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Abstract A new method being developed for solving linear programs is discussed in this tutorial.
This method uses matrix inversion operations sparingly, and it thus seems well suited
to solve large-scale problems and those that may not have the property of being very
sparse.

Keywords linear programming (LP); interior point methods; ball centers of a polytope; solving
LPs using matrix inversions sparingly; touching set of constraints; sphere methods 1
and 2 for LPs

1. LP and Evolution of Algorithms for It
Examples of applications involving linear inequality models have started appearing in pub-
lished literature from about mid-18th century. The mathematician Joseph Fourier was one of
the first to recognize the importance of inequalities as opposed to equations in applications
of mathematics. Moreover, he is the pioneer who seems to have recognized the equivalence
of systems of linear inequalities and linear programs (LPs), which involve optimization of a
linear objective function subject to linear inequality constraints, as early as the beginning
of the 19th century.
The famous elimination method (nowadays called the Gaussian elimination method) for

solving systems of linear equations was discovered in China and India over 2,000 years ago. In
contrast, there was no method known for solving systems of linear inequalities until modern
times. The first method for them, a generalization of the elimination method for solving
systems of linear equations, is now known as the Fourier, or Fourier-Motzkin, elimination
method. Dantzig [4] and Dantzig and Thapa [5] show how this method can be adopted
directly to solve linear programs. However, starting with a system involving m inequalities,
the number of inequalities can jump to O(m2) after eliminating one variable, so this method
is not practical except for very small problems.
The second method developed for solving linear inequalities and LPs is the simplex

method. The geometric version of the principle behind the simplex method was published
by Fourier in 1827. After development by several people, this work culminated in mid-20th
century with the publication of the primal simplex method by Dantzig (see Dantzig [4] for
a detailed historical account). This method is practical, and it stimulated the widespread
use of the LP model as a decision-making tool. In the second half of the 20th century, the
simplex method underwent extensive development, and nurtured by demands from practical
applications, many variants of it have been developed and implemented. These continue to
be popular today.
In the last quarter of the 20th century, Karmarker [6] pioneered a new method for LP,

an interior point method (IPM). His work attracted worldwide attention, not only from
operations researchers but also from scientists in other areas.
Let me relate a personal experience. When news of his work broke out in world press,

I was returning from Asia. The person sitting next to me on the flight was a petroleum
geologist. When he learned that I was on the OR faculty at Michigan, he asked me excitedly,
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“I understand that an OR scientist from India at Bell Labs made a discovery that is going
to revolutionize petroleum exploration. Do you know him?!”
In talks on his algorithm that he gave at that time, Karmarker repeatedly emphasized

the following points:

(I) The boundary of a convex polyhedron with its faces of varying dimensions has a
highly complex combinatorial structure. Any method that operates on the boundary or close
to the boundary will get caught up in this combinatorial complexity, and there is a limit on
improvements we can make to its efficiency.

(II) Methods that operate in the central portion of the feasible region in the direction of
descent of the objective function have the ability to take longer steps toward the optimum
before being stopped by the boundary, and hence have the potential of being more efficient
than boundary methods for larger problems.
(III) From an interior point, one can move in any direction locally without violating

feasibility; hence, powerful methods of unconstrained optimization can be brought to bear
on the problem.

Researchers saw the validity of these arguments; hence, his talks stimulated a lot of work
on these methods that stay “away” from the boundary. In the tidal wave of research that
ensued, many different classes of IPMs have been developed for LP and extended to wider
classes of problems including convex quadratic programming, monotone linear complemen-
tarity problems, and semidefinite programming problems. Alizadeh [1] was the first to pro-
pose a polynomial algorithm based on IPM for semidefinite programming, and Alizadeh
and Goldfarb [2] introduced an IPM for second-order cone programming (for other refer-
ences, see Kojima et al. [7], Megiddo [8], Mehrotra [9], Monteiro and Adler [10], Saigal [17],
Wright [18], and Ye [19]).

1.1. Newer Methods
Many practical applications lead to large-scale LP models. The methods discussed so far
are based on matrix inversion operations. Also, in every step of these methods, the matrix
inversion operations involve every constraint in the problem, including any redundant con-
straints in the model. The process of identifying and eliminating the redundant constraints,
if any, from the model using the methods available in theory is prohibitively expensive (in
fact the effort needed by these methods is many times more than that needed to solve the
original model with all the redundant constraints in it) and hence is not practical. Presolvers
based on various heuristics are commonly employed in LP solvers to identify and eliminate
redundant constraints in the model; they are reported to be effective, albeit not optimal
(see Cartis and Gould [3]). Methods that have the ability to avoid redundant constraints
in their computational work by themselves instead of depending on these presolvers have a
definite advantage over existing methods.
The density of an LP (or its coefficient matrix) refers to the percentage of nonzero entries

in the data. Problems in which this percentage is small (typically ≤ 1%) are said to be sparse;
as this percentage increases, the problem becomes more and more dense. Many LP models in
real-world applications tend to be very sparse. In matrix inversion operations of the simplex
method and IPMs, programmers have developed techniques to exploit this sparsity. Using
these they produced implementations of these methods with reasonable memory require-
ments that can solve large-scale models fast. However, the effectiveness of these techniques
fades as the density of the coefficient matrix increases, which is why solving large-scale dense
LPs is hard by these methods.
Dense LP models do arise in several important application areas. For example, a typical

LP model for a data envelopment analysis problem has a coefficient matrix that is essentially
100% dense. Also, many LP models arising in location problems, distribution problems, and

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Murty: New Sphere Methods for LPs
64 Tutorials in Operations Research, c© 2009 INFORMS

supply chain problems are typically dense. That is why there is a lot of research being carried
out targeting dense LP models. In solving LPs that are not very sparse, it is definitely
advantageous to have to deal with smaller number of constraints.
It seems that practitioners are quite content with obtaining solutions not necessarily

optimal but close to being so, but they want a method that can obtain this approximate
solution faster than existing methods. In many applications, this requires algorithms that
can give good performance on models that may not be very sparse. For this, we need to
investigate fast methods that satisfy the following properties:

1. The method should be a descent method (i.e., starting with a feasible solution, the
method should maintain feasibility throughout, and the objective value should improve
monotonically in every step),
2. It should be implementable with no matrix inversions or use matrix inversion operations

only sparingly, and
3. If matrix inversion operations are used, they should never involve any redundant con-

straints in the model and should only involve a small subset of the other constraints selected
intelligently.

The future of algorithmic research in LP is in this area.

