10.1

Nonlinear Equations

Katta G. Murty, IOE 611 Lecture slides

If no. of eqs. $>[<]$ no. of variables system called overdetermined [underdetermined] system.

We consider Square system of n eqs. in n unknowns, $F(x)$ $=\left(f_{1}(x), \ldots, f_{n}(x)\right)=0$.

Newton's Method (or Newton-Raphson Method)

This is the iteration:

$$
x^{r+1}=x^{r}-\left(\nabla_{x} F\left(x^{r}\right)\right)^{-1} F\left(x^{r}\right)
$$

assuming that $\nabla_{x} F\left(x^{r}\right)$ is nonsingular.

$$
\begin{aligned}
& \text { Examples: 1) } x_{1}^{2}+x_{2}^{2}-1=0, x_{1}^{2}-x_{2}=0, \quad x^{0}=(1,0)^{T} . \\
& \text { 2) } x_{1}+x_{2}-3=0, x_{1}^{2}+x_{2}^{2}-9=0, \quad x^{0}=(1,4)^{T} .
\end{aligned}
$$

Theorem: Local convergence of Newton's Method: Suppose there exists x^{*} s. th. $F\left(x^{*}\right)=0$, and $\nabla_{x} F\left(x^{*}\right)$ is nonsingular and $\left\|\left(\nabla_{x} F\left(x^{*}\right)\right)^{-1}\right\| \leq \beta$ for some $\beta>0$. Also suppose
that $\nabla_{x} F(x)$ is Lipschitz continuous with constant γ. Then there exists an open nbhd. of x^{*} s. th. $\forall x^{0}$ in this nbhd. the sequence $\left\{x^{r}\right\}$ generated by Newton's method converges to x^{*} and obeys for $r=0,1, \ldots$

$$
\left\|x^{r+1}-x^{*}\right\| \leq \beta \gamma\left\|x^{r}-x^{*}\right\|^{2}
$$

Broyden's Method

Most popular secant method for solving nonlinear eqs. It approximtes $\nabla_{x} F(x)$.

Initiated with some x^{0} and $B_{0}=\nabla_{x} F\left(x^{0}\right)$. General iteration is:

$$
x^{r+1}=x^{r}-B_{r}^{-1} F\left(x^{r}\right), \quad \text { where }
$$

Updating formula $\quad B_{r+1}=B_{r}+\frac{\left(y^{r}-B_{r} s^{r}\right)\left(s^{r}\right)^{T}}{\left(s^{r}\right)^{T} s^{r}}, r=0,1, \ldots$

$$
y^{r}=F\left(x^{r+1}\right)-F\left(x^{r}\right), \quad s^{r}=x^{r+1}-x^{r}
$$

It can be shown to locally converge superlinearly under same conds. as Newton's method. Requires less function evaluations than finite difference Newton.

When implemented, instead of using the updating formula for B_{r}, an equivalent updating formula for $Q R$-factorization of B_{r} is used so that s^{r+1} can be computed using only $O\left(n^{2}\right)$ effort.

Both methods are locally convergent. Globally convergent methods for $F(x)=0$ are derived thro' unconstrained min of $(F(x))^{T} F(x)$.

Affine scaling method for nonlinear eqs. with bounds

 on vars.Consider solving:

$$
\begin{gathered}
f_{i}(x)=b_{i}, \quad i=1 \text { to } m \\
x \in \Gamma=\left\{x: \quad x_{j} \geq \alpha_{j} \text { for } j \in J_{1} ; \quad x_{j} \leq \beta_{j} \text { for } j \in J_{2}\right. \\
\left.\alpha_{j} \leq x_{j} \leq \beta_{j} \text { for } j \in J_{3} ; \quad x_{j} \text { unrestricted for } j \in J_{4}\right\}
\end{gathered}
$$

where α_{j}, β_{j} are reals and for $j \in J_{3}, \alpha_{j}<\beta_{j}$; and $\left(J_{1}, J_{2}, J_{3}, J_{4}\right)$ is a partition of $\{1, \ldots, n\}$.

Starting point $x^{0} \in \operatorname{Interior}(\Gamma)$, and all iterates will be in interior (Γ). Let $F(x)=\left(f_{i}(x): i=1 \text { to } m\right)^{T}$.

Given $x^{k} \in \operatorname{interior}(\Gamma)$, define weight vector $\sigma^{k}=\left(\sigma_{1}^{k}, \ldots, \sigma_{n}^{k}\right)^{T}$ for it by

$$
\sigma_{j}^{k}= \begin{cases}\left(x_{j}^{k}-\alpha_{j}\right)^{2} & j \in J_{1} \\ \left(\beta-x_{j}^{k}\right)^{2} & j \in J_{2} \\ \min \left\{\left(x_{j}^{k}-\alpha_{j}\right)^{2},\left(\beta_{j}-x_{j}^{k}\right)^{2}\right\} & j \in J_{3} \\ N_{j}>0 & j \in J_{4}\end{cases}
$$

Define

$$
\begin{gathered}
D_{k}=\operatorname{diag}\left(\sigma_{k}\right) \\
r^{k}=\text { residual vector }\left(b_{i}-f_{i}\left(x^{k}\right): i=1 \text { to } m\right)^{T} \\
B_{m \times m}^{k}=\nabla_{x} F\left(x^{k}\right) D_{k}\left(\nabla_{x} F\left(x^{k}\right)\right)^{T}
\end{gathered}
$$

Let $u^{k}=\left(u_{1}^{k}, \ldots, u_{m}^{k}\right)^{T}$ be the sol. to $B^{k} u=r^{k}$. If Jacobian has full row rank and $\sigma^{k}>0$, this system has unique sol. which is the minimizer of $\frac{1}{2} \sum_{j=1}^{n} \sigma_{j}^{k}\left(\left(\left(\nabla_{x} F\left(x^{k}\right)\right) . j\right)^{T} u\right)^{2}-\left(r^{k}\right)^{T} u$.

The correction direction at x^{k} is $s^{k} \in R^{n}$ determined to minimize $\frac{1}{2} \sum_{j=1}^{n} s_{j}^{2} / \sigma_{j}^{k} \quad$ s. to $\quad\left(\nabla_{x} F\left(x^{k}\right)\right) s=r^{k}$. For this problem, u^{k} is the opt. Lagrange multiplier vector, and s^{k} itself is given by

$$
s^{k}=D_{k} \delta^{k} \quad \text { where } \quad \delta^{k}=\left(\nabla_{x} F\left(x^{k}\right)\right)^{T} u^{k}
$$

Choose the new pt. to be $x_{k+1}=x^{k}+\lambda_{k} s^{k}$ where $\lambda_{k}=\rho \mu_{k}$; $0<\rho<1$ and μ_{k} is the maximum step length λ that keeps $x^{k}+\lambda s^{k}$ within Γ.

Terminate when either $\left\|r^{k}\right\|$ is small; or when step length λ_{k} becomes close to 0 .

Reference: I. I. Dikin, "Determination of Interior Points of Systems of Inequality and Equality Constraints", 1997.

