5.1

Shortest chain Algorithms

Katta G. Murty, IOE 612 Lecture slides 5

Directed $G=(\mathcal{N}, \mathcal{A}, c)$. Find shortest chains in G. A special min cost flow problem of fundamental importance.

- Provides basic data for planning decisions transportation, routing \& communication applications. Provides data for the design, capacity planning, \& expansion of transportation and communication networks.
- Is the basis for CPM for planning decisions in project mgt.
- Has many applications in equipment replacement.
- Used to obtain travel time \& distance charts between pairs of cities provided by AAAs, and the routes between pairs of locations provided on the web by web-servers.
- Appears as a subproblem in many other optimization algorithms.

Unboundedness of obj. func.: We consider Unconstrained shortest chain Problem. All chains from origin to destination feasible. The obj. func. (chain cost) is unbounded below if a chain exists in G from origin to destination, and there is a negative cost circuit.

Difficult cases: If G has a chain from origin to destination, and a negative cost circuit; and you want to find a shortest simple chain from origin to destination (this is a constrained shortest chain problem, because chains that are not simple are not feasible for this) it is a hard problem. Special case of finding the best extreme point sol. in an unbounded LP.

Transformations: 1. If G has an edge: If G has an edge $(i ; j)$ with cost $c_{i j} \geq 0$, replace it by a pair of arcs with same cost.

If $c_{i j}<0$, this transformation does not work, as it immediately creates a negative cost simple circuit, making it hard to find short-
est simple chains. In this case if there is no negative cost simple circuit in G, shortest simple chains can still be found efficiently in G using matching algos. (due to Roger Tobin, but technique of limited applicability).

So, we assume network directed.
2. If there are parallel arcs: Keep only cheapest among them \& eliminate all others.

Assumption: G has no negative cost circuit: Algorithms contain procedures to check if assumption holds. Under assumption, cost of all circuits ≥ 0. So cost of any chain will never increase if any circuits in it are deleted. Hence if a chain exists from origin to destination, there will be a shortest chain which is simple.

All algorithms find shortest chains which are simple.

Fundamental property of shortest chains

If \mathcal{P} is a shortest chain from 1 to n, and p, q are two nodes that appear on \mathcal{P} in that order ; then the portion of \mathcal{P} from p to q is a shortest chain from p to q.

Data structures for storing Shortest chains

Origin, destination specified: Can be stored as a sequence of nodes or arcs.

From an origin to all nodes in the network: Origin 1. When you put shortest chains from 1 to i, and that from 1 to j, suppose there is a cycle.

Can replace the portion from 1 to 4 in the chain from 1 to j, by that in chain from 1 to i. This leads to following union of shortest chains from 1 to i, and from 1 to j, no cycles.

Same way, can put together shortest chains from 1 to all other nodes, and eliminate all cycles in union. Union becomes a spanning tree with 1 as root, in which path from 1 to any other node is a shortest chain; tree is an outtree rooted at 1 called a Shortest chain tree rooted at node 1 . Shortest chains stored by storing this tree using predecessor labels.

All shortest chains: Shortest chains between every pair of nodes. Stored by storing two $n \times n$ square matrices called distance and label matrices.

Distance matrix $\quad D=\left(d_{i j}\right), \quad$ Label matrix $\quad L=\left(\ell_{i j}\right)$
$d_{i j}=$ cost of shortest chain from i to j.
$\ell_{i j}=$ previous node to j in a shortest chain from i to j.
Entire shortest chain between any pair of nodes can be retrieved by looking up label matrix repeatedly.

	Label matrix					
	1	2	3	4	5	6
1	.	1	5	1	2	5
2	3	.	5	6	2	5
3	3	1	.	6	1	3
4	\emptyset	\emptyset	\emptyset	.	\emptyset	\emptyset
5	3	1	5	\emptyset	.	5
6	\emptyset	\emptyset	\emptyset	6	\emptyset	.