1.2. The Sphere Methods for LP
The sphere methods that are discussed in this tutorial are IPMs that are descent methods.
In contrast to all other IPMs, these methods can be implemented with no matrix inversions,
or using them only sparingly (see Murty [11, 12], Murty and Oskoorouchi [15, 16]). Another
advantage of these methods is that if matrix inversion operations are used in any iteration
of the algorithm, only a small subset of constraints (called the touching set of constraints
in that iteration) will be involved in those matrix inversion operations. Also, amazingly,
redundant constraints, if any in the model, never enter into the touching set. So, they offer
the prospect of extending the superior performance of existing software systems for LP to
models that do not have the property of being very sparse. So, they seem to be well suited to
the goals mentioned above. The sphere methods belong to the class of predictor/corrector-
type IPMs. They consider LPs in the form

minimize z(x) = cx

subject to Ax ≥ b,
(1)

where A is an m × n data matrix, with a known initial interior feasible solution x0 (i.e.,
satisfying Ax0 > b). The constraints in (1) include all bound constraints on individual vari-
ables. We assume that the rows of A, denoted by Ai. for i= 1 to m, have been normalized,
so that ‖Ai.‖= 1 (‖.‖ denotes the Euclidean norm) for all i= 1 to m.
If c = 0, every feasible solution is optimal, so we can change the objective function in

the problem to that of minimizing A1.x instead. So without any loss of generality we can
assume that c �= 0. We will assume that c is also normalized so that ‖c‖= 1.
If the set of feasible solutions does not have an interior, or if it does but an interior feasible

solution is not known, we modify the problem with the usual big-M augmentation involving
one artificial variable as follows:

minimize z(x) = cx+Mx0

subject to Ax+ ex0 ≥ b,

x0 ≥ 0,

where e is the column vector of all 1s in Rm, and M is a large positive penalty parameter.
(x0 = 0, x00), where x00 is a sufficiently large positive number, gives an initial interior feasible
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solution to this Phase I problem. This Phase I problem is in the same form as (1), so we
solve it instead. For other such Phase I strategies, see Cartis and Gould [3].

1.3. How to Implement these Algorithms for Solving a General LP
At present, the most popular interior point method for software implementations is the
primal-dual interior point method, because (i) it gives optimum solutions to both the primal
and the dual when both have feasible solutions, and (ii) it provides a lower bound that serves
as an indicator to check how far left to go to reach the optimum. Also, in many algorithms,
specifying a good termination condition to be used in practice is not easy. The lower bound
in the primal-dual format provides an automatic practical termination condition.
We will show how to convert the sphere methods into primal-dual algorithms for LPs in

general form. Consider an LP in general form in which there may be equality constraints on
the variables, inequality constraints, and bounds on individual variables. By combining the
bounds on individual variables with the inequality constraints, the problem is in the form

Minimize fξ

subject to Fξ = h,

Gξ ≥ g,

(2)

where F is a matrix of order, say, p × q. Let π, µ be dual vectors corresponding to the
constraints in the two lines in (2). Solving (2) and its dual involves finding a feasible solution
to the following system

Fξ = h,

πF +µG= f,

(Gξ,µ,−fξ+πh+µg)≥ (g,0,0).

(3)

Solving (3) is the same as solving the LP

Minimize
p∑

i=1

(Fi.ξ −hi)+
q∑

j=1

(πF.j +µG.j − fj)

subject to (Fξ,Gξ)≥ (h, g),

(πF +µG,µ,−fξ+πh+µg)≥ (f,0,0).

(4)

LP (4) is in same form as (1). Also, because we are applying the algorithm using matrix
inversion operations sparingly, having all these additional constraints over those in the orig-
inal LP (2) in the model may not make it numerically difficult to handle. The objective
value in (4) will be 0 at the optimum if both (2) and its dual have feasible solutions, so this
provides a convenient lower bound to judge how far is left to go. So, in the sequel we will
discuss the methods for solving the LP in the form of (1).
The sphere method needs an initial interior feasible solution. Each iteration of the method

begins with the best interior feasible solution obtained at the end of the previous iteration
and consists of two steps: a centering step and a descent step.
In concept, the aim of the centering step is to find a ball center, which is an interior feasi-

ble solution with objective value equal to or better than that of the current interior feasible
solution, and is the center of a largest radius ball inside the feasible region of the original
LP subject to the constraint on its center. This centering step takes up most of the compu-
tational effort in the iteration. Once the ball center is obtained, the descent step, which is
computationally cheap, carries out several descent steps from it, and the iteration stops with
the best point obtained in all these descent steps.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Murty: New Sphere Methods for LPs
66 Tutorials in Operations Research, c© 2009 INFORMS

Figure 1. x0 ∈ K0, and the ball shown is B(x0, δ(x0)), the largest ball inside K with x0 as center.

K

0x

1

2

Note. Facetal hyperplanes of K corresponding to indices 1, 2 are tangent planes to this ball, so T (x0) = {1,2}.

2. Notation
The orthogonal distance from a point y ∈ Rn to the facetal hyperplane {x: Ai.x= bi} of the
set of feasible solutions of (1) is minimum{‖x−y‖: Ai.x= bi}=Ai.y−bi, because ‖Ai.‖= 1.
We will use the following notation:

K = Set of feasible solutions of (1).
K0 = {x: Ax> b}= interior of K.

δ(x) = Min{Ai.x − bi: i= 1 to m}, defined for x ∈ K0, it is the radius of the largest
ball inside K with x as its center, since ‖Ai.‖= 1 for all i.

B(x, δ(x)) = Defined for x ∈ K0, it is the largest ball inside K with x as its center.
T (x) = Defined for x ∈ K0, it is the set of all indices i satisfying Ai.x − bi =

Minimum{Ap.x − bp: p = 1 to m} = δ(x). The hyperplane {x: Ai.x = bi} is a
tangent plane to B(x, δ(x)) for each i ∈ T (x), therefore T (x) is called the index
set of touching constraints in (1) at x ∈ K0. See Figure 1.

Γ1 = {AT
i.,−AT

i.: i= 1 to m}; set of directions normal to facetal hyperplanes of K.
Γ2 = {P.1, . . . , P.m,−P.1, . . . ,−P.m}, where P.i = (I − cT c)AT

i., orthogonal projec-
tions of the directions normal to the facets of K on the hyperplane {x: cx= 0}.

ci = (I − Ai.(Ai.)T )cT , the orthogonal projection of cT on {x: Ai.x = 0} for
i= 1 to m.

