu

School of Operations Research and Industrial Engineering
Cornell University

Ithaca, NY 14853, USA

August 4, 2004

Abstract

We present a simulation-based analytic center cutting plane method to solve a sample aver-

age approximation of a call center problem of minimizing staffing costs, while maintaining an

acceptable level of service in multiple time periods. We establish convergence of the method

when the service level functions are discrete pseudoconcave. An extensive numerical study of

a moderately large call center shows that the method is robust, and, in most of the test cases,

outperforms traditional staffing heuristics that are based on analytical queuing methods.

1 Introduction

The call center (also referred to as a contact center) is an important component of the operations

of many organizations. A significant fraction of the cost of operating a call center is staffing

cost (Gans et al., 2003). In this paper we describe a method for selecting staff (agent) levels

that minimize cost while simultaneously ensuring satisfactory customer service. Simulation is

used to report service level performance for a given set of staffing levels, and an analytic center

cutting plane method guides the selection of staffing levels.
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This problem has received a great deal of attention in the literature, and so one can reason-

ably ask why there is a need for a computational tool of this sort. To answer that question we

first need to describe the overall staffing process. There are variations on the following theme

(e.g., Castillo et al., 2003), but the essential structure is sequential in nature and is as follows

(Mason et al., 1998).

1. (Forecasting) Obtain forecasts of customer load over the planning horizon, which is typ-

ically one or two weeks long. The horizon is usually broken into short periods that are

typically between 15 minutes and 1 hour long.

2. (Work requirements) Determine the minimum number of agents needed during each period

to ensure satisfactory customer service. Service is typically measured in terms of customer

waiting times and/or abandonment rates in the queue.

3. (Shift construction) Select staff shifts that cover the requirements. This problem is usually

solved through a set-covering integer program; see Mason et al. (1998) for more details.

4. (Rostering) Allocate employees to the shifts.

The focus in this paper is on Steps 2 and 3. Steps 1 and 4 are not considered further.

Step 2 is usually accomplished through the use of analytical results for simple queuing

models. Green et al. (2001) coined the term SIPP (stationary, independent, period by period)

to describe the general approach. In the SIPP approach, each period of the day is considered

independently of other periods, the arrival process is considered to be stationary in that period,

and one approximates performance in the period by a steady-state performance measure that

is usually easily obtained from analytical results for particular queuing models. Heuristics are

used to select input parameters for each period that yield a close match between the predictions

and reality. For a wide variety of queuing models, this procedure results in some form of the

“square-root rule,” which is a rule of thumb that provides surprisingly successful staffing level

suggestions. See, e.g., Borst et al. (2004); Kolesar and Green (1998); Jennings et al. (1996) for

more on the square-root rule.

The SIPP approach is appealing from the standpoint of computational tractability and due

to the insights it provides. However, there are cases where the SIPP approach does not do as

well as one might hope (Green et al., 2001, 2003). This can occur, for example, when the use of

steady-state measures to represent performance over a short period is inappropriate. See Whitt

(1991) for more on this point. Moreover, call centers can be somewhat complex in structure,

and this complexity can make it difficult to identify a queuing model of the center that is both

mathematically tractable and a reasonable match to the true system. In such cases, simulation
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is a viable alternative. Indeed, simulation is now increasingly used in Step 2; see Section VIII

of Mandelbaum (2003) for many examples.

Further motivation for the use of simulation involves the linkage between staffing decisions

in adjacent periods. Boosting staffing levels in one period can often help in reducing workload

in subsequent periods, so that there can be linkage in performance between different periods.

Such linkage can imply that there are multiple solutions to the work requirements problem that

can offer valuable flexibility in Step 3. Traditional queuing approaches are not satisfactory in

the presence of such linkage between periods, and in such cases one turns to simulation or other

numerical methods. Indeed, Green et al. (2001, 2003) solve a system of ordinary differential

equations through numerical integration to get the “exact” results for their models in order to

compare the performance of various heuristics.

Assuming that one uses simulation or some other numerical method to predict performance

in the call center, one then needs to devise a method to guide the selection of potential staffing

levels to be evaluated through simulation. There have been several suggestions in the literature,

all of which explicitly capture the linkage between periods in an attempt to realize cost savings.

Like Green et al. (2001, 2003), Ingolfsson et al. (2002) use numerical integration to compute

service level performance for a proposed set of staffing levels, and a genetic algorithm to guide

the search. Ingolfsson et al. (2003) again use a numerical method to compute service level

performance, and integer programming to guide the search. Castillo et al. (2003) devise a

method for randomly generating sets of staff shifts, then use simulation to evaluate the service

level performance of each set of generated staff shifts, and finally, plot the cost versus service level

of the potential solutions to identify an efficient frontier. Atlason et al. (2004) use simulation

to evaluate service level performance of a proposed set of shifts, and use integer programming

in conjunction with Kelley’s cutting plane method (Kelley, Jr., 1960) to guide the search.

The approach in Atlason et al. (2004) relies on an assumption that service in a period is

concave and componentwise-increasing as a function of the staffing level vector. To understand

this assumption, consider a single period problem. Increasing the staffing level should lead to

improved performance. Furthermore, one might expect “diminishing returns” as the staffing

level increases, so that performance would be concave in staffing level. Empirical results suggest

that this intuition is correct, at least for sufficiently high staffing levels. But for low staffing

levels, the empirical results suggest that performance is increasing and convex in the staffing

level. So performance appears to follow an “S-shaped” curve (Ingolfsson et al., 2003; Atlason

et al., 2004) in one dimension.
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This non-concavity can cause the cutting plane method of Atlason et al. (2004) to cut off

feasible solutions, and the problem can be so severe as to lead to the algorithm suggesting

impractical staffing plans. Nevertheless, the ability of the Atlason et al. (2004) approach to

efficiently sift through the combinatorially huge number of potential staffing plans is appealing.

One might ask whether there is a similar optimization approach that can efficiently search

through alternative staffing plans while satisfactorily dealing with S-shaped curves and their

multidimensional extensions. That is the subject of this paper.

We combine a relaxation on the assumption of concavity, i.e., pseudoconcavity, and additional

techniques to handle both the S-shaped curves alluded to above, as well as multidimensional

behavior seen in examples like that depicted in Figure 2; see Section 4.1 for more details.

Assuming that the service level functions are pseudoconcave, one can then develop an ana-

lytic center cutting plane algorithm that efficiently searches the combinatorially large space of

potential staffing plans. In essence the algorithm works as follows. One begins with a polyhe-

dron that contains an optimal solution to the staffing problem. At each stage, the algorithm

selects a staffing plan that lies close to the analytic center of the polyhedron and runs a sim-

ulation at that point to determine service level performance. Depending on the results of the

simulation an “optimality cut” or one or more feasibility cuts are added, thereby shrinking the

polyhedron. The algorithm terminates when the polyhedron contains no integer points, or when

the difference between upper and lower bounds on the optimal objective is sufficiently small.

We view the contributions of this paper as follows.

1. Under realistic assumptions on the service level functions, we give an algorithm for solving

to optimality the combined Step 2 - Step 3 problem. The combined procedure explicitly

addresses linkage between periods.

2. We give conditions under which the algorithm provably converges.

3. We compare the proposed algorithm to what can be reasonably viewed as the current best

practice to better understand the properties of the algorithm. This comparison has to take

place with a model of limited complexity so that the existing methods can be applied, but

is nevertheless quite illuminating.

