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Chapter 6

Eigen Values, Eigen Vectors,
and Matrix Diagonalization

This is Chapter 6 of “Sophomore Level Self-Teaching Web-
book for Computational and Algorithmic Linear Algebra and
n-Dimensional Geometry” by Katta G. Murty.

6.1 Definitions, Some Applications

Eigen values and eigen vectors are only defined for square matrices;
hence in this chapter we will consider square matrices only.

Let A = (aij) be a square matrix of order n. Let I denote the
unit matrix of order n. A scalar λ is said to be an eigen value (or
characteristic value, or proper value, or latent value) of square
matrix A if the matrix A − λI is singular, i.e., if the determinant
det(A − λI) = 0.

Let P (λ) = det(A − λI). Expansion of det(A − λI) produces the
polynomial in λ, P (λ) which is known as the characteristic polyno-
mial for the square matrix A. The degree of P (λ) is n = order of the
matrix A, and the leading term in it is (−1)nλn.

The eigen values of A are the solutions of the characteristic equa-
tion for A

P (λ) = 0
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504 Ch. 6. Eigen Values

i.e., they are the roots of the characteristic polynomial for A.
The set of all eigen values of A, usually denoted by the symbol

σ(A), is called the spectrum of A.
Since the characteristic polynomial is of degree n, it has exactly

n roots by the Fundamental Theorem of Algebra. But some of these
roots may be complex numbers (i.e., a number of the form a + ib,
where a, b are real numbers and i =

√−1), and some of the roots may
be repeated.

Since all the entries aij in the matrix A are real numbers, all the
coefficients in the characteristic polynomial are real numbers. By the
fundamental theorem of algebra this implies that if λ = a + ib is a
root of the characteristic polynomial, then so is its complex conjugate
λ̄ = a − ib. Thus the complex eigen values of A occur in complex
conjugate pairs.

So, if λ1 is an eigen value of A, then λ = λ1 is a solution of P (λ) = 0.
From theory of equations, this implies that (λ1 − λ) is a factor of the
characteristic polynomial P (λ). In the same way we conclude that if
λ1, λ2, . . . , λn are the various eigen values of A, then the characteristic
polynomial

P (λ) = (λ1 − λ)(λ2 − λ) . . . (λn − λ).

However, as mentioned earlier, some of the eigen values of A may
be complex numbers, and some of the eigen values may be equal to
each other. If λ1 is an eigen value of A and r ≥ 1 is the positive integer
satisfying the property that (λ1 − λ)r is a factor of the characteristic
polynomial P (λ), but (λ1 − λ)r+1 is not, then we say that r is the
algebraic multiplicity of the eigen value λ1 of A. If r = 1, λ1 is
called a simple eigen value of A; if r > 1, λ1 is called a multiple
eigen value of A with algebraic multiplicity r.

Thus if λ1, λ2, . . . , λk are all the distinct eigen values of A includ-
ing any complex eigen values, with algebraic multiplicities r1, . . . , rk

respectively, then the characteristic polynomial

P (λ) = (λ1 − λ)r1(λ2 − λ)r2 . . . (λk − λ)rk

and r1 + . . . + rk = n. In this case the spectrum of A, σ(A) =
{λ1, . . . , λk}.
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If λ is an eigen value of A, since A−λI is singular, the homogeneous
system of equations

(A − λI)x = 0 or equivalently Ax = λx

must have a nonzero solution x ∈ Rn. A column vector x �= 0 satisfying
this equation is called an eigen vector of A corresponding to its eigen
value λ; and the pair (λ, x) is called an eigen pair for A. Notice that
the above homogeneous system may have many solutions x, the set of
all solutions of it is the nullspace of the matrix (A − λI) defined in
Section 3.10 and denoted by N(A − λI). This nullspace N(A − λI)
is called the eigen space of A corresponding to its eigen value λ.
Therefore, the set of all eigen vectors of A associated with its eigen
value λ is {x ∈ Rn : x �= 0, and x ∈ N(A− λI)}, the set of all nonzero
vectors in the corresponding eigen space.

The dimension of N(A − λI) (as defined in Section 1.23, this is
equal to the number of nonbasic variables in the final tableau when the
above homogeneous system (A− λI)x = 0 is solved by the GJ method
or the G elimination method) is called the geometric multiplicity of
the eigen value λ of A. We state the following result on multiplicities
without proof (for proofs see C. Meyer [6.1]). called the geometric
multiplicity of the eigen value λ of A.

Result 6.1.1: Multiplicity Inequality: For simple eigen values
λ of A (i.e., those with algebraic multiplicity of 1) the dimension of
the eigen space N(A − λI) is 1; i.e., this eigen space is a straight line
through the origin.