3. Ball Centers of Polytopes
A ball center of a polytope (set of feasible solutions of a system of linear constraints, when
it is bounded) is the center of a largest ball inside the polytope. The concept of ball centers
of unbounded convex polyhedra is discussed at the end of this section.
For a detailed discussion on ball centers of polytopes, see Murty and Oskoorouchi [15, 16]

and Murty [13]. Assuming that K is a polytope (i.e., bounded), a ball center of K, or for
the system (1), is an optimum solution x for (5), and the δ in that optimum solution is the
radius of the largest ball inside K with x as center.

Maximize δ

subject to δ ≤ Ai.x− bi, i= 1 to m. (5)

An optimum solution of (5) may not be unique, so a ball center for a polytope may not
be unique. Figure 2 illustrates a polytope which has a unique ball center, and Figure 3
illustrates one in which the ball center is not unique.
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Figure 2. The polytope K and the largest ball inside it are shown.

∗x

Note. When the largest inscribed ball in K is unique as here, its center x∗ is the ball center of K.

When the polytope K has alternate ball centers, Murty and Oskoorouchi [15] give the
geometric concept of defining one of them as the ball center of K. However, for computational
efficiency, sphere methods use any point that is optimal to (5) as a ball center of K.
Procedures for computing ball centers approximately use a series of line search steps. The

search direction for each line search step is selected such that it is a profitable direction,
i.e., the move in that direction at the current point is guaranteed to lead to a point that
increases the radius of the inscribed ball with that point as center. Theorem 1 given below
provides a simple criterion to check whether a give direction is a profitable direction at the
current interior feasible solution or not. After the theorem, we will show that the optimum
step length in this line search step can be found by solving a two-variable LP.
Let x̄ be the current interior feasible solution. So, a direction y �= 0 is defined to be

a profitable direction at x̄ if δ(x̄ + αy) strictly increases as α increases from 0, and an
unprofitable direction to move at x̄ if the maximum value of δ(x̄+αy) over α ≥ 0 is attained
at α= 0. We have the following result.

Theorem 1. A given direction y is a profitable direction to move at the current interior
feasible solution x̄ iff Ai.y > 0 for all i ∈ T (x̄). Also, x̄ is a ball center of K iff the system
Ai.y > 0 for all i ∈ T (x̄) has no solution in y.

Proof. For any α we have δ(x̄ + αy) = minimum{Ai.(x̄ + αy) − bi: i = 1 to m}, and
δ(x̄+αy) = δ(x̄) when α= 0. From the definition of T (x̄), we have δ(x̄) =Ai.x− bi for all
i ∈ T (x̄). So, we have the following facts.

Fact 1. For all i �∈ T (x̄), we have Ai.x̄−bi > δ(x̄); hence, when α is positive but sufficiently
small, Ai.(x̄+αy)− bi > δ(x̄) whatever the sign of Ai.y may be.
Fact 2. If Ai.y > 0 for all i ∈ T (x̄), then each of these Ai.(x̄+αy) is strictly monotonically

increasing as α increases from 0.

Figure 3. A two-dimensional polytope K for which the largest inscribed ball is not unique.

∗x

Note. S, the set of centers of all such balls, the optimum face of (5) in the x-space, is the dashed-line segment
in this polytope, and x∗ is a point in it.
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Facts 1 and 2 together imply that when α is positive but sufficiently small, and y satisfies
Ai.y > 0 for all i ∈ T (x̄), then δ(x̄+αy) =minimum{Ai.(x̄+αy)− bi: i= 1 to m} is > δ(x̄);
i.e., δ(x̄ + αy) strictly increases as α increases from 0. This shows that y is a profitable
direction to move at x̄ under the conditions stated in the theorem.
If there is at least one index, say, i1 ∈ T (x̄) satisfying Ai1.y ≤ 0, then for positive but

sufficiently small values of α, we have Ai1.(x̄+ αy)− bi1 ≤ Ai1.x̄ − bi1 = δ(x̄) because i1 ∈
T (x̄). From the definition of δ(x̄+αy), this implies that in this case δ(x̄+αy) either stays
the same or strictly decreases as α increases from 0, implying that y is an unprofitable
direction to move at x̄.
For x ∈ K, δ(x) = minimum{Ai.x − bi: i= 1 to m} is a piecewise linear function that is

the pointwise infimum of a finite set of affine functions; hence, δ(x) is a concave function. If
there is no profitable direction at x̄, then x̄ is a local maximum for the concave function δ(x)
over K, and so it is the global maximum for δ(x) over K; i.e., x̄ is a ball center of K. �
Because δ(x̄+αy) =minimum{Ai.(x̄+αy): i= 1 to m}, we have δ(x̄+αy)≤ Ai.x̄+αAi.y

for all i= 1 to m.
So, for a given direction y, suppose δ̄=maximum value of δ(x̄+αy) over α ≥ 0, and ᾱ ≥ 0

is the value of α where this maximum is attained in δ(x̄+αy). Then, (δ̄, ᾱ) is the optimum
solution of the following two-variable LP in which the variables are δ and α.

Maximize δ

subject to δ −αAi.y ≤ Ai.x̄− bi, i= 1 to m,

δ,α ≥ 0.

(6)

Therefore, the optimum step length for the line search problem of maximizing δ(x̄+αy)
over α ≥ 0 in the given direction y can be found by solving the two-variable LP (6).
One technique for computing the ball center of a polytope approximately, discussed in

Murty [11, 12] and Murty and Oskoorouchi [15], uses two procedures called line search
steps using facetal normal directions (LSFN) and line search steps using computed prof-
itable directions (LSCPD) both using series of line search steps. However, we do not discuss
that technique here because sphere methods use ball centers subject to constraints on the
objective that the center is required to satisfy, which we discuss next.

3.1. Ball Centers Used in Sphere Methods
Consider the stage in solving the LP (1) by sphere methods when the objective value at the
current interior feasible solution is t.
At this stage, a ball center of K on the current objective plane {x: cx = t} is defined

as a center of a largest ball inside K subject to the constraint that the center lie on the
current objective plane. So, if (x̄, δ̄) is an optimum solution of the LP (5) with the additional
constraint cx= t, then x̄ is the ball center of K on the current objective plane at this stage,
and δ̄ is the radius of that ball.
The ball center used in the sphere methods at the current stage is defined as the center of a

largest ball inside K subject to the constraint that the objective value at this center is ≤ t; it
is an optimum solution of (5) with the additional constraint cx ≤ t. Murty [11, 12] and Murty
and Oskoorouchi [15, 16] discuss a technique to compute these ball centers approximately
using the two procedures called LSFN and LSCPD (adapted to this problem), each based
on a sequence of line search steps; these are discussed below.