The numerical results in Section 5 show that the analytic center cutting plane method

outlined here outperforms, or at least equals, the SIPP heuristics in every case in which shift

structure is explicitly considered, which is the setting we are interested in. In that sense, it is

a robust procedure that can be applied in a near black-box fashion. Of course, these extremely

appealing properties have to be traded off against the computational cost of the procedure, which
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is not inconsiderable. We are actively considering methods for reducing the computational effort

of the procedure; see Section 6.

The remainder of this paper is organized as follows. We formulate the call center staffing

problem in Section 2. In Section 3 we review cutting plane methods for continuous problems

with pseudoconcave constraints. Section 4 describes modifications for discrete problems, such

as the call center staffing problem, and proves that the algorithm converges. We compare the

proposed algorithm with the SIPP methods described in Green et al. (2001, 2003) in Section 5.

Section 6 concludes the paper and discusses future research questions.

2 Problem formulation

In this section we formulate the call center staffing problem of minimizing staffing cost over a

planning horizon while maintaining an acceptable level of service in each of a number of time

periods, with particular emphasis on the use of simulation to estimate the service levels. We

say that service is acceptable in a period if a threshold long-run percentage of calls that are

required to be answered within a certain time limit τ is met. This is the usual “π percent of

calls are answered within τ seconds” requirement that is something of an industry standard.

Define the staffing level vector as y = (y1, . . . , yp)T where p is the number of time periods

in the planning horizon, yi is the number of agents working in period i, i ∈ {1, . . . , p}, and (·)T

denotes the transpose operation. Let Ni be the random number of calls that are received in

period i, and let Si(y) be the random number of those calls that are satisfactorily handled,

i ∈ {1, . . . , p}. We can express the service level constraint as

gi(y) = ESi(y)− πENi ≥ 0, i = 1, . . . , p.

Here gi(y) gives the expected number of successful services over and above the required expected

number of successful services in period i.

Define the cost function

f(y) = min cT x

s.t. Ax ≥ y

x ≥ 0 and integer,

(1)

where x is a vector with jth component xj giving the number of employees working the jth tour

and A is the tour matrix such that Aij = 1 if tour j includes period i and 0 otherwise. The jth
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component of the cost vector c is the cost of the jth tour. The term “tour” refers to a collection

of periods that a single employee works over the planning horizon. A tour must agree with all

provisions of employee contracts, such as rules on meal breaks and a limit on the number of

hours an agent can work over the planning horizon. All feasible tours are enumerated prior to

problem formulation and stored in the tour matrix A. We assume that there are m feasible

tours, so x ∈ Zm
+ . We assume that every period is covered by at least one tour, i.e., for every i

there is at least one j such that Aij = 1. It then follows that (1) is feasible for any y. The value

f(y) gives the minimum cost set of shifts that can cover the desired work requirements vector

y.

The call center staffing problem can now be formulated as

min f(y)

s.t. gi(y) ≥ 0 for i ∈ {1, . . . , p}
y ≥ 0 and integer.

(2)

Recall that we cannot compute the (vector-valued) service level function g(y) exactly, and

instead use simulation. The call center staffing problem is then a simulation optimization prob-

lem. As in Atlason et al. (2004) we adopt “sample-average approximation” (see Shapiro, 2003;

Kleywegt et al., 2001) for solving simulation-optimization problems. This approach, specialized

to our setting, is as follows. One first generates the simulation input data for n independent

replications of the operations of the call center over the planning horizon. This data includes

call arrival times, service times and so forth. The simulation data is fixed, and one then solves

a deterministic optimization problem that chooses staffing levels so as to minimize staffing cost,

while ensuring that average service computed only over the generated realizations is satisfactory.

This problem can be solved using any convenient optimization algorithm.

Suppose that the service level functions gi(y) are estimated by the sample average ḡi(y; n),

where n is the sample size used. The sample average approximation of the call center staffing

problem is then

min f(y)

s.t. ḡi(y; n) ≥ 0 for i ∈ {1, . . . , p}
y ≥ 0 and integer.

(3)

Proposition 1 below gives conditions under which solutions to (3) converge to those of the

true problem (2) as n → ∞. We first make the following natural assumption about the cost

vector.
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Assumption 1. The cost vector c is positive and integer valued.

Assumption 1 implies that f(y) is integer valued and, moreover, since c is positive the z-level

set of f ,

{y ≥ 0 and integer : ∃x ≥ 0 and integer, Ax ≥ y, cT x ≤ z},

is finite for any z ∈ R.

Let Y ∗ denote the set of optimal solutions to the true problem (2).

Proposition 1. Suppose that Assumption 1 holds. Suppose further that for each y, ḡi(y; n) →
gi(y) as n → ∞ with probability 1. Finally, suppose that there is an optimal solution y∗ ∈ Y ∗

that is “strictly feasible,” i.e., gi(y∗) > 0 for all i = 1, . . . , p. If y∗n is an optimal solution to (3)

for each n, then y∗n ∈ Y ∗ for n sufficiently large, with probability 1.

This result is easily proved using techniques very similar to those used in Atlason et al.

(2004) and so we omit the proof.

Proposition 1 establishes the validity of the sample average approximation approach in our

setting. Much more can be said about the convergence of solutions of the sample average

approximation problem and their objective values, but that is not the emphasis of this paper.

We refer the interested reader to Atlason et al. (2004); Kleywegt et al. (2001).

3 The analytic center cutting plane method

In this section we state a version of the traditional analytic center cutting plane method (AC-

CPM) to fix ideas and provide a departure point for a reader unfamiliar with cutting plane

methods in continuous optimization.

There are many cutting plane methods for solving convex optimization problems, including

what may be termed boundary methods, such as Kelley’s algorithm (Kelley, Jr., 1960) and its

extensions (e.g., Westerlund and Pörn, 2002), and interior point methods, recently reviewed by

Mitchell (2003). We will focus our attention on one of the latter, namely the ACCPM, which

was first implemented in duMerle (1995), as pointed out in Elhedhli and Goffin (2003). The

ACCPM has proven effective in terms of both theoretical complexity (Atkinson and Vaidya,

1995; Nesterov, 1995; Goffin et al., 1996; Mitchell, 2003) and practical performance on a variety

of problems (Bahn et al., 1995; Mitchell, 2000, and other references in Mitchell, 2003). Software

packages implementing the method are available (e.g., Peton and Vial, 2001).

Many versions of the ACCPM for convex feasibility and optimization problems have been

7



explored in the literature. The description we chose below borrows from Nesterov (1995),

duMerle et al. (1998), and Mitchell (2003), as just some of the possible references.

Consider an optimization problem in the following general form:

min bT y

s.t. y ∈ Y,
(4)

where Y ⊂ Rn is a convex set, and b ∈ Rn. (A problem of minimizing a general convex function

over a convex set can be easily represented in this form.) To simplify the presentation, assume

that the set Y is bounded and has a non-empty interior.

To apply the ACCPM (or any other cutting plane algorithm), the feasible region Y needs to

be described by a separation oracle. Such an oracle will, given an input ŷ ∈ Rn, either correctly

assert that ŷ ∈ Y , or otherwise return a non-zero vector q ∈ Rn such that

qT (y − ŷ) ≥ 0 ∀y ∈ Y,

i.e., produce a feasibility cut. (Depending on how the set Y is described, the oracle might

produce a deep or a shallow cut, which have the same form as the constraint above, but a

nonzero right hand side.)

We now describe a typical iteration of the ACCPM. At the beginning of an iteration, we

have available a finite upper bound z on the optimal value of (4), and a polyhedron P = {y ∈
Rn : Dy ≥ d} that is known to contain the set Y . Here D ∈ Rr×n and d ∈ Rr for some finite r.