Distance matrix						
	1	2	3	4	5	6
1	0	6.1	13.7	5.2	9.3	12.4
2	15.7	0	7.6	15.6	3.2	6.3
3	8.1	14.2	0	10.4	19.3	1.1
4	∞	∞	∞	0	∞	∞
5	12.3	18.4	4.4	12.4	0	3.1
6	∞	∞	∞	9.3	∞	0

LP formulations of unconstrained shortest chain problems

$$
G=(\mathcal{N}, \mathcal{A}, c, 1=\text { origin, } n=\text { destination }) . \Leftrightarrow \text { sending one }
$$ unit material from 1 to n across G at min cost, with $\quad \ell=0$, $k=\infty$, and $c=$ cost vector. So, LP formulation is:

$$
\begin{aligned}
& \min \sum c_{i j} f_{i j} \\
& \text { s. to. }-f(i, \mathcal{N})+f(\mathcal{N}, i)= \begin{cases}-1 & \text { if } i=1 \text { origin } \\
0 & \text { if } i \neq 1 \text { or } n \\
1 & \text { if } i=n \text {, destination } \\
\qquad f_{i j} \geq 0 \quad \forall(i, j) \in \mathcal{A} \\
f_{i j}=\text { no. of times chain } \operatorname{traverses}(i, j)\end{cases}
\end{aligned}
$$

Why is capacity $\infty \&$ not 1 ?

This model has a redundant constraint. We take it to be that corresponding to origin node 1 . The dual problem is:

$$
\begin{aligned}
\min \pi_{n}-\pi_{1} & \\
\text { s. to } \pi_{j}-\pi_{i} & \leq c_{i j} \quad \forall(i, j) \in \mathcal{A} \\
\pi_{1} & =0
\end{aligned}
$$

1. Every basic vector for the flow formulation consists of flow variables associated with arcs in a spanning tree of G.
2. A basic vector is feasible iff the unique path in the corresponding tree T from 1 to n is a chain.

The BFS associated with s feasible spanning tree T is $f=$ $\left(f_{i j}\right)$ where (draw T as a rooted tree with 1 as rootnode):

$$
f_{\text {in }}=\left\{\begin{array}{l}
0 \text { if }(i, j) \text { not on predecessor path of } n \\
1 \text { if }(i, j) \text { on the predecessor path of } n
\end{array}\right.
$$

3. So each BFS for the flow formulation corresponds to a simple chain from 1 to n and vice versa.
4. If there is a negative cost circuit in G, the dual is infeasible. If there is a chain from 1 to n, and G contains a negative cost circuit, unconstrained shortest chain algos. will detect one such circuit \& terminate with unboundedness conclusion.

To find Shortest simple chain for 1 to n in G - Solvable \& hard cases

1. G has no negative cost circuit. Solvable in $O\left(n^{2}\right)$ or $O(m)$ or $O(n m)$ time.
2. G may have - ve cost circuit, but for every node i on a - ve cost circuit, either there is no chain from i to n, or there is no chain from 1 to i.

Let $Y=$ set of all nodes $j \mathrm{~s}$. th. there is a chain from 1 to j, and a chain from j to n. In this case a shortest simple chain from 1 to n can be found efficiently by applying shortest chain algos. on the subnetwork induced by the set of nodes Y.
3. There is a node i in G that is both on a -ve cost circuit, and a chain from 1 to n. Finding shortest simple chain is hard in this case.

Won't putting a capacity of 1 on all arcs work in Case 3?

Unboundedness in presence of -ve cost circuits occurs due to traversal around such a circuit an ∞ times. So, won't putting a capacity of 1 on all arcs take care of this problem?

Bellman-Ford Eqs. for shortest chains from 1 to all other nodes

1st consider destination node n. Let $\hat{f}=\left(\hat{f}_{i j}\right), \hat{\pi}=\left(\hat{\pi}_{i}\right)$ be primal \& dual opt. sols. for LP formulation. Opt. Conds. are:

Dual feasibility: $\hat{\pi}_{j}-\hat{\pi}_{i} \leq c_{i j} \quad \forall(i, j) \in \mathcal{A}$
Primal feasibility: The set $\left\{(i, j): \hat{f}_{i j}=1\right\}$ forms a chain from 1 to n
C.S. Conds.: $\hat{f}_{i j}=1 \Rightarrow \hat{\pi}_{j}-\hat{\pi}_{i}=c_{i j}$

Equality of objectives: Opt. dual obj. value $=\hat{\pi}_{n}=o p t$. primal obj. value $=c \hat{f}=$ cost of shortest chain from 1 to n.