3.2. Approximate Computation of Ball Centers in Sphere Methods
Both LSFN and LSCPD involve a series of line search steps, with search directions that
are profitable directions y, satisfying cy ≤ 0; i.e., they are also descent directions for the
objective function to be minimized in (1).
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3.3. LSFN: Using Line Search Steps in Facetal Normal Directions
One advantage of this technique is that it needs no matrix inversions. Beginning with the
initial x0 = x̄, it generates a sequence of points xk, k = 1,2, . . ., along which the radius of
the inscribed ball δ is strictly increasing.
Whether a given direction y is profitable or not at the current point xk can be checked very

efficiently using the conditions proved in Theorem 1 (these are Ai.y > 0 for all i ∈ T (xk)).
Because the goal in this centering step is to increase the minimum distance of x from each
facetal hyperplane of K, the LSFN procedure uses the directions normal to the facetal
hyperplanes of K for the line searches, i.e., directions y in Γ1 = {AT

i.,−AT
i.: i = 1 to m},

satisfying cy = 0 (if the goal is to find a ball center for the polytope K on the current
objective plane) or cy ≤ 0 (if the center is required to satisfy cx ≤ current objective value).
Once a profitable direction y at the current point xk has been found, the optimum step
length α in this direction that maximizes δ(xk + αy) over α ≥ 0 is found by solving the
two-variable LP (6) with x̄ replaced by xk.
This procedure continues as long as profitable directions for line search are found in Γ1

satisfying the above constraints, and terminates with the final point as an approximation
to a required ball center of K, obtained by this procedure.

3.4. LSCPD: Sequence of Line Search Steps Using
Computed Profitable Directions

This technique, discussed in (Murty [12]), consists of a sequence of at most n line search
steps in profitable directions computed by solving a system of linear equations. After each
step in the sequence, the index set of touching constraints at the current solution x keeps
growing by at least one more constraint, and we will stop the sequence when the set of
coefficient vectors of the touching set of constraints becomes linearly dependent. That is
why the number of steps in the sequence is at most n. The entire sequence needs a single
matrix inversion, carried out in stages adding one row and column to the matrix at a time,
so it uses matrix inversion operations sparingly.
The sequence begins with the initial point xk, say, obtained at the end of LSFN. When

xg is the current solution, from Theorem 1 we know that any solution y of the system

Ai.y= di for all i ∈ T (xg), (7)

where d= (di: i ∈ T (xg))> 0 is any positive vector, is a profitable direction to move at xg.
We will use (7) with d = e, the column vector of all 1s of appropriate dimension, to

generate a profitable direction to move that is a basic solution of (7). Once a profitable
direction y is determined, the step length to move in this direction is determined by solving
a two-variable LP of the form of (6).
So, this sequence begins with the initial point xg and solves (7) with d = e for a basic

solution. If this system has no solution, then this technique is terminated with xg as an
approximate ball center required.
If it does yield a solution y0, suppose it is the basic solution with respect to a basic vector

yB0 and basis B0 for the system (7). There are two cases to consider.

Case 1. If cy0 ≤ 0, then y0 is not only profitable at xg (i.e., δ(xg + αy0) increases as
α increases from 0), but it is also a descent direction for cx. So, we carry out a line search
step at xg in the direction y0 exactly as described earlier and continue. This moves increases
δ(x) and also may decrease cx.
Case 2. If cy0 > 0, there are two subcases to consider here. Let (B0

...D0) be the partition
of the coefficient matrix of (7) into basic, nonbasic parts with respect to the basic vector
yB0 for it. Let (cB0

... cD0) be the corresponding partition of the row vector c.
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Subcase 2.1. cD0 − cB0(B0)−1D0 = 0. In this subcase, cy = a constant = cy0 > 0 in
every solution of (7). So, in this subcase using any solution of (7) as the direction for the
move helps increase δ(x) but also increases cx. So we terminate the sequence at this stage,
and take the current point xg as the approximation to the ball center on the objective plane
through xg.

Subcase 2.2: There is a nonzero entry in cD0 − cB0(B0)−1D0. Suppose it occurs in the
column of the nonbasic variable yj , and that nonzero entry is denoted by c̄j . Let the column
vector of this nonbasic variable yj in D0 be denoted by (D0).j . Then the solution y1 of (7)
given by the following: all the variables except yj in the nonbasic vector yD0 are = 0, and

yB0 = y0B0
− θ(B0)−1(D0).j

Nonbasic yj = θ,

where θ= (−1− cy0)/c̄j satisfies cy1 =−1. Now carry out a line search step at the current
point xg in the direction y1 exactly as described earlier and continue. As under Case 1, this
move not only increases δ(x) but also decreases cx.

If αg is the optimum step length maximizing δ(xg+αy), notice that as α increases from 0,
Ai.(xg + αy) = Ai.xg + α increases at the same rate as α for all i ∈ T (xg). This implies
that at the solution xg+1 = xg + αgy obtained after this line search step, we will have
T (xg+1)⊃ T (xg).
The sequence will now continue the same way with xg+1 as the initial solution for the

next step. Suppose T (xg) = {1, . . . , s} and T (xg+1) = {1, . . . , s, s+ 1}. Then, the profitable
direction y to be used at xg+1 is computed by solving the system

Ai.y= 1 for all i ∈ {1, . . . , s+1}. (8)

Let A0 = (B0
...D0) denote the coefficient matrix of (7) with rows {Ai.: i ∈ T (xg)}, with

columns partitioned into the basic and nonbasic parts with respect to the basic vector yB0

for (7), and let (AB0
s+1.,A

D0
s+1.) denote the corresponding partition of As+1..

The set of touching constraint coefficient vectors {Ai.: i ∈ T (xg+1)} is linearly independent
iff AD0

s+1.−AB0
s+1.(B0)−1D0 �= 0.

Therefore, if AD0
s+1. −AB0

s+1.(B0)−1D0 = 0, terminate the sequence with xg+1 as the final
approximation of a ball center required. On the other hand, if this vector is �= 0, select a
nonzero entry in it, suppose it is in the column of the variable yj for some j, and then let A0

.j
be the column corresponding to yj in A0, the coefficient matrix of (7). Then, yB1 = (yB0 , yj)
is a basic vector for (8). The corresponding basis for (8) is

B1 =




B0
... Ag

.j

. . . . . .

AB0
s+1.