We first compute the (weighted) analytic center of the set P ∩ {y ∈ Rn : bT y < z} (for ease of

presentation we assume that the set P ∩{y ∈ Rn : bT y < z} is bounded), defined as the solution

of the convex optimization problem

min
y
{−w log(z − bT y)−

r∑

j=1

log(Dj·y − dj)}, (5)

where Dj· is the jth row of D and w > 0 is a weight constant that affects the convergence rate of

the algorithm (see, for example, duMerle et al., 1998). The set P ∩ {y ∈ Rn : bT y < z} is often

referred to as the localization set, since it contains all feasible solutions with objective function

values lower than z.

Finding a solution to (5) with high degree of precision is a relatively simple task from a

practical standpoint and can be done, e.g., via Newton’s method. Let ŷ be the analytic center

found. Next, the oracle is called with ŷ as the input. If ŷ ∈ Y , then, by construction, bT ŷ < z,
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The analytic center cutting plane method (ACCPM)

Initialization Start with a polyhedron P 0 := {y ∈ Rn : D0y ≥ d0} such that Y ⊂ P 0, and an
upper bound z0. Let w0 > 0, and set the iteration counter k := 0.

Step 1 If termination criterion is satisfied, then stop, and return y∗ as a solution. Otherwise, solve
problem (5) with w = wk, z = zk, and P = P k := {y ∈ Rn : Dk ≥ dk}; let yk be the solution.

Step 2a If yk ∈ Y then let zk+1 := bT yk, y∗ := yk, Dk+1 := Dk and dk+1 := dk.

Step 2b If yk 6∈ Y then generate one or more feasibility cuts at yk. Update Dk and dk to include
the new constraints, and let Dk+1 and dk+1 represent the new constraint set. Let zk+1 := zk.

Step 3 Compute wk+1 and let k := k + 1. Go to Step 1.

Figure 1: The analytic center cutting plane method (ACCPM)

and the upper bound is lowered by taking z := bT ŷ. Otherwise, if ŷ 6∈ Y , the oracle will produce

a vector q providing a feasibility cut, which is then added to the description of the polyhedron

P . The procedure is then repeated. A slightly more detailed description of the algorithm is

presented in Figure 1.

Intuitively, the algorithm’s efficiency stems from the fact that at each iteration the cut being

added passes through the analytic center of the localization set, which is often located near a

geometric center. Thus, the volume of the localization set reduces rapidly with each iteration.

Suppose the set Y is specified by Y = {y ∈ Rn : gi(y) ≥ 0, i ∈ {1, . . . , p}}, where the

functions gi(y), i ∈ {1, . . . , p} are pseudoconcave, as defined below:

Definition 1. (Cf. Definition 3.5.10 in Bazaraa et al., 1993) Let g : S → R be differentiable

on S, where S is a nonempty open set in Rn. The function g is said to be pseudoconcave if for

any ŷ, y ∈ S with ∇g(ŷ)T (y − ŷ) ≤ 0 we have g(y) ≤ g(ŷ). Equivalently, if g(y) > g(ŷ), then

∇g(ŷ)T (y − ŷ) > 0.

With Y in the above form, the feasibility cut at point ŷ 6∈ Y which violates the ith constraint

can be specified as

∇gi(ŷ)T (y − ŷ) ≥ 0, (6)

since any solution y that satisfies gi(y) ≥ 0 also satisfies gi(y) > gi(ŷ).

4 A cutting plane method for discrete problems

In this section we describe how the ACCPM algorithm of Section 3 can be modified to solve the

sample average approximation (3) of the call center staffing problem (2).
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The most significant modification to the ACCPM for continuous problems is needed to take

into account the fact that the feasible region of (3) is no longer a convex, or even connected,

set, due to the integrality restriction on the variables. Cutting plane algorithms for nonlinear

mixed integer programs have been explored in the past (see, for example, Westerlund and Pörn,

2002). However, in this and other similar papers it is assumed that the constraint functions

are in fact differentiable functions of continuous variables; the integrality restrictions on the

variables are, in a sense, exogenous. In such a setting the concept of a convex (continuous)

nonlinear relaxation of the integer program is straightforward, and feasibility cuts are generated

simply using the gradients of these continuous functions. In our setting, however, the service

level functions and their sample average approximations are not defined at non-integer values

of y, and devising their continuous extension, especially one that is easy to work with from

the algorithmic point of view, is non-trivial at best. Therefore, we take a different approach in

adapting the ACCPM to the discrete case.

As far as we know, the use of ACCPM as a solution method for nonlinear integer programs

has not been reported, although the method has been successfully used to solve the linear

relaxation subproblems in branching algorithms for integer programs (see, for example, Mitchell

(2000) and Elhedhli and Goffin (2003), among many others).

In Section 4.1 we extend the notion of pseudoconcavity to functions of integer variables, and

show how feasibility cuts can be generated assuming that the functions ḡi(y; n), i ∈ {1, . . . , p}
are, in fact, discrete pseudoconcave. This leads to an ACCPM method for (mixed) integer

programming problems satisfying the pseudoconcavity assumption; the algorithm is applicable

to the types of problems considered in Westerlund and Pörn (2002), for example.

We also discuss whether the S-shaped form of the service level functions in the call center

staffing problem is consistent with this assumption, and propose alternative feasibility cuts at

points where it is violated.

The following Section 4.2 discusses other modifications of the original algorithm for the

problem (3) and details of our implementation. Section 4.3 gives a proof of convergence.

4.1 Discrete pseudoconcave functions and feasibility cuts

We begin by defining the notions of a discrete convex set and a discrete pseudoconcave function.

We denote the convex hull of the set C by conv(C).

Definition 2. We say that the set C ⊆ Zn is a discrete convex set if C = conv(C) ∩ Zn, i.e,

the set C equals the set of integer points in conv(C).
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Definition 3. Let C ⊆ Zn be a discrete convex set and g : C → R. Then g is discrete

pseudoconcave if for any ŷ ∈ C there exists a vector q(ŷ) ∈ Rn such that for any y ∈ C,

q(ŷ)T (y − ŷ) ≤ 0 ⇒ g(y) ≤ g(ŷ).

Equivalently, if g(y) > g(ŷ), then q(ŷ)T (y − ŷ) > 0. We call the vector q(ŷ) a pseudogradient of

g at ŷ.

In the continuous case, pseudoconcavity is a weaker property than concavity of a function;

discrete pseudoconcavity can be viewed as a relaxation of the concave extensible function prop-

erty defined in Murota (2003, p. 93).

If the functions ḡi(y; n) in (3) are discrete pseudoconcave, then a feasibility cut at an integer

point ŷ that violates the ith constraint can be obtained in the form

q̄i(ŷ; n)T (y − ŷ) ≥ ε,

where q̄i(ŷ; n) is the pseudogradient of ḡi(·;n) at ŷ, and ε > 0 is sufficiently small.

Are the service level functions indeed discrete pseudoconcave? To provide an illustrative

example, we computed the sample average of a service level function in period 2 of a simple two

period model of a call center. Figure 2 (a) shows the number of calls answered on time in period

2 as a function of the staffing levels in period 1 and period 2. (Notice that this is equivalent to ḡ

with π = 0). The number of servers ranges from 1 to 30 in period 1 and from 1 to 40 in period

2. We also include the contours of the function, which should at a minimum form convex sets;

see Figure 2 (b). The function appears to follow a multi-dimensional extension of an S-shaped

curve discussed in Section 1 (see also Ingolfsson et al., 2003; Atlason et al., 2004).

