
5.1

Branch and Bound Examples

Katta G. Murty Lecture slides

TSP: c = cost matrix. Problem said to be:

Symmetric TSP: if cij = cji ∀i, j.

Assymmetric TSP: if c not symmetric.

Euclidean TSP: If c satisfies triangle inequality. Here cities

can be represebted by points in the 2 − d plane.

Lower bounding based on assignment relaxation:

The first LB strategy proposed for the TSP in our paper in the

early 1960’s. Can solve problems with upto 50 cities within rea-

sonable computer time.

Fathoming strategy: Check whether the Relaxed optimum

assignment (ROA) is a tour.
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EXAMPLE: n = 6, c =

To 1 2 3 4 5 6

From 1 × 27 43 16 30 26

2 7 × 16 1 30 25

3 20 13 × 35 5 0

4 21 16 25 × 18 18

5 12 46 27 48 × 5

6 23 5 5 9 5 ×

Original problem ROA {(1, 4), (2, 1), (3, 5), (4, 2), (5, 6), (6, 3)},
LB = 54

Final reduced cost matrix c0

To 1 2 3 4 5 6

From 1 × 7 23 0 10 11

2 0 × 11 0 25 25

3 13 8 × 34 0 0

4 3 0 9 × 2 7

5 0 36 17 42 × 0

6 16 0 0 8 0 ×
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For all assignments x, we have zc(x) = 54 + zc0(x).

Using this, we never use the cost matrix c again. For children

of the original problem, we use the cost matrix c0.

Other details of this B & B for TSP will be discussed in class.
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General MIP: Use LP relaxation for lower bounding. Let

RO (relaxed optimum) denote an optimum sol. obtained for LP

relaxation.

Select an integer variable with a fractional value in the RO as

the BV. Usually, penalties computed from opt. simplex tableau

are used for the selection.

EXAMPLE: RO for following MIP is: (y = (3/2, 5/2)T , x =

(4, 0, 0, 0)T ). Original problem not fathomed. We select y2 with

a value of 5/2 in RO as the BV.

y1 y2 x1 x2 x3 x4 −z

1 0 0 1 −2 1 0 3/2

0 1 0 2 1 −1 0 5/2

0 0 1 −1 1 1 0 4

0 0 0 3 4 5 1 −20

y1, y2 ≥ 0 & integer; x1 to x4 ≥ 0; min z .
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0-1 Knapsack problem: Use LP rexation as LB strategy.

In any CP here, for that CP delete all objects with weight >

remaining knapsack’s weight capacity from consideration (i.e., set

corresponding variable = 0).

Here LP relaxation can be solved by a simple special rule. It

consists of loading knapsack with objects in decreasing order of

density (= value/weight) until at some stage one of the following

two events occurs.

knapsacks capacity fully used up exactly: In this case, the

set of objects loaded into knapsack at this stage, is the optimum

set of objects to be loaded. This CP is fathomed.

Knapsack has positive capacity remaining, but it is < weight

of next object to be loaded: Make value of corresponding variable

= (remaining knapsacks weight capacity)/(weight of that object);

and make variables corresponding to all remaining objects = 0.

This gives an RO.

If a CP is not fathomed, exactly one variable has a fractional

value in the RO, that variable could be selected as the BV for
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branching this CP.

j Weight wj Value vj Density vj/wj

1 3 21 7

2 4 24 6

3 3 12 4

4 21 168 8

5 15 135 9

6 13 26 2

7 16 192 12

8 20 200 10

9 40 800 20

capacity w0 = 35
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The asymmetric assignment problem: cn×n = (cij) is

cost matrix . Need a min cost asymmetric assignment, i.e., one in

which ∀i, j xij = 1 ⇒ xji = 0 (this automatically ⇒ xii = 0∀i).

1 2 3 4 5 6

1 4 15 10 14 13 20

2 15 × 16 18 18 8

3 10 16 34 28 25 24

4 14 18 28 × 3 17

5 13 18 25 3 × 13

6 20 8 24 17 13 30
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The symmetric assignment problem: n = 2p objects.

Need to form these objects into p couples each with 2 objects.