If λ is an eigen value of A with algebraic multiplicity > 1, we will
always have

geometric multiplicity of λ ≤ algebriac multiplicity of λ

i.e., the dimension of N(A − λI) ≤ algebriac multiplicity of λ.

Result 6.1.2: Linear Independence of Eigen vectors Asso-
ciated With Distinct Eigen values: Let λ1, . . . , λh be some distinct
eigen values of A; and {(λ1, x

1), (λ2, x
2), . . . , (λh, x

h)} a set of eigen
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pairs for A. Then the set of eigen vectors {x1, . . . , xh} is linearly in-
dependent.

Suppose all the eigen values of A are real, and σ(A) = {λ1, . . . , λk}
is this set of distinct eigen values. If, for all i = 1 to k, geometric
multiplicity of λi is equal to its algebraic multiplicity; then it is possible
to get a complete set of n eigen vectors for A which is linearly
independent.

If geometric multiplicity of λi is < its algebriac multiplicity for at
least one i, then A does not have a complete set of eigen vectors which is
linearly independent. Such matrices are called deficient or defective
matrices.

Example 1: Let

A =

(
6 −5
4 −3

)
. Then A − λI =

(
6 − λ −5

4 −3 − λ

)
.

Therefore the characteristic polynomial of A, P (λ) = determinant
(A−λI) = (6−λ)(−3−λ)+20 = λ2 −3λ+2 = (2−λ)(1−λ). Hence
the characteristic equation for A is

(2 − λ)(1 − λ) = 0

for which the roots are 2 and 1. So, the eigen values of A are 2 and 1
respectively, both are simple with algebraic multiplicity of one.

To get the eigen space of an eigen value λi we need to solve the
homogeneous system (A − λiI)x = 0. For λ = 1 this system in de-
tached coefficient form is the one in the top tableau given below. We
solve it using the GJ method discussed in Section 1.23. Pivot elements
are enclosed in a box; PR, PC denote the pivot row, pivot column re-
spectively, and BV denotes the basic variable selected in the row. RC
denotes redundant constraint to be eliminated.
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BV x1 x2

5 −5 0 PR
4 −4 0

PC↑
x1 1 −1 0

0 0 0 RC
Final Tableau

x1 1 −1 0

Since there is one nonbasic variable in the final tableau, the dimen-
sion of the eigen space is one. The general solution of the system is
x = (α, α)T for any α real. So, for any α �= 0 (α, α)T is an eigen vector
corresponding to the eigen value 1. Taking α = 1 leads to one eigen
vector x1 = (1, 1)T .

For the eigen value λ = 2, the eigen space is determined by the
following system, which we also solve by the GJ method.

BV x1 x2

4 −5 0 PR
4 −5 0

PC↑
x1 1 −5/4 0

0 0 0 RC
Final Tableau

x1 1 −5/4 0

So, the general solution of this system is x = (5α/4, α)T which
is an eigen vector corresponding to the eigen value 2 for any α �= 0.
In particular, taking α = 1, yields x2 = (5/4, 1)T as an eigen vector
corresponding to 2.

So, {x1, x2} = {(1, 1)T , (5/4, 1)T} is a complete set of eigen vectors
for A.

Example 2: Let

A =

(
0 −1
1 0

)
. Then A − λI =

( −λ −1
1 −λ

)
.
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Therefore the characteristic polynomial of A, P (λ) = determinant
(A − λI) = λ2 + 1. Hence the characteristic equation for A is

λ2 + 1 = 0

for which the solutions are the imaginary numbers λ1 = i =
√−1 and

λ2 = −i. Thus the eigen values of this matrix A are the complex
conjugate pair +i and −i.

It can also be verified that the eigen vectors corresponding to

λ1 = +i are (α,−αi)T

λ2 = −i are (α, αi)T

for any nonzero complex number α. Thus the eigen vectors of A are
both complex vectors in this example, even though the matrix A is
real.

Example 3: Let

A =




0 0 −1
10 1 2
0 0 1


 . Then A − λI =




λ 0 −1
10 1 − λ 2
0 0 1 − λ


 .

Therefore the characteristic polynomial of A, P (λ) = determinant
(A − λI) = −λ(1 − λ)2. Hence the characteristic equation for A is

−λ(1 − λ)2 = 0

for which the roots are 0 and 1, with 1 being a double root. So, the
eigen values of A are 0 and 1 , 0 is simple with algebraic multiplicity
one, and 1 is multiple with algebraic multiplicity 2.