Relying on intuition derived from analyzing such S-shaped functions of continuous variables,1

one can observe that the pseudoconcavity property is violated at very low staffing levels, although

it appears to hold at staffing levels that have more than 10 servers in period 1 and more than 20

servers in period 2. The violation at low staffing levels is due to the fact that the performance

function is essentially flat in this region. I.e., there are so few servers and calls are so backed up

that no calls are answered on time, and adding an extra server would do little to alleviate the

situation; cf. low values of y1 and y2 in Figure 2. It is certainly possible that we would encounter

such a staffing level in the cutting plane algorithm for the sample average approximation of the

1Differentiable functions of this shape can be characterized as quasiconcave, see Definition 3.5.5 in Bazaraa et al.
(1993).
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service level function; an attempt to compute or estimate a pseudogradient at this point would

produce a zero vector. Therefore, as a feasibility cut at such a point ŷ, we might impose a lower

bound on the number of servers in the period i, i.e., add the constraint yi ≥ ŷi + 1. This is not

necessarily a valid feasibility cut, since the reason for calls backing up might be under-staffing in

previous periods. In our implementation, if such a cut is added during the algorithm, we verify

at termination that the corresponding constraint is not tight at the optimal solution found. If it

is tight, then one should lower this bound and do more iterations of the cutting plane method.

Although the sample averages of the service level functions are not discrete pseudoconcave,

they appear to be at least approximately discrete pseudoconcave for practical staffing levels.

Furthermore, we have a strategy for dealing with areas where the function is not pseudoconcave.

It seems reasonable, however, to assume that the expected service level function is pseudoconcave,

since in expected value it would be likely that the probability of answering calls would always

increase, although possibly by a very small value, when more servers are added. This would

also hold for the sample average of the service level function, for a sufficiently large sample size.

Therefore, when we prove the convergence results in Section 4.3 we assume that the sample

averages of the service level functions are discrete pseudoconcave.

4.2 A simulation-based cutting plane method for the call center staffing

problem with pseudoconcave service level functions

In this subsection we describe our modification of ACCPM for the problem (3).

At the beginning of a typical iteration, we have available a feasible solution y∗ of (3),

and an upper bound z = f(y∗) on the optimal value of the problem. The point y∗ is the

best feasible solution found by the algorithm so far. We also have available a polyhedron

P = {y ∈ Rp : y ≥ 0, Dy ≥ d} that is known to contain the feasible region.

Suppose y∗, z and P are as above. If y∗ is not an optimal solution, then, since f(y) takes

on integer values, the localization set

{y ∈ P : f(y) ≤ z − 1, y integer},

is nonempty and contains all feasible solutions with objective values better than z. The local-

ization set is empty precisely if y∗ is an optimal solution. This observation provides grounds for

the termination criteria we specify in our algorithm.
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Figure 2: (a) The sample average (sample size n = 500) of the number of calls answered on time
in period 2 as a function of the staffing levels in periods 1 and 2. (b) The contours of the service
level function in (a).
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Computing the next iterate. First we find the analytic center of a polyhedral relaxation

of the localization set. In particular, we solve the following optimization problem:

min −w log(z − a− cT x)−∑p
i=1 log yi −

∑r
j=1 log(Dj·y − dj)

s.t. Ax ≥ y

x ≥ 0,

(7)

where the constant a ∈ (0, 1) ensures that only points with an objective value better than z

are considered. Due to Assumption 1 the effective feasible region of (7) is bounded; hence the

problem has an optimal solution so long as it has a feasible point in the effective domain of

the objective. If (7) has no solution, the algorithm terminates with y∗ as an optimal solution;

otherwise, let (yac, xac) be a solution of (7). Here, w > 0 is the weight constant; we discuss later

how this constant is determined in the algorithm.

Note that the analytic center found in the previous step is almost certainly not integer, and

rounding yac to the nearest integer can result in a point outside of the localization set. To

capitalize on the centrality of the analytic center in the localization set, we instead find the

closest integer point in the effective feasible region of (7), i.e., solve

min ‖y − yac‖
s.t. Ax ≥ y

cT x ≤ z − 1

Dy ≥ d

y ≥ 0 and integer

x ≥ 0 and integer.

(8)

If (8) is infeasible, the algorithm terminates with y∗ as an optimal solution; otherwise, let (ŷ, x̂)

be the solution of (8) and choose ŷ as the next iterate. Here, ‖y−yac‖ is a measure of the distance

between y and yac. If we choose the L1-norm as the measure, i.e., ‖y − yac‖ =
∑p

i=1 |yi − yac
i |,

then (8) is a linear integer program. We discuss the computational requirements of solving this

problem at each iteration when we talk about the overall computational effort in relation to the

computational experiments.

Estimating the service levels. Next we compute ḡi(ŷ; n) for all i via simulation.

Adding an optimality cut. If ḡi(ŷ; n) ≥ 0 for all i, then ŷ satisfies the service level

requirements. Since cT x̂ ≤ z− 1, ŷ is contained in the localization set, i.e., it is the best staffing
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level so far. Note that cT x̂ is not necessarily the cost associated with staffing level ŷ, since cT x

is not being minimized in (8). To compute the cost associated with ŷ we instead solve (1) to

get f(ŷ) and update z := f(ŷ).

Adding a feasibility cut. If ḡi(ŷ;n) < 0 for some i, then we add a feasibility cut for each

i such that ḡi(ŷ; n) < 0. In particular, we estimate a pseudogradient, q̄i(ŷ; n), of ḡi(·; n) at ŷ

(we will discuss techniques for estimating the pseudogradients in Section 5.2). If q̄i(ŷ; n) 6= 0,

we add a feasibility cut of the form

q̄i(ŷ; n)T y ≥ q̄i(ŷ; n)T ŷ + ε (9)

for some small constant ε > 0 (we discuss the role of ε in the discussion of the convergence of

the method in Section 4.3). If q̄i(ŷ;n) = 0, the feasibility cut takes the form of a lower bound

on the number of servers (see discussion in Section 4.1). We update D and d to reflect the cuts

added.

The above procedure is then repeated. An illustration of the localization set and the feasible

regions and solutions of problems (7) and (8) in each iteration is shown in Figure 3. We summa-

rize the simulation-based analytic center cutting plane method (SACCPM) for the call center

staffing problem in Figure 4. (To shorten the presentation, the description of the algorithm in

Figure 4 is only specified for the case when the constraint functions ḡi(·;n) are in fact discrete

pseudoconcave.)

The weight parameter w can be increased to “push” the weighted analytic center away from

the optimality cuts. There are no theoretical results on how to choose the weights, but some

computational experiments have been done to test different values of the weights, and in fact,

weights on the feasibility cuts (Goffin et al., 1992; duMerle et al., 1998). The choice of the

weights is problem and data dependent (see Section 5.2 for the particular choice used in our

implementation).