... as+1, j


 ,

where as+1, j is the coefficient corresponding to yj in As+1.. Hence,

(B1)−1 =




P
... Q

. . . . . .

R
... S


 ,
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where

S = 1/
(
as+1,j −AB0

s+1.(B0)−1Ag
.j
)
,

R=
(−AB0

s+1.(B0)−1)/(as+1,j −AB0
s+1.(B0)−1Ag

.j
)
,

Q=−(B0)−1Ag
.jS,

P = (B0)−1+QR/S.

So, (B1)−1 can be obtained by updating (B0)−1 using the above formulas.
The sequence repeats the same way with xg+1 until it terminates at some stage. Thus, in

this sequence, whenever system (8) is augmented by a new constraint in a step, the basic
vector and basis inverse in this step can be updated quite efficiently for the next step as
discussed above.
In the centering steps of sphere methods, we first apply the LSFN sequence of steps

as described above, selecting profitable directions from the set Γ2, or Γ1 ∩ {y: cy ≤ 0} as
appropriate, until the improvement in the radius of the ball δ per step decreases below
some selected tolerance. At that time, we switch and initiate an LSCPD sequence starting
with the final point obtained at the end of the LSFN sequence of steps. When the LSCPD
sequence terminates, the final point obtained in that sequence is an approximate ball center
required.

3.5. The Case of Unbounded Convex Polyhedra
Suppose the set of feasible solutions, K, of (1) is an unbounded polyhedron. Typically, the
radius of a maximum inscribed ball in K will be ∞ (i.e., δ is unbounded above in the LP
(5)). Even if the radius of the maximum inscribed ball is finite, the optimum face of (5) in
the x-space may be an unbounded polyhedron itself, so the ball center of K is not defined.
Even when K is an unbounded convex polyhedron, the hyperplane H may be such that

K ∩H is bounded, i.e., is a polytope. In this case the ball center of K on H is well defined.
If K ∩H is also unbounded, then the ball center of K on H is also not defined.
What happens to the LP (1) if we do not know whether its set of feasible solutions is

bounded or not, or if we know that it is unbounded? In the unbounded case, even though
the concepts of ball centers may not be well defined, the implementation of the algorithm
based on the approximate computation of ball centers can be carried out as usual. In this
case, in one of the descent steps, the step length for the move may turn out to be +∞. That
is an indication that the objective value in (1) is unbounded below on its set of feasible
solutions, and the algorithm terminates if this happens.

4. Sphere Method 1
This method is discussed in Murty and Oskoorouchi [15, 16]. In concept, the centering step
in this method has the aim of finding a ball center of K on the objective plane through
the current point. So, the LSFN sequence of steps in it use profitable directions from the
set Γ2 = {±P.i: i= 1 to m}, where P.i is the orthogonal projection of AT

i. on {y: cy = 0}.
However, the LSCPD steps in it generate and use profitable directions y, which satisfy
cy ≤ 0, so some of them may also decrease the objective value cy. Here is the description of
the general iteration r+1 in this method.

4.1. The Centering Step in Iteration r+1 in Sphere Method 1
Let xr be the initial interior feasible solution for this iteration. This step consists of a series
of line searches in profitable directions with the aim of finding an x that maximizes δ(x)
subject to the constraint cx ≤ cxr. First it carries out the LSFN sequence of line searches;
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then with the point obtained at the end of the LSFN sequence, it carries out a LSCPD
sequence of line searches.
Beginning with the initial point xr, this generates a sequence of points xr, k, k= 1,2, . . .,

along which the radius of the ball δ is strictly increasing, as described in §3, by selecting
profitable directions from the set Γ2. The procedure continues as long as profitable directions
for line search are found in Γ2, and this sequence terminates with the final point, which we
denote by x̃r.
Beginning with the initial point x̃r obtained at the end of the LSFN sequence, this gen-

erates a sequence of points x̃r, k, k= 1,2, . . ., along which the radius of the ball δ is strictly
increasing.
When x̃r, k is the current solution, it selects the profitable direction to move as described

in §3. Let x̄r denote the final point obtained at the end of the LSCPD sequence; it is the
approximate ball center obtained in this centering step, and the iteration moves to the
descent step with it.

4.2. The Descent Step in Iteration r+1 in Sphere Method 1
The centering step in each iteration is the computationally expensive step. Compared to it,
each descent step requires only a minimum ratio computation, which is cheap in comparison.
So, once the approximate ball center is computed in the centering step, sphere methods
carry out several descent steps from it and take the best point obtained from all of them as
the output of this step. All the descent directions used need very little computation, if any,
to obtain them. Here is a summary.
Let x̄r denote the approximate ball center obtained in the centering step of this iteration.

Each descent step carried out in this iteration requires one minimum ratio computation.
For example, consider a descent step from the current center x̄r in the descent direction y
(i.e., satisfying cy < 0). If the step length is λ, the move leads to the point x̄r + λy. Select
a small positive number ε1 as the tolerance for minimum {Ai.x − bi: i = 1 to m} for the
point x to be in the interior of K. Then, we will take the step length from x̄r in the direction
y to be (−ε1) + (the maximum step length possible while remaining inside K), which is

γ =minimum
{−Ai.x̄r + bi + ε1

Ai.y
: i such that Ai.y < 0

}
,

and then the point obtained at the end of this descent step will be x̄r + γy if γ is finite.
If γ =∞, the objective function z(x) is unbounded below in (1), and {x̄r +λy: λ ≥ 0} is

a feasible half-line along which z(x) diverges to −∞ on K. Terminate the method if this
occurs.
We now list the various descent steps carried out in this iteration. After each descent step,

include the point obtained at the end of it, along with its objective value, in a list.

Descent Step 1 (D1). From the ball center x̄r take a descent step in the direction d1 =−cT .
Descent Step 2 (D2). From the ball center x̄r take a descent step in the direction d2 =

x̄r − x̄r−1, where x̄r−1 denotes the ball center computed in the previous iteration r. So, this
direction is the direction of the path of ball centers generated in the algorithm.
Descent Step 3 (D3). The directions −ci for each i ∈ T (x̄r) are called the GPTC (gradient

projection on touching constraints) at x̄r. Carry out descent steps from the ball center x̄r

in each of the GPTC directions at x̄r.
Descent Step 4 (D4). From the ball center x̄r, take a descent step in the direction d4 =

(
∑
(−ci: for i ∈ T (x̄r))/|T (x̄r)|), the average direction of all the GPTC directions at x̄r.
Descent Step 5.1 (D5.1). For i ∈ T (x̄r), let xir denote the orthogonal projection of the

center x̄r on the touching facetal hyperplane {x: Ai.x= bi}; it is the point where this facetal
hyperplane touches the ball B(x̄r, δ(x̄r)). The points xir for i ∈ T (x̄r) are called the touching
points (TPs) of the ball B(x̄r, δ(x̄r)) with its touching facetal hyperplanes ofK. See Figure 4.
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Figure 4. Illustrating D5.1.