To get the eigen space of eigen value 0 we need to solve the homo-
geneous system Ax = 0. We solve it using the GJ method discussed
in Section 1.23. Pivot elements are enclosed in a box; PR, PC denote
the pivot row, pivot column respectively, and BV denotes the basic
variable selected in the row. RC denotes redundant constraint to be
eliminated.
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BV x1 x2 x3

0 0 −1 0 PR
10 1 2 0
0 0 1 0

PC↑
x3 0 0 1 0

10 1 0 0 PR
0 0 0 0 RC

PC↑
Final Tableau

x3 0 0 1 0
x2 10 1 0 0

The general solution of this system is x = (α,−10α, 0)T for any α
real. Taking α = 1, an eigen vector corresponding to the eigen value 0
is x1 = (1,−10, 0)T .

For λ = 1, the eigen space is determined by the following system,
which we also solve using the GJ method of Section 1.23.

BV x1 x2 x3

−1 0 −1 0 PR
10 0 2 0
0 0 0 0 RC

PC↑
x1 1 0 1 0

0 0 −8 0 PR
PC↑

Final Tableau
x1 1 0 0 0
x3 0 0 1 0

The general solution of this system is x = (0, α, 0)T for any α real;
so an eigen vector corresponding to the eigen value 1 is (0, 1, 0)T . The
eigen space corresponding to this eigenvalue is a straight line, a one
dimensional object.

The algebraic multiplicity of the eigen value 1 is 2, but its geometric
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multiplicity, the dimension of the eigen space is only 1.

This example illustrates the fact that the geometric multiplicity of
an eigen value, the dimension of its eigen space, can be strictly less
than its algebraic multiplicity.

Example 4: Let

A =




0 1 1
1 0 1
1 1 0


 . Then A − λI =




−λ 1 1
1 −λ 1
1 1 −λ


 .

Therefore the characteristic polynomial of A, P (λ) = determinant
(A− λI) = (λ + 1)2(2− λ). Hence the characteristic equation for A is

(λ + 1)2(2 − λ) = 0

for which the roots are −1 and 2, with −1 being a double root. So, the
eigen values of A are −1 and 2; 2 is simple with algebraic multiplicity
one, and −1 is multiple with algebraic multiplicity 2.

The eigen space corresponding to eigen value −1 is determined by
the following homogeneous system which we solve using the GJ method
discussed in Section 1.23. Pivot elements are enclosed in a box; PR, PC
denote the pivot row, pivot column respectively, and BV denotes the
basic variable selected in the row. RC denotes redundant constraint to
be eliminated.

BV x1 x2 x3

1 1 1 0 PR
1 1 1 0
1 1 1 0

PC↑
x3 1 1 1 0

0 0 0 0 RC
0 0 0 0 RC

Final Tableau
x3 1 1 1 0
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The general solution of this system is x = (α, β,−(α+β))T for any
α, β real. So, this eigen space has dimension 2, it is the subspace which
is the linear hull of the two vectors (1, 0,−1)T and (0, 1,−1)T . The set
of these two vectors is a basis for this eigen space.

Thus for the matrix A in this example, both the algebraic and
geometric multiplicities of its eigen value −1 are two.

The eigen vector corresponding to the eigen value 2 is obtained from
the following ststem.

BV x1 x2 x3

−2 1 1 0 PR
1 −2 1 0
1 1 −2 0

PC↑
x3 −2 1 1 0

3 −3 0 0 PR
−3 3 0 0

PC↑
x3 0 −1 1 0
x1 1 −1 0 0 PR

0 0 0 0 RC
Final Tableau

x3 0 −1 1 0
x1 1 −1 0 0

The general solution of this system is x = (α, α, α)T for any α real;
so an eigen vector corresponding to the eigen value 2 is (1, 1, 1)T .

Example 5: Eigen Values of a Diagonal Matrix:
Let

A =


 2 0 0

0 −7 0
0 0 9


 . Then A − λI =


 2 − λ 0 0

0 −7 − λ 0
0 0 9 − λ


 .

Therefore the characteristic polynomial of A, P (λ) = determinant
(A − λI) = (2 − λ)(−7 − λ)(9 − λ). Hence the characteristic equation
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for A is

(2 − λ)(−7 − λ)(9 − λ) = 0

for which the roots are 2, −7, and 9. So, the eigen values of A are 2,
−7 and 9; the diagonal entries in the diagonal matrix A.

The eigen space corresponding to eigen value 2 is the solution set
of

x1 x2 x3

0 0 0 0
0 −9 0 0
0 0 7 0

The general solution of this system is x = (α, 0, 0)T for real α.
Hence an eigen vector corresponding to the eigen value 2 is (1, 0, 0)T ,
the first unit vector.