For j > i dij = cost of forming objects i, j into a couple.

j = 1 2 3 4 5 6 7 8 9 10

i = 1 × 4 6 110 116 126 118 120 116 114

2 × 8 118 114 124 106 102 118 106

3 × 112 116 112 110 122 116 124

4 × 2 4 218 216 226 230

5 × 6 212 212 234 232

6 × 338 306 316 308

7 × 4 2 16

8 × 6 8

9 × 10

10 ×

THis is a min cost perfect matching problem.
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B & B for pure 0-1 IP

Called Implicit enumeration methods.

Consider min z = cx, s. to Ax ≤ b xj binary ∀j.

0-variable: One fixed at 0 in a CP

1-variable: One fixed at 1 in a CP

Free variable: One not fixed in a cP

Partial sol.: (U0, U1, Uf) – in this all xj ∈ U0 are fixed at 0,

all xj ∈ U1 are fixed at 1; while all xj ∈ Uf are free. Each CP in

algo. corresponds to a partial sol.

A completion of a partial sol. is obtained by giving 0-1 values

to free variables.

If cj < 0 substitute xj = 1 − yj. yj is also 0-1. With this we

can assume c ≥ 0.
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Simple fathoming criterion for CP (U0, U1, Uf)

Remaining problem is: min cfxf +(
∑

j∈U1 cj) s. to Afxf ≤
b′ = b − ∑

j∈U1 A.j xf is 0-1.

If b′ ≥ 0, xf = 0 is an opt. sol. for this problem. This is

fathoming criterion. If satisfied, complete by making all free vars.

into 0-vars, gives opt. sol. for CP.

Computations to be carried out on the CP (U0, U1, Uf)

if it’s not fathomed

Let z̄ = incumbent obj. value at this stage. To avoid solving

the LP relaxation, they apply several 0-1 feasibility tests to see

if this CP can have a 0-1 sol. with obj. val. < z̄, i.e. check

feasibility of:

∑

j∈Uf

A.jxj ≤ b′ = b − ∑

j∈U1

A.j

∑

j∈Uf

am+1,jxj ≤ b′m+1 = z̄ − ∑

j∈U1

am+1,j

xj = 0 or 1 ∀j ∈ Uf

where am+1,j = cj ∀j.
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An example test: If
∑

j∈Uf
min{aij, 0} > b′i for any i above

system infeasible, prune this CP. Try 3x1 + 4x2 − 4x3 − 6x4 ≤
−11.

Other tests: determine that a free var. is a 0-var. or 1-

var. at all feasible sols. of system. For example, if k ∈ Uf &

∑
j∈Uf

min{aij, 0} + |aik| > b′i for any i and aik < 0 [aik > 0]

then xk is a 1-var. [0-var.]. Try 3x1+4x2−4x3−6x4 ≤ −9.

Both x3, x4 are 1-vars. in every feasible sol. Alter sets of CP

accordingly.

Using Surrogate constraints: For above system, it is a

nonnegative comb. of constraints, i.e.,
∑

j∈Uf
(
∑m+1

i=1 µiaij)xj ≤
∑m+1

i=1 µib
′
i, where µi ≥ 0 ∀i. For example:

x1 − x2 ≤ −1

−x1 + 2x2 ≤ −1

Taking µ = (1, 1) leads to the surrogate constraint x2 ≤ −2.

From each of the 2 constraints in above system, we cannot
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conclude that system has no 0-1 sol., but from surrogate constraint

we can. Apply all tests on surrogate constraint.

Best µ comes from dual opt. sol. of LP relaxation.

Using surrogate based 0-1 Knapsack model: One relax-

ation is: min
∑

j∈Uf
cjxj s. to

∑
j∈Uf

(
∑m

i=1 µiaij)xj ≤ ∑m
i=1 µib

′
i

xUf
binary.

∑
j∈U1 cj + min obj. val. in this 0-1 knapsack problem is an LB

for this CP. Best µ is negative opt. dual sol. of LP relaxation.

Prune if LB can be shown to be ≥ cost of incumbent.

After all tests etc. if CP not pruned, and is: (U ′
0, U

′
1, U

′
f), then

can take
∑

j∈U ′
1
cj as a LB for it.

Normally use backtrack search. CP to explore next is selected

from LIST (maintained as an ordered list) by LIFO. It can be

branched using a free var. in it as BV.
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