So, if $\bar{\pi}=\left(\bar{\pi}_{i}\right)$ satisfies dual feasibility, and if there exists a chain from 1 to n among set of $\operatorname{arcs}\left\{(i, j) \in \mathcal{A}: \bar{\pi}_{j}-\bar{\pi}_{i}=c_{i j}\right\}$ then that chain is a shortest chain from 1 to n of $\operatorname{cost} \bar{\pi}_{n}-\bar{\pi}_{1}$ (or $\bar{\pi}_{n}$ if $\bar{\pi}_{1}=0$), and $\bar{\pi}$ is dual opt.

Conversely define $\tilde{\pi}$ by

$$
\tilde{\pi}_{i}= \begin{cases}0 & \text { if } i=1 \\ \infty \quad \text { if no chain from } 1 \text { to } i \\ \text { cost of shortest chain from } 1 \text { to } i \quad \text { otherwise }\end{cases}
$$

1. $\forall(i, j) \in \mathcal{A}$, we get a chain of cost $\tilde{\pi}_{i}+c_{i j}$ from 1 to j by putting arc (i, j) at end of shortest path from 1 to i; this length $\geq \tilde{\pi}_{j}=$ cost of shortest chain from 1 to j; i.e., $\tilde{\pi}$ satisfies dual feasibility conds. mentioned above.
2. If \mathcal{C} is any chain from 1 to p in the set of $\operatorname{arcs}\{(i, j) \in \mathcal{A}$: $\left.\tilde{\pi}_{j}-\tilde{\pi}_{i}=c_{i j}\right\}$, then its cost is sum $c_{i j}=\tilde{\pi}_{j}-\tilde{\pi}_{i}$ over $\operatorname{arcs}(i, j)$ in it $=\tilde{\pi}_{p}$; hence \mathcal{C} is a shortest chain from 1 to p.

Hence $\tilde{\pi}$ satisfies the Bellman - Ford eqs.

$$
\begin{gathered}
\tilde{\pi}_{1}=0 \\
\tilde{\pi}_{j}=\min \left\{\tilde{\pi}_{i}+c_{i j}: i \in B(j)\right\} \quad \forall j \neq 1
\end{gathered}
$$

Nec. conds. for $\tilde{\pi}$ to be vector of shortest chain costs from 1 to other nodes.

Conversely if $\tilde{\pi}$ satisfies BF eqs. \& there is a chain from 1 to i of cost $\tilde{\pi}_{i}$ then it is a shortest chain from 1 to $i \&$ all $\operatorname{arcs}(u, v)$ on it satisfy $\tilde{\pi}_{v}-\tilde{\pi}_{u}=c_{u v}$.

Methods for specified origin: Two classes of meth-

 ods:Label setting methods: SC tree grown one arc per step. At each stage, for each in-tree node, its predecessor path in reverse is a shortest chain from origin to it. Terminates when no more nodes can be included in tree.

Label correcting methods: Always maintains a spanning outtree rooted at origin. Changes it by one arc typically per step. Changes continue until tree becomes a SC tree.

LS Methods - Dijkstra's method

To find shortest chains in $G=(\mathcal{N}, \mathcal{A}, c, 1=$ origin node $)$.

Assumption: $c \geq 0$.

Main theorem: $G=(\mathcal{N}, \mathcal{A}, c \geq 0,1=$ origin $)$. T SC tree, not spanning. $X=$ set of in-tree nodes. For $i \in X, \pi_{i}=\operatorname{cost}$ of chain from 1 to i in $T .(p, q) \in \operatorname{Cut}(X, \bar{X})$ satisfies:

$$
\pi_{p}+c_{p q}=\min \left\{\pi+c_{i j}:(i, j) \in(X, \bar{X})\right\}
$$

Add arc (p, q) to T and define $\pi_{q}=\pi_{p}+c_{p q}$. This gives SC tree T^{\prime} spanning nodes $X \cup\{q\}$.