In practice it is useful to maintain a lower bound on the optimal value of the problem (3)

throughout the algorithm, in addition to the upper bound z. In particular, the algorithm can

be terminated as soon as the gap between the upper and lower bounds is sufficiently small,

indicating that the current “incumbent” y∗ is a sufficiently good solution of the problem. A
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Figure 3: Illustration of the feasible region and an iterate in the SACCPM. The picture shows
points in the space of the y variables in the case p = 2. The shaded area represents the localization
set {y ∈ P : f(y) ≤ z − 1, y} (ignoring integer constraints). The squares represent the points
that are feasible for the sample average approximation problem (3). The thick solid line segments
represent an optimality cut f(y) ≤ z − 1 and the dotted lines represent the feasibility constraints
Dy ≥ d. The point yac is the solution of the analytic center problem and yk is the closest integer
in the localization set. The thinner solid line represents a feasibility cut that would be added in
this iteration.
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The simulation-based analytic center cutting plane method (SACCPM)

Initialization Start with a feasible solution y0 to (3). Let z0 := f(y0), and y∗ := y0. Let
P 0 = {y ≥ 0 : D0y ≥ d0}, where D0 and d0 are empty. Choose an ε > 0, a ∈ (0, 1) and
w0 > 0. Let k := 0.

Step 1 Solve problem (7) with w = wk, z = zk, and P = P k. If (7) does not have a (feasible)
solution, then terminate with y∗ as the optimal solution and zk as the optimal value; otherwise
let yac be the solution of (7).

Step 2 Solve problem (8) with z = zk and P = P k. If (8) is infeasible, then terminate with y∗ as
the optimal solution and zk as the optimal value; otherwise let yk be the optimal solution of
(8) found.

Step 3a If ḡi(yk; n) ≥ 0 ∀ i ∈ {1, . . . , p}, let zk+1 := f(yk), y∗ := yk, Dk+1 := Dk and dk+1 := dk.

Step 3b If ḡi(yk;n) < 0 for some i ∈ {1, . . . , p}, then add the constraint q̄i(yk; n)T y ≥
q̄i(yk; n)T yk + ε for each i such that ḡi(yk; n) < 0. Update Dk and dk to include the added
inequalities, and let P k+1 = {y ≥ 0 : Dk+1y ≥ dk+1} represent the new constraint set. Let
zk+1 := zk.

Step 4 Compute wk+1 and let k := k + 1. Go to Step 1.

Figure 4: The simulation-based analytic center cutting plane method (SACCPM)

lower bound can be found as the optimal objective value of

min cT x

s.t. Ax ≥ y

cT x ≤ z

Dy ≥ d

y ≥ 0 and integer

x ≥ 0 and integer,

(10)

or, for a weaker but easier to compute bound, of the linear programming relaxation of (10).

4.3 Convergence of the SACCPM

In this section we give conditions under which the SACCPM terminates with y∗ as an optimal

solution of (3). First, we argue that the algorithm does indeed terminate and then we show

that y∗ is an optimal solution of (3) at termination. To prove the results we make the following

two assumptions.

Assumption 2. The functions ḡi(y;n) are discrete pseudoconcave in y for all i ∈ {1, . . . , p}.
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Assumption 3. In the implementation of the SACCPM, q̄i(ŷ;n) is a pseudogradient of ḡi(·;n)

at ŷ.

We also define the sets

Γ := {y ≥ 0 and integer : f(y) ≤ z0},
Ψ := Γ ∩ {y : ḡi(y; n) ≥ 0 ∀ i ∈ {1, . . . p}},
Υ := Γ \Ψ and

I(y) := {i : ḡi(y; n) < 0.}

In words, Γ is the set of points that are potentially visited by the algorithm and contains

the set of optimal solutions. The set Ψ is the set of points in Γ that are feasible for the sample

average approximation problem (3). The set Υ is the set of points in Γ that are not feasible

for the sample average approximation problem (3). The set I(y) is the set of periods in which

the sample average of the service level function is not acceptable given the staffing levels y.

The following lemma says that all solutions in Ψ satisfy potential feasibility cuts (9) for some

appropriately chosen ε.

Lemma 2. Let q̄i(ŷ; n) be a pseudogradient of ḡi(·;n) at ŷ and suppose Assumptions 1 and 2

hold. Then there exists an ε̃ > 0 such that q̄i(ŷ;n)T (y − ŷ) ≥ ε̃ ∀ y ∈ Ψ, ŷ ∈ Υ, i ∈ I(ŷ).

Proof: Let ŷ ∈ Υ be fixed. Suppose that q̄i(ŷ; n)T (y − ŷ) ≤ 0 for some y ∈ Ψ and i ∈
I(ŷ). Then ḡi(y; n) ≤ ḡi(ŷ; n) < 0, where the first inequality follows by Assumption 2 and the

second inequality follows since i ∈ I(ŷ). This is a contradiction since y ∈ Ψ, and therefore

q̄i(ŷ; n)T (y − ŷ) > 0 ∀ y ∈ Ψ, i ∈ I(ŷ).

Let ε(ŷ) = mini∈I(ŷ) miny∈Ψ q̄i(ŷ; n)T (y − ŷ). The set Ψ in the inner minimum is finite by

Assumption 1 and therefore the inner minimum is attained for some y ∈ Ψ. Since I(ŷ) is also

finite, the outer minimum is also attained for some i ∈ I(ŷ). Therefore ε(ŷ) > 0.

Finally, let ε̃ = minŷ∈Υ ε(ŷ). Then ε̃ > 0 since Υ is finite.

Theorem 3. Suppose (3) has an optimal solution and that Assumptions 1, 2 and 3 hold.

Furthermore, let 0 < ε ≤ ε̃, where ε̃ is as in Lemma 2. Then the SACCPM terminates in a

finite number of iterations returning y∗, which is an optimal solution of (3).

Proof: The SACCPM only visits points that are feasible solutions of (8). The set of feasible

solutions of (8) at every iteration is a subset of Γ and is therefore a finite set by Assumption

1. Suppose that the kth iterate yk is the same as a previous iterate yj for some j < k. If yj
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is in Ψ then f(yk) ≤ z − 1 ≤ f(yj) − 1, where the second inequality follows since z is the cost

of the best feasible solution visited before iteration k. This is a contradiction, so yj is not in

Ψ. On the other hand, if yj is in Υ then ḡi(yj ; n) < 0 for some i ∈ I(yj). Since yk is in P ,

q̄i(yk; n)T (yk − yj) ≥ ε > 0 which is also a contradiction and yk can therefore not be equal to

yj for any j < k. Therefore, the SACCPM does not visit any point in Γ more than once. Since

Γ is a finite set, the algorithm is finite.

By Lemma 2 the feasibility cuts never cut off any of the feasible solutions of (3). When at

termination problems (7) or (8) do not have a feasible solution it means that all the feasible

solutions for (3) have an objective value greater than z − 1. But y∗ is feasible for (3) and has

an objective value of z and is, therefore, optimal, since f(y) is integer by Assumption 1.

The theorem says that there exists an ε̃ such that the algorithm terminates with an optimal

solution of (3) if 0 < ε ≤ ε̃. In practice, the value of ε̃ is unknown, but in general a “small”

value for ε should be chosen, as in Section 5.4.

5 Numerical results

In this section we give an implementation of the SACCPM for a call center with time varying

arrival rates. In Section 5.1 we describe the example that we use for the numerical experiments.

In Section 5.2 we discuss how to compute, or estimate, the pseudogradients, and we also describe

how the algorithm was implemented. We compare the results with staffing levels obtained by

analytical queuing methods (see Section 1 for references). Analytical queuing methods based on

the Erlang C formula (12) are widely used to determine staffing levels in call centers (Cleveland

and Mayben, 1997). In Green et al. (2001, 2003) several heuristics for improving the performance

of the basic Erlang C model are evaluated and we give a summary of these heuristics is given

in Section 5.3. We believe that the methods in Green et al. (2001, 2003) are among the best

analytical methods for determining required staffing levels to answer a minimum fraction of

calls before a threshold time limit. Therefore we use these methods as benchmarks for our

method. The results of our experiments are in Section 5.4 and we comment on the computational

requirements of the SACCPM in Section 5.5.