1

2

K

−cT
−c1

P

Q

�xr

�x1r
x1r

Notes. Here, T (x̄r) = {1,2} −cT pointing down south and −c1 equal to the orthogonal projection of −cT

on the facetal hyperplane of Constraint 1 are shown. x1r, x̂1r = TP and NTP, respectively, corresponding
to Constraint 1. Descent steps from x̄r [x̂1r] in direction −c1 are shown, leading to P , [Q], and Q is a much
better point than P .

Let 0< ε < 1 be a small positive tolerance (ε= 0.1 works well). Then for i ∈ T (x̄r), the
point on the line segment joining x̄r and xir close to the TP xir,

x̂ir = εx̄r +(1− ε)xir,

is called the near touching point (NTP), corresponding to the tangent plane {x: Ai.x= bi}
of the ball B(x̄r, δ(x̄r)).
D5.1 consists of |T (x̄r)| descent steps: for each i ∈ T (x̄r), it carries out a descent step in

the GPTC direction −ci from the NTP x̂ir. The output of D5.1, denoted by x̃r1, is the best
point obtained in it.
When all these descent steps are carried out, the best point among the output points of

all the descent steps is the output of this iteration, and with that point the method goes to
the next iteration.
Just as other IPMs, this method also terminates when the change in the final points

obtained in successive iterations is smaller than some tolerance (i.e., it terminates at the end
of the iteration r+1 if ‖xr+1 −xr‖/‖xr‖ < ε, concluding that xr+1 is an optimum solution
of (1)).
In the next section, we will discuss the improved version, called Sphere Method 2.

5. Sphere Method 2
In Sphere Method 1 the set of feasible solutions considered remains unchanged (i.e., remains
the original K) throughout the algorithm, but the current objective plane {x: cx= t} keeps
on sliding parallely toward decreasing values of t from one iteration to the next. The centering
step in this method in each iteration has the aim of finding a ball center on the current
objective plane, at least in principle. Even though line search directions y used in LSCPD
in the centering step in Sphere Method 1 may satisfy cy < 0, all the search directions used
in LSFN satisfy cy= 0, and hence leave the objective value unchanged.
In Sphere Method 2, discussed in Murty and Oskoorouchi [16], in contrast, the set of

feasible solutions K considered is updated by the current objective value after each iteration,
and hence gets smaller. So, to distinguish, we will denote by Kr the set of feasible solutions
considered in step r, and we will have Kr ⊂ Kr−1 ⊂ K for all r. In addition, in the centering
step of Sphere Method 2, all line search directions used (in both the LSFN and LSCPD
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sequences) will be both profitable and strict descent directions for the original objective
function z = cx.
Also, in Murty and Kabadi [14], two additional descent steps, D5.2 and D6, to be used

in every iteration of the sphere method have been proposed. Of these, D6 performed poorly
compared with other descent steps in preliminary steps, hence we will ignore it. However,
we will include D5.2 as an additional descent step in every iteration of Sphere Method 2.
The first iteration of Sphere Method 2 begins with the initial interior feasible solution x0.

We will now describe the general iteration, r+1, in this method.

5.1. General Iteration r+1
The initial point for this iteration is xr, the interior feasible solution obtained at the end of
the previous iteration. Define the set of feasible solutions to be considered for this iteration
to be Kr+1, where

Kr+1 = {x: Ax ≥ b, and cx ≤ cxr + ε}
where ε is a small positive tolerance parameter. Go to the centering step in this iteration.
See Figure 5.

Centering step. The aim of this step is to find a ball center of Kr+1 approximately, as
described earlier.
LSFN. The set of facetal normal directions of Kr+1 is Γr+1

1 = {±cT ,±AT
i.: i= 1 to m}.

Apply the LSFN sequence to find a ball center for Kr+1 as described above using profitable
directions for Kr+1 from Γr+1

1 .
LSCPD. This sequence begins with the interior feasible solution obtained at the end of

LSFN.

Let x̂ denote the interior feasible solution in a step of this sequence. The touching con-
straint set at x̂ for Kr+1 will typically include the objective constraint in the definition of
Kr+1. If it does not, then apply this sequence as discussed above.
On the other hand, if the touching constraint set includes the objective constraint, let

T r+1(x̂) denote the touching constraint index set for Kr+1. Solve the system

Ai.y= 1 for all i ∈ T r+1(x̂)

−cy= β,
(9)

where β is a positive parameter. Earlier we used only β = 1. However, here we will leave it
as a parameter that is restricted to take positive values only and obtain a solution of (9) as
a function of this parameter β. Let this solution be denoted by p+βq.
As in §2.1 of Murty and Oskoorouchi [16], if B is a basis associated with the basic vector yB

obtained for (9), let yD denote the vector of remaining nonbasic variables in (9) associated
with the basic vector yB . Let p= (pB , pD), q = (qB , qD) be the partition of the vectors p, q
corresponding to the partition of y into basic and nonbasic parts (yB , yD). Then, qD = pD =
0, qB is the last column of B−1, and pB is the sum of the remaining columns of B−1.
So, for all β > 0, p + βq is a profitable direction at x̂ for Kr+1. With p + βq as line

search direction, the optimum step length α (maximizing δ(x̂+ α(p+ βq)), the radius of
the maximum radius ball inscribed in Kr+1 with x̂+α(p+βq) as center) is determined by
solving the 3 variable LP in variables δ,α, and γ:

Maximize δ

subject to δ −αAi.p− γAi.q ≤ Ai.x̂− bi, i= 1, . . . ,m,

δ −α(−c)p− γ(−c)q ≤ (−c)x̂− ((−c)xr − ε),

δ,α, γ ≥ 0.
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Figure 5. Illustrating K, K r+1.

K

Kr+1

xr −cT
cx= cxr + �

�x

Notes. K is the original set of feasible solutions of the LP being solved. The current set of feasible solutions
in an iteration when xr is the initial interior feasible solution is Kr+1. The ball shown is the largest ball
inside Kr+1, and its center x̄ is a ball center obtained in the centering step in this iteration.