Notes: Theorem used repeatedly until tree becomes spanning in $(n-1)$ steps. When $|X|=r$, effort to find next arc to add is $O(r(n-r))$. So, if implemented directly, overall complexity of method will be $\sum_{r=1}^{n} O(r(n-r))=O\left(n^{3}\right)$.

Dijkstra reduced complexity to $O\left(n^{2}\right)$ by replacing cut examination with setting and updating node labels called Temporary labels for out-of-tree nodes. Method examines each
arc precisely once.

Nodes in 3 states: permanently labeled (in-tree nodes); temporarily labeled (out-of-tree nodes one arc away from tree); unlabeled (other out-of-tree nodes).

Label on node i of form $\left(P(i), d_{i}\right)$ where:
$P(i)=$ predecessor index of node i for in-tree nodes, for labeled out-of-tree nodes it is the previous node to i on a shortest chain from 1 to i using only in-tree nodes as intermediate nodes.
$d_{i}=$ for in-tree nodes it is the cost of shortest chain from 1 to i, for labeled out-of-tree nodes it is cost of shortest chain from 1 to i using only in-tree nodes as intermediate nodes.

Once node becomes permanently labeled, it is in-tree, and its label will never change. Each step permanently labels one more node, so method takes $\leq n$ steps. Denote:

$$
\begin{aligned}
& X=\text { set of permanently labeled node } \\
& Y=\text { set of temporarily labeled nodes } \\
& N=\text { set of unlabeled }
\end{aligned}
$$

Labels on nodes in Y updated in each step. One node moves from Y to X in each step, the one with smallest distance index in Y.

Dijkstra's method

Root Tree at origin: Permanently label 1 with $(\emptyset, 0)$. Temporarily label each $j \in A(1)$ with $\left(1, c_{1 j}\right) . X=\{1\}, Y=A(1)$, $N=\mathcal{N} \backslash(X \cup Y)$.

Tree growth step: If $Y=\emptyset$ go to termination step.
If $Y \neq \emptyset$, make label on i permanent. Move i from Y to X. If label on i is $\left(P(i), \pi_{i}\right),(P(i), i)$ is new arc included in SC tree in this step.

$$
\begin{aligned}
& \forall j \in Y \text { let } d_{j} \text { be its distance index. If }(i, j) \in \mathcal{A} \text { and } \\
& d_{j}>\pi_{i}+c_{i j} \text { change temp. label on } j \text { to }\left(i, \pi_{i}+c_{i j}\right) .
\end{aligned}
$$

Temp. label each $j \in N \cap A(i)$ with $\left(i, \pi_{i}+c_{i j}\right)$ and move all such j from N to Y.

If $X \neq \mathcal{N}$ repeat this tree growth step.

Termination step: We have SC tree. If $X \neq \mathcal{N}$, no chain from 1 to any node in N in G. Terminate.

Example

What if $c \nsupseteq 0$?

Theorem: If $c \geq 0$ method gives SC tree with complexity $O\left(n^{2}\right)$.

BrFS method is special case of this method for $c_{i j}=1 \forall(i, j) \in$ \mathcal{A}.

If shortest chains to only a subset of nodes are needed, method terminates when all those nodes are permanently labeled.

LC Methods for a specified origin

Work for general c, so no need to assume $c \geq 0$.
These are variants of primal simplex on LP formulation. Every basis is a spanning tree, and a pivot step exchanges an out-of-tree arc with an in-tree arc in its funda. cycle. Maintain a spanning outtree rooted at origin. Each iteration, labels on one or more nodes change.

Initial Spanning outtree selection: $\forall j \neq 1$ if $(1, j) \notin \mathcal{A}$ introduce artificial arc $(1, j)$ with cost $c_{1 j}=$ a large + ve no., say $=1+n\left(\max \left\{\left|c_{p q}\right|:(p, q) \in \mathcal{A}\right\}\right)$.