5.1 Example

Our test model is similar to the models used in Green et al. (2001, 2003), which are call centers

that can be modeled as M(t)/M/s(t) queuing systems. In the Green et al. (2001) paper a call
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center operating 24 hours a day and 7 days a week is studied, while the subject of the Green

et al. (2003) paper are call centers with limited hours of operation. We consider a call center

with limited hours of operation that is open from 6am to 12am. The call center has the following

additional characteristics.

• The planning horizon consists of a single day’s operation. The 18 hour planning horizon

is broken into 72 time periods, each of length 15 minutes.

• In each period 80% of calls should be answered immediately. This is equivalent to setting

τ = 0 and π = 0.8.

• The service times for each call can be modeled as independent exponential random variables

at rate µ.

• The average load over the 18 hours is R. The load is the average arrival rate divided by

the average service rate and is an indication of the size of the system.

• The arrival process on any given day is a nonhomogeneous Poisson process with arrival

rate at the end of period i given by λi = λ(1 + θ sin(2π(ti − 6)/18), where ti is the end

time of period i and is measured in the hour of the day (e.g., t0 = 6 and t72 = 24). The

average daily arrival rate is λ = Rµ and θ is the relative amplitude. The arrival rate at

time t such that ti−1 < t ≤ ti−1 is given by linear interpolation of the rates λi−1 and λi.

• Calls are answered in the order they are received.

• When there is a reduction in the number of servers at the end of a period, any server

completes a call that is already in service. A new call cannot enter service until there are

fewer calls in service than there are servers for the new period.

We study the performance both in the presence of shift constraints and when there are no shift

constraints.

• When there are no shift constraints, the tour matrix A is the identity matrix in Rp, and

the cost for each tour is equal to 1 man-period, i.e., the total staffing cost equals the total

number of servers over all 72 periods.

• We assume that the shift constraints are such that each tour covers 6 hours, or 24 periods.

• The tours can only start on the hour and no later than 6 hours before the end of the day.

This results in 13 tours: 6am-12pm, 7am-1pm, . . . , 5pm-11pm and 6pm-12am.

• The cost for each tour is equal to 24 man-periods per tour.

Note that we are yet to specify a value for µ, R and θ. In the experiments, we study how

the SACCPM performs under two different settings (high and low) of each of these parameters.
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Parameter Low High
µ 4 calls/hour 16 calls/hour
R 8 32
θ .25 .75

Shifts Yes No

Table 1: The parameter settings in the experiments.

Along with the two settings for the shift constraints this results in a total of 24 = 16 experiments.

The high and low values for each parameter are given in Table 1. Green et al. (2001, 2003)

additionally studied the effect of the target probability, π. The target level did not appear to

have as significant an effect on the reliability of each method as the other parameters did, so we

do not include different settings of it in our study. Instead of shifts, they included a factor that

they call the planning period which is similar to the shift factor in that the number of servers

is constant in each planning period (which can be longer than what we, and they, call a period

and measure the performance in).

5.2 Implementation of the SACCPM and estimating the pseudogra-

dients

Before we describe the implementation of the continuous and discrete optimization problems

solved in each iteration of the SACCPM, we discuss what is perhaps the most challenging part

of the implementation of the algorithm: estimating the pseudogradients. Up until now we have

assumed that in the implementation of the SACCPM, q̄i(ŷ; n) is a pseudogradient of ḡi(·; n) at

ŷ. What makes computing, or estimating, such a pseudogradient particularly challenging is that

the service level function is a discrete function of the number of agents, so a gradient, which

could otherwise have been used as a pseudogradient, does not exist. In addition, we do not have

a closed form expression of the function.

The simplest and perhaps the most intuitive method for estimating a gradient (or pseudo-

gradient) when an expression for the function is unknown is the method of finite differences (see,

e.g., Andradóttir, 1998). The method of finite differences can easily be extended to discrete

functions, i.e., we let

q̄i
j(ŷ; n) = ḡi(ŷ + ej ; n)− ḡi(ŷ;n) ∀ j ∈ {1, . . . , p}, (11)

where ej is the jth unit vector in Rp, be the estimate of the pseudogradient of ḡi(y; n) at the
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staffing level ȳ. It is clear that p + 1 function evaluations of ḡi are required to compute q̄i.

We note, however, that estimates of the pseudogradients of the service level functions in all p

periods can be obtained from those same p + 1 simulations.

In real applications of the call center staffing problem, the number of periods p can be quite

large. It would therefore greatly reduce the computation time of the SACCPM if a pseudogra-

dient can be estimated from a single simulation. The two most prominent gradient estimation

techniques in the simulation literature are the likelihood ratio (LR) gradient estimation method2

(see, for example, Glynn, 1990; Rubenstein and Shapiro, 1993; L’Ecuyer, 1990, 1995) and in-

finitesimal perturbation analysis (IPA) (see, for example, Glasserman, 1991; Fu and Hu, 1997).

The LR method is intended to estimate a gradient from a single simulation by differentiating

the elements, namely the densities and the integrand, of the expected value of the service level

function. The idea of IPA is to model quantities of the sample path, such as service times, as

functions of the dependent variable. Under appropriate conditions the gradient of the expected

value of the performance measure can be computed as the expected value of the gradient of the

quantities in the simulation with respect to the dependent variable. In our formulation of the call

center staffing problem, the variables of interest are the staffing levels, and are discrete. In order

to to apply both the LR method and IPA, the service level functions must first be extended to

a continuous domain. One such extension is to approximate the discrete service level functions

by functions of service rates. Then a pseudogradient can be estimated by estimating a gradient

of the service level functions with respect to the continuous rate variables.

Atlason et al. (2003) and Atlason (2004) contain a more detailed description and comparisons

via numerical experiments of the three different techniques. The results indicate that, although

the LR method and IPA are more tractable from a computational standpoint, the resulting

gradient estimates are not as reliable as those obtained by the method of finite differences and

are therefore not considered here further. In fact Atlason (2004) includes an implementation of

the SACCPM using IPA pseudogradients and the the quality of the solutions from the algorithm

are inferior to solutions that the algorithm gives when finite differences are used. Therefore, we

used (11) to estimate the pseudogradients.

Other parts of the SACCPM were implemented as follows.

• We built a simulation model using the ProModel simulation software to compute the

sample average of the service level function.

• We used Visual Basic for Applications and Microsoft Excel to store the data and to com-

2The likelihood ratio gradient estimation method is also known as the score function method.
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pute the cuts.

• We used the AMPL modeling language to model and call a solver for the analytic center

problem (7) and for the IP (8) of finding an integer point close to the analytic center.

• We used the MINOS solver to solve the analytic center problem (7).

• We used the CPLEX solver to solve the IP (8).

• We used the Excel solver to compute the cost f(ŷ) of a particular staffing level ŷ.

Finally, we describe the settings of the parameters that are specific to the SACCPM.

• We let wk = r where r is the number of feasibility cuts that have been added in iterations

1 through k − 1 (we let wk = 1 if no feasibility cuts have been added).

• We used ε = 10−5.

• We chose a = 1− ε.

• Instead of a feasible starting point y0 we started with an upper bound on the staffing

levels, i.e., we added the term −∑p
i=1 log(130− yi) to the objective of the analytic center

problem (7) and the constraints yi ≤ 130 ∀ i ∈ {1, . . . , p} to the IP (8).