Here, α, γ will both be > 0 at optimum. Actually, this γ is (α)(β).
If (δ̄, ᾱ, γ̄) is an optimum solution of this three-variable LP, then the point obtained at

the end of this step is x̂+ ᾱp+ γ̄q. With that, the next LSCPD step is applied again as here,
and so on until the LSCPD sequence is completed.
Let x̄ denote the point obtained at the end of LSCPD; it is the approximate ball center

of Kr+1 obtained in this iteration. See Figure 5.

The descent steps.With the point x̄ obtained at the end of the centering step, the iteration
moves to the descent steps in this iteration for the current set of feasible solutions Kr+1.
It first applies descent steps D1 to D5.1 as described in Sphere Method 1 in the current

set of feasible solutions Kr+1. Let x̃r1 denote the best point (by objective value) obtained
in Descent Steps D1 to D5.1. This x̃r1 is the initial interior feasible solution for Descent
Step 5.2.
Descent Step 5.2 (D5.2). By the way the descent steps are carried out, it is clear that

x̃r1 is close to the boundary of Kr+1, and δ(x̃r1) ≤ ε1. Find the touching set T (x̃r1) = set
of all constraint indices for the current set of feasible solutions that tie for the minimum in
{Ai.x̃r1 − bi: i= 1 to m;−cx̃r1+ cxr + ε }.
For each i ∈ T (x̃r1), from x̃r1 take a descent step in the GPTC direction −ci and include

the resulting point along with its objective value in a new List 5.2.
At the end, let x̃r2 denote the best point in List 5.2 by objective value. If cx̃r1 − cx̃r2 is

≤ some selected tolerance for objective value reduction, take x̃r2 as the output of this
Descent Step 5.2, and put x̃r2 along with its objective value in the list.

> the selected tolerance for objective value reduction, with x̃r2 as the initial interior
feasible solution repeat the Descent Step 5.2, and continue the same way.

After all these descent steps are carried out, the best point among the outputs of all the
descent steps carried out in this iteration is taken as the output of this iteration. With that
point the method goes to the next iteration. Termination criteria are the same as in Sphere
Method 1.
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Instead of giving β the specific value 1 as in earlier methods, leaving it as a positive
parameter in (9) improves the performance of the centering step in Sphere Method 2.

5.2. Computational Performance of Sphere Methods
Murty and Oskoorouchi [15] present results on preliminary computational tests with Sphere
Method 1 on randomly generated problems and compare its performance with that of the
simplex method. The results indicate that Sphere Method 1 is faster than the simplex
method, particularly as problem size (m,n) increases. They show that on randomly gener-
ated LPs with m= 300, n= 100, and densities ranging from 10% to 100%, the percentage
move toward the optimum objective value per iteration varied from 10 to 20 in Sphere
Method 1, whereas in the simplex method it varied from 0.22 to 0.50.
Murty and Oskoorouchi [16] presents results comparing the performance of Sphere Meth-

ods 1 and 2, and show that Sphere Method 2 is about 20% to 40% faster than Sphere
Method 1.

6. How to Improve the Performance of Sphere Methods
Even Further

The most computationally expensive step in the sphere methods is the centering step in
each iteration, so reducing the number of times this step has to be carried out will improve
the performance of the methods.
The computation of ball centers of polytopes poses the following problems:

Problem 1. Given an interior point x in the polytope P , what is the radius δ(x) of the
largest ball with x as center that is contained inside P?
Problem 2. We want to find a largest ball inside the polytope P . Is it unique, and if so,

what is its center and radius? If not, what is the set of all points, each of which is the center
of a largest ball inside P? Also, given an interior point of P , how can we check whether it
is the center of a largest ball inside P?
Problem 3. Given an interior point x̄ of P of full dimension in Rn, a y ∈ Rn, y �= 0, is

said to be a profitable direction at x̄ if δ(x̄+ αy) increases strictly as α increases from 0.
How can we check efficiently whether a given y �= 0 is a profitable direction at x̄? How can
we check whether there exists a profitable direction at x̄, and if so, how can we compute
one such direction efficiently?

There are two ways of representing a convex polytope. One way represents it as the set of
feasible solutions of a given system of linear constraints. This is the representation we used
for the polytope K in earlier sections, and we have seen that Problems 1, 2, and 3 can be
solved efficiently under this representation of the convex polytope.
Another way is to give the set of all the extreme points of the polytope and represent the

polytope as the convex hull of this set. Let {x1, . . . , xL} be the set of all extreme points of a
convex polytope P . In this way, P is represented as the convex hull of this set of its extreme
points, denoted by < {x1, . . . , xL} >.
However, there are no efficient methods known to solve any of Problems 1, 2, and 3 listed

above on the polytope P represented as the convex hull of its extreme points. All these
problems on P are open problems at the moment.
However, when P is a special polytope, a simplex, or the convex hull of a set of vectors that

is linearly independent, we show in the next two sections that its ball center is unique and
can be computed efficiently and directly. These results are taken from Murty [13]. Then in
§9 we discuss how these results can be used to improve the performance of sphere methods.
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7. Ball Center of an n-Dimensional Simplex in Rn

7.1. Ball Center of a Simplex Represented by Constraints
Let S be an n-dimensional simplex in Rn; i.e., its representation using linear constraints is
of the form

S = {x: Di. ≥ di for i= 1 to n+1},
where d= (di)∈ Rn+1, and the coefficient matrix D of order (n+1)×n with rows Di., i= 1
to n+ 1, satisfies the properties that all the (n+ 1) submatrices of it of order n × n are
nonsingular, and that each row vector of D is a linear combination of the other rows with
strictly negative coefficients. Without any loss of generality we will assume that all the rows
of D have been normalized so that ‖Di.‖ = 1 for all i.
We will now show that S has a unique ball center that is the unique solution of the system

of linear equations
Dx− δe= d,

where x will be the ball center of S in the solutions, and δ is the radius the largest ball
inside S with center at that x.
It can be verified that the coefficient matrix of this system is nonsingular; hence, this

system has a unique solution, (x̄, δ̄). The ball B(x̄, δ̄) with x̄ as the center and δ̄ as radius
is inside S and touches all the facets of S, so it is the largest ball with x̄ as center inside S.
Also, the systemDy ≥ 0 has 0 as its unique solution, becauseDn+1. = α1D1.+ · · ·+αnDn.

with all α1, . . . , αn < 0.
Applying the conditions mentioned in Theorem 1, we conclude that x̄ is the ball center

of K, and it is unique. So, when the simplex S is represented using linear constraints, its
ball center can be computed efficiently as described above.