Then set $T_{0}=$ spanning outtree determined by arcs $\{(1, j)$: $j \neq 1\}$.

Node Labels maintained by algos.: Of form $\left(P(i), d_{i}\right)$ where:
$P(i)=$ predecessor index of node i in current tree
$d_{i}=$ distance index of i (will equal $\pi_{i}=$ cost of present chain from 1 to i if step Correcting distance index of descendents
carried out in each iteration; $d_{i} \geq \pi_{i}$ otherwise).

$$
E=\{(P(i), i): i \neq 1\} \text { (will equal set of arcs in present span- }
$$ ning outtree until algo. detects a - ve cost circuit; from that time the node labels and E will not represent a spanning outtree, instead they will represent some trees (not spanning) + one or more -ve cost circuits).

Algos. can terminate two ways: (1) with SC Tree (happens when distance indices satisfy dual feasibility); (2) with a - ve cost circuit.

In all these algos. artificial arcs eliminated once they become out-of-tree.

Classical primal method for specified origin

Main source of all LC methods. Labels are actually $\left(P(i), \pi_{i}\right)$.

Initialization: Start with T_{0}. Label 1 with $(\emptyset, 0)$, and all $i \neq 1$ with $\left(1, c_{1 i}\right)$.

General iteration: Let $\left(P(i), \pi_{i}\right)$ be present node labels.
1: Select incoming arc: Select $(i, j) \in \mathcal{A}$ violating dual feasibility, i.e., satisfying $\pi_{j}>\pi_{i}+c_{i j}$.

If no such arc, TERMINATE, PRESENT OUTTREE IS AN SC TREE.

If such arc selected, let $\delta=\pi_{j}-\pi_{i}-c_{i j}>0$; and $D_{j}=$ set of descendents of j in present tree.

2: Ancestor checking: Check whether j is an ancestor of i.

If it is, arc (i, j) together with the portion of predecessor path of i between i and j is a -ve cost circuit of cost $-\delta$, TERMINATE.

3 : Label correction: Change label on j to $\left(i, \pi_{i}+c-i j\right)$. It replaces in-tree $\operatorname{arc}(P(j), j)$ with (i, j), and reduces cost of chain to j by δ.

4: Correcting distance index of descendents: Change

$$
\pi_{p} \text { to } \pi_{p}-\delta \forall p \in D_{j}
$$

Go to next iteration.

Examples:

Finiteness proof:

Complexity: Depends on rule used to select incoming arc. Can vary from polynomial time to exponential time.

Rules for selecting incoming arc: Takes $O(m)$ effort if carried out by examining all arcs.

Efficient implementations use Branching out of node i (examining arcs in forward star of i for dual feasibility) for i in a List (set of candidate nodes for branching out, maintained).

Ancestor checking: Adds $O(n)$ effort per iteration.
Eliminated if known that no - ve cost circuits exist. Even when not known, some implementations eliminate it. If (i, j) entered $\& j$ ancestor of i, E has -ve cost circuit thro' j from then on.

Correcting distance index of descendents: To get D_{j} efficiently, PIs not adequate, need other tree labels. So, some implementations do not carry this step. Distance labels will get corrected before termination.

Bellman-Ford-Moore (BFM) LC Algo.

Can be interpreted as a recursive (DP) or successive approximation approach to solve BF eqs. In $r+1$ th iteration, obtains $r+1$ th order approx. π^{r+1} from r th.

DEFINITION: $\pi_{j}^{r}=$ distance index of j at end of r th iteration $=$ cost of a shortest chain from 1 to j with $\leq r$ arcs.

Iteration 1: T_{0} is initial outtree. Label 1 with $(\emptyset, 0)$ and $i \neq 1$ with $\left(1, c_{1 i}\right) . \pi_{j}^{1}=c_{1 j} \forall j$.