• We used a sample size of n = 100.

5.3 Analytical queuing methods

In this section we describe the queuing methods in Green et al. (2001, 2003) that we use as

benchmarks for our computational study. Traditional queuing methods for staffing call centers

assume that the process is in steady state, i.e., the arrival rate is fixed and the call center

has been open for long enough that the initial state of the call center does not matter. Then

assuming that the call center can be modeled as an M/M/s queuing system, the probability

that a customer has to wait more than τ time units, as a function of the number of servers s, is

given by (Gross and Harris, 1998, p. 72)

P (s) =

( ∑s−1
n=0

Rn

n!∑s−1
n=0

Rn

n! + Rs

s!(1−ρ)

)
e−(sµ−λ)τ (12)

where R = λ/µ is the load and ρ = λ/sµ is the server utilization. This equation is only defined

for ρ < 1.

When the arrival rate changes between periods or within periods, Green et al. (2001) pro-

posed to adjust the value of the arrival rate λ in (12). This is a straightforward method that can

give good staffing levels, at least for a call center operation that is similar to the M(t)/M/s(t)
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Method Λi

SIPPavg
∫ ti
ti−1

λ(t)dt

SIPPmax maxti−1<t≤ti λ(t)
SIPPmix If λ(t) is nondecreasing in period i use SIPPavg rate,

otherwise use SIPPmax rate.
LAGavg

∫ ti−1/µ
ti−1−1/µ λ(t)dt

LAGmax maxti−1−1/µ<t≤ti−1/µ λ(t)
LAGmix If λ(t) is nondecreasing in [ti−1 − 1/µ, ti−1 − 1/µ] use LAGavg rate,

otherwise use LAGmax rate.

Table 2: Different methods for adjusting the arrival rate to use in Equation (12). Here, ti is the
time when period i ends (t0 ≡ 0), 1/µ is the mean service time and Λi is the rate to be used to
determine the staffing in period i.

model. They consider 6 different adjustments of the arrival rate. The 6 different schemes are

given in Table 2. In Green et al. (2003) only SIPPavg, LAGavg and LAGmax are considered.

When we computed the arrival rate to use for the LAG methods in the first period we assumed

that the arrival rate prior to time zero was equal to the arrival rate at the beginning of the first

period.

The required staffing, yi, in period i is computed by letting λ = Λi in (12) and letting

yi = min{s > 0 and integer : P (s) ≥ 1− 0.8}.

The cost of the resulting staffing level is f(y). The actual number of agents available in period

i can actually be greater than yi because of slack in the shift constraint Ax ≥ y in (1). We

included the additional staffing from the slack when we evaluated the performance of the staffing

levels obtained by these analytical heuristics.

5.4 Results

We enumerated the 16 experiments as in Table 3. The cost of the staffing levels obtained by

each method is shown in Table 4.

Determining feasibility. The solutions obtained by the 6 queuing methods and the SAC-

CPM are not guaranteed to be feasible for the call center staffing problem with expected service

level constraints (2). It is true that a solution obtained by the SACCPM is feasible for the

respective sample average approximation problem. To determine the feasibility we simulated

each solution using a sample size of n = 999 (the maximum number of iterations in Promodel).
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Since the simulation output of the 999 experiments is still random we decided to declare the

service level requirements not met if the fraction of calls answered immediately is less than 75%

in any period. This is similar to what Green et al. (2001) used to determine feasibility. They

computed the service level using numerical integration of transient queuing formulas and said

that the service level is infeasible in a period if the target probability is exceeded by at least

10%. We chose 75% as our threshold because the maximum 95% confidence interval half-width

in our simulations using n = 999 was 4.4%.

The feasibility of the solutions is reported in Table 5. We first note that all the methods

do well in most cases. The SIPPavg method struggles when there are no shifts present and the

service rates are low. In this case there is a significant dependency between time periods which

none of the SIPP methods take into account. We also note that the solutions from the SACCPM

do not always meet the service level requirements by the 75% criterion and in many periods fail

to meet the 80% requirements. This is because the sample size was only 100 when the solution

was computed so there is a significant error in the estimates of the service level functions.

Ranking the methods. In Table 4 we put in boldface text the cost of the method that we

declared a “winner.” We selected the winner based on two criteria. The first criterion is that

the service level must be greater than 75% in all periods based on the simulation using sample

size 999. The second criterion is cost. We see that the SACCPM is the winner in all but three

experiments. In two of these the solutions fail to meet the feasibility criterion. In the third case

the cost of the best solution was only 0.3% lower than the winner. In the case of ties it would

make more sense to use one of the analytical queuing heuristics because they are much easier

to implement. However, one would not know beforehand whether a tie would occur, and which

heuristic to use.

The analytical queuing heuristics have been shown to do well on this particular type of

queuing model. In the SACCPM, however, no assumptions are made on the arrival process or

the service times, so it may apply in even more general settings.

In Section 4.1 we noted that the sample averages of the service level functions are not

pseudoconcave for low staffing levels. In one or more iterations in some of the experiments we

got zero pseudogradients, which cannot be used to generate feasibility cuts. Instead we imposed

the lower bounds described in Section 4.1 and then checked upon termination of the algorithm

whether these lower bounds were tight. The bounds were tight in experiment 16, so we relaxed

the bounds and ran the algorithm until it terminated again, this time with a solution where

these kinds of bounds were not tight.
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5.5 Computational requirements

We can divide each iteration of the algorithm into 3 main parts in terms of computations:

1. Solve the analytic center problem (7). This usually took less than 1 second using the

MINOS solver and never took more than 3 seconds.

2. Solve the IP (8) to get an integer solution close to the analytic center. In the beginning

this takes on the order of seconds to solve. However, when there were no shifts, meaning

that the solution space for y is larger, it could take millions of branch and bound nodes

to find an optimal solution after a number of cuts were added. In fact it is not necessary

to find an optimal solution of the IP (8) to advance the algorithm, so we often terminated

the IP with a suboptimal, but feasible solution to determine the next iterate. If the IP

seemed infeasible, but the infeasibility was difficult to prove and the optimality gap in the

SACCPM was less than 1%, the SACCPM was terminated with a possibly suboptimal

solution.

3. Simulate to estimate the expected service level and gradients. Simulating at each staffing

level in ProModel took from 6 seconds to about 1 minute depending on the number of

arrivals to the system, on a Pentium 4 3GHz computer. Up to 73 such simulations are

required per iterations, although we did not always compute all 72 differences to compute

the FD pseudogradient. It appeared that dependence between time periods was not a

factor over more than 10 periods, so as a rule of thumb we only computed the differences

for the 10 periods preceding period i and for period i if the service level constraint was

not satisfied in period i. Staffing levels in subsequent periods do not have an effect on the

service level in period i since the requirement is to answer 80% of the calls immediately.

Hence, estimating the pseudogradients and solving the IP (8) require the most computation; see

Section 6 for ideas on how the computational requirements can be reduced.

The number of iterations required is given in Table 4. In the initial stages, the SACCPM

sometimes produced several optimality cuts before any feasibility cuts were generated. Because

the weight on the optimality cuts is only 1 in the beginning, the optimality cuts will be fairly

close to each other in such a case and convergence will be slow. This happens when the starting

point has much higher staffing levels than what is really needed. When this occurred, we

added deeper optimality cuts until the first feasibility cuts were generated by the algorithm,

i.e., we lowered z. One could start the algorithm close to the solutions of the analytical queuing

heuristics, to hopefully speed up the convergence. We did not try to implement this approach.
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Experiment µ R θ Shifts
1 4 8 0.75 Y
2 16 8 0.75 Y
3 4 32 0.75 Y
4 16 32 0.75 Y
5 4 8 0.25 Y
6 16 8 0.25 Y
7 4 32 0.25 Y
8 16 32 0.25 Y
9 4 8 0.75 N
10 16 8 0.75 N
11 4 32 0.75 N
12 16 32 0.75 N
13 4 8 0.25 N
14 16 8 0.25 N
15 4 32 0.25 N
16 16 32 0.25 N

Table 3: The experiments and the factor settings.