7.2. Ball Center of a Simplex Represented as
the Convex Hull of Its Extreme Points

Now suppose that S is represented as the convex hull of its set of extreme points Γ =
{x1, . . . , xn+1}. So, an x ∈ S is represented as

x= β1(x1 −xn+1)+ · · ·+βn(xn −xn+1)+xn+1, (10)

where β1, . . . , βn ≥ 0, and β1+ · · ·+βn ≤ 1.
Let B denote the n× n matrix with its jth column B.j = xj − xn+1 for j = 1 to n, and

β = (β1, . . . , βn)T . Because S is a simplex we know that B is nonsingular. So, from (10), we
have

B−1x= β+B−1xn+1.

Using this, from the bounds on β we have

B−1x ≥ B−1xn+1,

−eB−1x ≥ −1− eB−1xn+1.
(11)

So, (11) is the representation of S = convex hull of Γ here, through linear constraints.
To derive the ball center of S using this representation, (11), we need to normalize each
constraint in (11) so that the Euclidean norm of its coefficient vector is 1. For this we need
γi = ‖(B−1)i.‖ for i= 1 to n, and γn+1 = ‖eB−1‖. Then, from the results in §7.1, we know
that the ball center x of S and the radius δ of the largest ball inside S are the solution of
the system (

B−1 −γ

−eB−1 −γn+1

)(
x

δ

)
=

(
B−1xn+1

−1− eB−1xn+1

)
,
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where γ = (γ1, . . . , γn)T . By adding the sum of the first n equations in this system to the
last, we find that in the solution of this system,

δ= 1/(γ1+ · · ·+ γn+1),

and from the first n equations we see that the ball center of the simplex S here is

x= xn+1+(1/(γ1+ · · ·+ γn+1))Bγ.

8. Ball Center of the Convex Hull of a Linearly
Independent Set of Vectors in Rn

Let P = {x1, . . . , xr} be a linearly independent set of column vectors in Rn, and S2 = convex
hull of P , where r ≤ n. Then, S2 is an (r − 1)-dimensional simplex in its affine hull. In this
section we discuss how to compute the ball center of S2 directly.
In this case, the n× (r − 1) matrix

B2 = (x1 −xr ... · · · ...xr−1 −xr)

is of full column rank. Find a row partition of it into (B21,B22)T such that B21 and B22 are
of orders (r− 1)× (r− 1) and (n− r+1)× (n− r+1), respectively, and B21 is nonsingular.
Let (xj

1, x
j
2)

T , (x1, x2)T be the corresponding row partitions of the column vectors xj for
each j = 1 to r and each x ∈ S2, respectively.
Then, for each x= (x1, x2)T ∈ S2, it can be verified that

x2 =B22
[
B−1
21 (x1 − xr

1)
]
+ xr

2. (12)

Equation (12) is the system of linear equations that defines the affine hull of S2.
Now, the convex hull of {x11, . . . , xr

1} ⊂ Rr−1 is a full-dimensional simplex in Rr−1, and
its ball center x1 can be found by applying the formula derived in §7.2 to it. Then in the
original space Rn, the ball center of S2 is (x1, x2)T , where x2 is obtained from x1 using (12).

9. Application to Improve the Performance of
Sphere Methods

Let {x̂1, . . . , x̂s} denote the set of all points obtained at the end of the various descent
steps in D5.1 in an iteration. s ≤ m, and typically s ≤ n+1, so s is not a large number in
comparison to m,n.
Let K1 denote the convex hull of {x̂1, . . . , x̂s}. Typically, x̂1, . . . , x̂s are spread out in

different directions all around K, each one in the interior of K but close to the boundary
of K. So, intuitively, it seems that a ball center for K1 may be close to a ball center for K
on the objective plane through it.
We checked whether the average of x̂1, . . . , x̂s is a reasonable approximation to a ball

center of K1, but it is not.
Let x̂s be the best point in {x̂1, . . . , x̂s} by objective value. So it is the output of D5.1 in

this iteration.

Case 1. First consider the case where s = n + 1. Typically, we find in this case that
〈{x̂1, . . . , x̂s}〉 is an n-dimensional simplex. Let us assume that this is true. Then, from §7.2
we have the following: let

B = (x1 −xs ... · · · ...xs−1 −xs),

and let γj = ‖(B−1)j.‖ for j = 1 to s − 1. We can of course compute B−1 and all γj

exactly, but we can take γ̄j = (1/(‖B.j‖)) = 1/(‖xj − xs‖) as a crude approximation of γj .
Let ȳ =

∑s−1
j=1 γ̄j(x̂j − x̂s). Then, from the results in §7.2 we know that in this case xs +

(ȳ)× (a constant) is an approximation to the ball center of 〈{x̂1, . . . , x̂s}〉.
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However, in Sphere Method 1, what we need is a point which is a ball center of K on the
objective plane through it. So, the above result suggests that we can use the two-variable
LP (6) with x̄ replaced by xs and y replaced by ȳ here, and take the optimal x̃ for this
two-variable LP as an approximation to the ball center required. Because cȳ > 0, x̃ will not
be a better point than xs by objective value, but carrying out all the descent steps in Sphere
Method 1 with x̃ as center can be expected to yield a point better than xs.
Even when s �= n+1, we can carry out the same work using the same formulas to get x̃

as an approximate center.
This leads to a new step, which we call D5.3, to be carried out immediately after com-

pleting the step D5.1 in an iteration, which we describe below.
Descent Step 5.3 (D5.3). This is carried out immediately after applying D5.1. Let

{x̂1, . . . , x̂s} be the set of all points obtained at the end of the various descent steps in D5.1,
with xs as the best point among them.
For each j = 1 to s− 1, let γ̄j = 1/(‖xj −xs‖), and let ȳ=

∑s−1
j=1 γ̄j(x̂j − x̂s).

Solve the two-variable LP (6) with x̄ replaced by xs, and y replaced by ȳ here, and let x̃
be the optimum solution to it.
With x̃ as the approximate ball center, apply all the descent steps D1, D2, D3, D4, and

D5.1 in Sphere Method 1, and let ¯̄x denote the best point obtained in all these descent steps.
Repeat this work with the set of points obtained at the end of the current D5.1, and if

the new point ¯̄x shows good improvement over the last one, continue the same.
This step stops with the point ¯̄x obtained in the final repetition; with that go to the next

iteration in Sphere Method 1 beginning with centering again.
Sphere Method 1 with this additional descent step has not yet been tested computation-

ally; we will be testing it shortly.
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