Iteration $r+1$: Let $\left(P(i), \pi_{i}^{r}\right)$ be label on i at end of iteration r. $\forall j \in \mathcal{N}$ compute:

$$
\pi_{j}^{r+1}=\min \left\{\pi_{j}^{r}, \pi_{i}^{r}+c_{i j} \text { over } i \in B(j)\right\}
$$

and let:

$$
u_{j}=\left\{\begin{array}{l}
P(j) \quad \text { if minimum above is } \pi_{j}^{r} \\
\text { an } i \in B(j) \text { attaining min above } \quad \text { otherwise }
\end{array}\right.
$$

If $\pi_{j}^{r+1}=\pi_{j}^{r} \forall j \in \mathcal{N}$ Stability attained, present labels define an SC tree, TERMINATE.

Otherwise, $\forall j \in\left\{i: \pi_{i}^{r+1}<\pi_{i}^{r}\right\}$ change label to $\left(u_{j}, \pi_{j}^{r+1}\right)$, and go to next iteration if $r+1 \leq n-1$. In this case if $r+1=n$, a - ve cost circuit exists among present E, TERMINATE.

- if no - ve cost circuits, stability will be attained before ($n-$ 1)th iteration.
- if stability not attained after n iterations, E must contain a -ve cost circuit.
- overall complexity $O(n m)$.
- what if some artificial arcs $(1, i)$ remain in final SC tree?

FIFO LC Algo.

Primal algo. with branching out operation. List maintained as a Q with FIFO discipline. Ancestor checking, correcting distance index on descendents, not carried out. Complexity $O(n m)$.

Iteration 1: Begin with labels for T_{0}. List $=\{1\}$.

General iteration: Select the node for branching out from top of list, and continue until list becomes \emptyset.

During iteration arrange all nodes whose labels have changed in another Q called Next list according to one of following disciplines:

FIFO/NO MOVE: If j not in next list, insert it at bottom. If j already in next list, leave it in current position.

FIFO/MOVE: If j not in next list, insert it at bottom.
If j already in next list, move it to bottom position.

When list becomes \emptyset, if next list $=\emptyset$, present labels define an SC tree, TERMINATE. Otherwise if next list $\neq \emptyset$; look for a -ve cost circute in E if iteration count n, or if iteration count $<n$
make next list the new list and go to next iteration.

Dynamic Breadth First Search (DBFS) LC

 Algo.Define $a_{j}=$ Label Depth of node $j=$ no. of arcs in present chain from 1 to j.
$a_{i}^{\prime}=$ label depth index of $i \leq a_{i} \forall i$ always.
Labels of form $\left(P(i), d_{i}, a_{i}^{\prime}\right)$. Correction on descendents not carried out, so $a_{i}^{\prime} \leq a_{i}$, but will be correct at termination if an SC tree is obtained.
a_{i}^{\prime} can only increase during algo. Like BrFS, this method in iteration r branches out only those nodes whose LDI is r.

For each h let $n(h)=$ no. of nodes j for which $a_{j}^{\prime}=h$.

Iteration 0: Start with labels for $T_{0} \cdot a_{1}^{\prime}=0, a_{j}^{\prime}=1 \quad \forall j \neq 1$. List $=\mathcal{N} \backslash\{1\}$, Next list $=\emptyset . n(0)=1, \quad n(1)=n-1, \quad n(h)=$ $0 \quad \forall h>1$.

Iteration r : 1. Select a node from list to branch out: If list $=\emptyset$ go to 3 . If list $\neq \emptyset$ delete a node i from list to branch out. Let label on i be $\left(P(i), d_{i}, a_{i}^{\prime}\right)$. If $a_{i}^{\prime}=r$ go to 2 . Otherwise repeat this step.
2. Branching out of $i: \forall j \in A(i)$ do:

Let label on j be $\left(P(j), d_{j}, a_{j}^{\prime}\right)$. If $d_{j} \leq d_{i}+c_{i j}$ continue. If $d_{j}>d_{i}+c_{i j}$ change PI and DI of j to $i, d_{i}+c_{i j}$ respectively; and if $a_{j}^{\prime} \neq r+1$ subtract 1 from $n\left(a_{j}^{\prime}\right)$.