6 Conclusion and future research

The SACCPM presented in this paper is a promising method for computing optimal staffing

levels in a call center when traditional methods fail. Although the computational requirements

of the method are large, we were able to solve, or at least approximately solve, a number of

moderately sized hypothetical call center staffing problems. The results of the SACCPM were

encouraging and showed that the method can potentially be applied in real world situations

with good results. Furthermore, the algorithm can be automated, so that no user intervention

is required while the algorithm is running.

The algorithm is robust in the sense that it works well on a range of different problems which

gives it further credibility over the traditional methods. Compared to the traditional queuing

methods, the SACCPM does best in the presence of shift constraints when compared to the

traditional queuing methods. To see why, recall that the SACCPM solves both the problem

of determining minimum staffing levels and the problem of computing the best assignments to

cover these staffing levels, while the queuing methods compute the required staffing levels first

and the shift assignments afterwards, using the staffing levels as input.

There are several interesting directions for related future research, some of which we are

actively pursuing. From the numerical experiments we identified that both the simulations and

solving the integer programs can be computationally expensive. It would be beneficial to study

27



Exper-
iment SACCPM SIPPavg SIPPmax SIPPmix LAGavg LAGmax LAGmix Iter

1 1008 1056 1056 1056 1056 1056 1056 17
104.8% 104.8% 104.8% 104.8% 104.8% 104.8%

2 1032 1056 1056 1056 1032 1056 1032 20
102.3% 102.3% 102.3% 100.0% 102.3% 100.0%

3 3456 3552 3624 3576 3456 3552 3552 10
102.8% 104.9% 103.5% 100.0% 102.8% 102.8%

4 3504 3552 3624 3576 3576 3576 3528 15
101.4% 103.4% 102.1% 102.1% 102.1% 100.7%

5 936 936 936 936 936 936 936 39
100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

6 936 936 936 936 936 936 936 39
100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

7 3024 3048 3096 3072 3048 3048 3048 12
100.8% 102.4% 101.6% 100.8% 100.8% 100.8%

8 2976 3048 3096 3072 3024 3072 3048 11
102.4% 104.0% 103.2% 101.6% 103.2% 102.4%

9 829 848 862 855 848 862 855 47
102.3% 104.0% 103.1% 102.3% 104.0% 103.1%

10 838 848 858 853 847 862 853 24
101.2% 102.4% 101.8% 101.1% 102.9% 101.8%

11 2746 2786 2838 2812 2787 2838 2813 38
101.5% 103.4% 102.4% 101.5% 103.4% 102.4%

12 2786 2786 2838 2812 2778 2830 2804 26
100.0% 101.9% 100.9% 99.7% 101.6% 100.6%

13 846 856 862 859 856 862 859 51
101.2% 101.9% 101.5% 101.2% 101.9% 101.5%

14 850 854 860 857 856 861 859 27
100.5% 101.2% 100.8% 100.7% 101.3% 101.1%

15 2774 2802 2818 2810 2802 2818 2810 32
101.0% 101.6% 101.3% 101.0% 101.6% 101.3%

16 2790 2802 2818 2810 2797 2815 2806 53
100.4% 101.0% 100.7% 100.3% 100.9% 100.6%

Table 4: Cost of the solutions and the number of iterations of the SACCPM. The bold numbers in
each row are the lowest cost solutions out of the solutions that satisfy the feasibility requirements;
see Table 5. The percentages are the percentage of the SACCPM cost in each experiment. The
last column, “Iter”, shows the number of iterations of the SACCPM.
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Exper-
iment SACCPM SIPPavg SIPPmax SIPPmix LAGavg LAGmax LAGmix

2 1 1 2
1

79.0% 79.0% 79.0% 79.0% 81.3% 84.4% 85.9%

2
82.1% 83.1% 83.1% 83.1% 82.1% 83.1% 82.1%

1 4
3 1

76.7% 74.4% 81.6% 81.5% 82.1% 85.9% 82.5%

4
82.1% 82.0% 84.3% 83.1% 82.0% 86.2% 82.1%

5
82.4% 83.1% 81.3% 82.5% 81.8% 83.3% 83.1%

6
81.8% 81.8% 81.8% 81.8% 81.8% 81.8% 81.8%

7
80.1% 80.4% 82.5% 80.8% 83.5% 83.8% 83.8%

3
8

76.6% 82.0% 82.5% 83.0% 81.6% 82.3% 81.6%
15 14 3 3 2 1

9 3 3
74.2% 73.2% 76.2% 76.2% 76.5% 81.2% 79.8%

12 3 2 2
10

77.8% 78.4% 80.8% 80.8% 79.9% 81.1% 79.9%
21 33 29 29 4

11 3 23 4 4
74.7% 61.2% 71.5% 71.5% 78.7% 80.8% 80.7%

5 11 1
12

77.9% 76.0% 80.8% 80.8% 79.7% 81.9% 80.2%
7 1 1 1 1

13
76.1% 79.9% 80.5% 80.5% 80.0% 80.0% 80.0%

6 3 1 2 2 1 2
14

75.9% 79.0% 79.8% 79.6% 79.6% 79.8% 79.6%
17 19 8 8 3 2

15
75.1% 76.7% 78.2% 78.2% 79.0% 80.3% 79.0%

10 2 1
16

76.6% 79.1% 81.1% 81.1% 79.7% 81.1% 81.1%

Table 5: Feasibility of the solutions. Each cell has up to 3 values. The top value is the number of
periods in which the fraction of calls answered immediately is less than 80%. The center value is
the number of periods in which the fraction of calls answered immediately is less than 75%. The
bottom value shows the lowest fraction of calls answered immediately in any period. We do not
display the top two values when they are equal to 0.
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more efficient methods for estimating the pseudogradients that could mimic the performance of

the finite difference method. In relation to the integer programs one should investigate integer

programming algorithms that can utilize the special structure of the relaxed problems solved in

each iteration and consider allowing approximate solutions of the IPs, especially in early stages

of the algorithms. Another technique to speed up the computation of the next iterate in the

continuous case is to drop cuts that are redundant (see, e.g., Mitchell, 2003, for more on this

approach), and it is quite possible that the same technique could reduce the time required to

solve the IPs in the later stages of the SACCPM. One could also generate some initial cuts by

running simulations at the staffing levels suggested by heuristics.

It is quite possible that other optimization methods could perform well in this setting. The

extended cutting plane method in Westerlund and Pörn (2002) seems to fit the framework

particularly well, although some details of the implementation are unclear.

The problems solved in this paper were fairly simple instances of a call center staffing prob-

lem, but since no assumptions are made on the arrival and service processes and simulation is

used to evaluate performance, it is quite possible that the method would also apply in more

complicated settings. Call abandonments, skill-based routing and prioritizing multiple customer

classes are problems that call center managers commonly face and it would be interesting to

incorporate those in the algorithm. Moreover, it is likely that the SACCPM could, with appro-

priate modifications, be applied to problems other than call center staffing.
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