If $n\left(a_{j}^{\prime}\right)$ is now 0 , a -ve cost circuit identified, find it by tracing predecessor path of j until a node repeats, TERMINATE. Otherwise change a_{j}^{\prime} to $r+1$, add 1 to $n(r+1)$, include j in next list.

Return to 1.
3. Set up for next iteration: If next list $=\emptyset$, present labels define a SC Tree, TERMINATE. Otherwise, if $r=n$ look for a - ve cost circuit in E and TERMINATE, or if $r<n$ make list $=$ next list, next list $=\emptyset$, go to next iteration.

Notes: Consider no - ve cost circuits. Let π_{j}^{*} denote length of shortest chain from 1 to j, and b_{j} the smallest no. of arcs in a shortest chain from 1 to j. Let $L(r)=\left\{j: b_{j}=r\right\}$.

At start of iteration r list only consists of nodes with $a_{i}^{\prime}=r$. Also, node i is branched out in iteration r only if a_{i}^{\prime} remains $=r$ when algo. tries to select it.

At start of iteration $r, L(r) \subset$ list. And $d_{i}=\pi_{i}^{*} \forall i \in L(r)$.
Also, in this iteration all nodes in $L(r)$ are branched out.
So, in this case algo. terminates with SC tree after $\leq(n-2)$ iterations. Each iteration needs $O(m)$ effort. So overall complexity $O(n m)$.

On networks with $\mathrm{n}=5000, \mathrm{~m}=60,000$, method takes 4 seconds on a SUN 3 workstation.

Acyclic Shortest chain Algo.
$G=\left(\mathcal{N}, \mathcal{A}, c=\left(c_{i j}\right), 1=\right.$ specified origin $)$, acyclic with acyclic numbering of nodes.

If origin is $i \neq 1$, no chain from i to $j \forall j<i$. So all nodes $j<i \& \operatorname{arcs}$ incident at them can be deleted. In remaining network nodes can be renumbered beginning with 1 for node i. So WLOG assume 1 is origin.
G has no circuits, so no question of -ve cost circuits. Following recursive (DP) algo of complexity $O(m)$ finds SC tree rooted at 1. Nodes are labeled in specific order 1, ..., n. All labels assigned are permanent.

Step 1: Label 1 with $(\emptyset, 0)$ rooting the tree at 1.

General step r : When we come here, we would have already labeled i, say with $\left(P(i), \pi_{i}\right) \forall i=1$ to $r-1$. Find

$$
\pi_{r}=\min \left\{\pi_{i}+c_{i r}: i \in B(r)\right\}
$$

If $B(r)=\emptyset$, we define $\pi_{r}=\infty$, and there is no chain from 1 to r. Otherwise, let $P(r)$ be an i that attains min above, label r
with $\left(P(r), \pi_{r}\right)$.
If $r=n$, labels define an SC tree rooted at 1 , spanning all the nodes that can be reached from 1 by a chain, TERMINATE. If $r<n$, go to next step.

EXAMPLE:

Matrix methods for all shortest chains

To find shortest chains between every pair of nodes in $G=$ $(\mathcal{N}, \mathcal{A}, c)$. For any $i \neq j$ if $(i, j) \notin \mathcal{A}$, introduce artificial arc (i, j) with large positive cost. These methods terminate with either a - ve cost circuit, or all shortest chains.

Inductive Algo.

Due to Dantzig. Takes n steps. In r th step, we have all shortest chains in partial network induced by $\{1, \ldots, r\}$. Step $r+1$ brings node $r+1$ into set of included nodes.

Step 1: Begin with partial network of node 1.

General step $r+1$: Let $L^{r}=\left(L_{i j}^{r}: i, j=1\right.$ to $\left.r\right), d^{r}=$ $\left(d_{i j}^{r}: i, j=1\right.$ to r) be label \& distance matrices at end of Step r.

For bringing node $r+1$ do computations for updating the two
matrices in following order:

	To 12	$r+1$
from 1		
;	4	1
r		
$r+1$	2	3

$$
d_{i, r+1}^{r+1}=\min \left\{c_{i, r+1} ; \quad d_{i j}^{r}+c_{j, r+1}: \quad j=1 \text { to } r, j \neq i\right\}
$$

$L_{i, r+1}^{r+1}=i$ if above min is $c_{i, r+1}$; or a j that attains min above.

$$
d_{r+1, i}^{r+1}=\min \left\{c_{r+1, i} ; \quad c_{r+1, j}+d_{j i}^{r}: \quad j=1 \text { to } r, j \neq i\right\}
$$

$L_{r+1, i}^{r+1}=i$ if above min is $c_{r+1, i}$; or a j that attains min above.

$$
d_{r+1, r+1}^{r+1}=\min \left\{0 ; \quad d_{r+1, j}^{r}+c_{j, r+1}: \quad j=1 \text { to } r\right\}
$$

$$
L_{r+1, r+1}^{r+1}=r+1 \text { if above } \min \text { is } 0 .
$$

If above min <0, let p be a j attaining the min above. Then by combining the shortest chain from $r+1$ to p obtained above, with the shortest chain from p to $r+1$ obtained above, we get a -ve cost circuit, TERMINATE.

If $d_{r+1, r+1}^{r+1}=0$, for $i, j=1$ to r find:

$$
d_{i, j}^{r+1}=\min \left\{d_{i j}^{r} ; \quad d_{i, r+1}^{r+1}+d_{r+1, j}^{r+1}\right\}
$$

$L_{i j}^{r+1}=L_{i j}^{r}$ if above \min is $d_{i j}^{r}, L_{r+1, j}^{r+1}$ otherwise.
$L^{r+1}=\left(L_{i j}^{r+1}\right), d^{r+1}=\left(d_{i j}^{r+1}\right)$ are new label and distance matrices.

If any diagonal entries in d^{r+1} are <0, say $d_{j j}^{r+1}$, then circuit containing j identified using labels in L^{r+1} is a - ve cost circuit, TERMINATE.

Otherwise, if $r+1=n$, the label \& distance matrices give shortest chains \& their costs, TERMINATE. If $r+1<n$ go to next step.

EX. Prove that distance matrix satisfies triangle ineq.

EX. Prove algo. valid, \& derive its complexity.

Floyd - Warshall Algo.
$G=(\mathcal{N}, \mathcal{A}, c)$, nodes $1, \ldots, n$.
Definition: on any simple chain, nodes other than origin, destination called Intermediate nodes.

Only simple chains not containing intermediate nodes are those with only one arc.
n steps. L^{r}, d^{r} are label, distance matrices at end of Step r, representing:
$d_{i j}^{r}=$ cost of shortest chain from i to $j \mathrm{~s}$. to constraint that all intermediate nodes on it are from $\{1, \ldots, r\}(i, j$ may not be from this set).

Triangle (or Triple) Operation : For any pair of nodes i, j and fixed node $r+1$,

$$
\begin{aligned}
d_{i j}^{r+1} & =\min \left\{d_{i j}^{r}, d_{i, r+1}^{r}+d_{r+1, j}^{r}\right\} \\
L_{i j}^{r+1}=L_{i j}^{r} \text { if } d_{i j}^{r+1} & =d_{i j}^{r} ; L_{r+1, j}^{r} \text { otherwise. }
\end{aligned}
$$

F W Algo.
Step 0: L^{0}, d^{0} defined by $L_{i j}^{0}=i, d_{i j}^{0}=c_{i j}$
General Step $r+1$: Let L^{r}, d^{r} be the matrices at end of Step r. Perform triple operations $\forall i, j \in \mathcal{N}$ and $r+1$. Let L^{r+1}, d^{r+1} be resulting matrices.

If any $d_{i i}^{r+1}<0$, the circuit obtained by putting together present chains from i to $r+1 \& r+1$ to i is a - ve cost circuit, TERMINATE.

If $d_{i i}^{r+1}=0 \forall i \in \mathcal{N}, \& r+1=n$, present chains are shortest, TERMINATE. If $r+1<n$ go to next step.