In the same way it can be verified that for any diagonal matrix, its
eigen values are its diagonal entries; and an eigen vector corresponding
to its ith diagonal entry is the ith unit vector.

Example 6 : Eigen Va lues of an Upp er Triangular
Matrix: Let

A =


 -1 -10 16

0 2 -18
0 0 -3


 . Then A−λI =


 −1 − λ −10 16

0 2 − λ -18
0 0 −3 − λ


 .

Therefore the characteristic polynomial of A, P (λ) = determinant
(A−λI) = (−1−λ)(2−λ)(−3−λ). Hence the characteristic equation
for A is

(−1 − λ)(2 − λ)(−3 − λ) = 0

Its roots, the eigen values of the upper triangular matrix A, are
exactly its diagonal entries.

The eigen space corresponding to eigen value −1 is the set of solu-
tions of
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x1 x2 x3

0 −10 16 0
0 3 −18 0
0 0 −2 0

The general solution of this system is x = (α, 0, 0)T for α real.
Hence an eigen vector corresponding to −1, the first diagonal entry of
A, is (1, 0, 0)T , the first unit vector.

In the same way it can be verified that an eigen vector corresponding
to the ith diagonal entry of A is the ith unit vector, for all i.

Similarly, for any upper or lower triangular matrix, its eigen values
are its diagonal entries, and its eigen vectors are the unit vectors.

Basis for the Eigen Space of a Square Matrix A
Corresponding to an Eigen Value λ

Let λ be an eigen value of a square matrix A of order n. Then the
eigen space corresponding to λ is N(A− λI), the set of all solutions of
the system

(A − λI)x = 0

A basis for this eigen space, as defined in Sections 1.23, 4.2, is a
maximal linearly independent set of vectors in N(A − λI), it has the
property that every point in this eigen space can be expressed as its
linear combination in a unique manner.

Example 7: Consider the matrix

A =




0 1 1
1 0 1
1 1 0




from Example 4, and its eigen value −1. The eigen space corresponding
to this eigen value is the set of all solutions of



514 Ch. 6. Eigen Values

x1 x2 x3

1 1 1 0
1 1 1 0
1 1 1 0

All the constraints in this system are the same as x1 + x2 + x3 = 0.
So, a general solution of this system is (α, β,−α − β)T , where α, β
are real valued parameters. A basis for this eigen space is the set
{(1, 0,−1)T , (0, 1,−1)T}, the set of two vectors obtained by setting
α = 1, β = 0, and α = 0, β = 1 respectively in the formula for the
general solution.

Results on Eigen Values and Eigen Vectors

We now discuss some important results on eigen values and eigen
vectors, without proofs.

Result 6.1.3: Linear independence of the set of eigen vec-
tors corresponding to distinct eigen values: Let (λ1, x

1), . . . , (λk, x
k)

be eigen pairs for a square matrix A, where the eigen values λ1, . . . , λk

are distinct. Then {x1, . . . , xk} is a linearly independent set.

Result 6.1.4: The union of bases of eigen spaces corre-
sponding to distinct eigen values is a basis: Let {λ1, . . . , λk} be
a set of distinct eigen values for a square matrix A. For i = 1 to k, let
Bi be a basis for the eigen space corresponding to λi. Then B = ∪k

i=1Bi

is a linearly independent set.

A Complete Set of Eigen Vectors

A complete set of eigen vectors for a square matrix A of order
n is any linearly independent set of n eigen vectors for A. Not all
square matrices have complete sets of eigen vectors. Square matrices
that do not have a complete set of eigen vectors are called deficient
or defective matrices.

Let A be a square matrix of order n which has distinct real eigen
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values λ1, . . . , λn. Let xi be an eigen vector corresponding to λi for i
= 1 to n. Then by Result 6.1.3, {x1, . . . , xn} is a complete set of eigen
vectors for A. Thus any square matrix with all eigen values real and
distinct has a complete set of eigen vectors.

Let A be a square matrix of order n with distinct real eigen values
λ1, . . . , λk, where for i = 1 to k, both the algebraic and geometric
multiplicities of λi are equal to ri, satisfying r1 + . . . + rk = n. Then
the eigen space corresponding to λi has a basis Bi consisting of ri

vectors, and B = ∪k
i=1Bi is linearly independent by Result 6.1.4, and is

a basis for Rn. In this case B is a complete set of eigen vectors for A.
Thus if all eigen values of A are real, and for each of them its geometric
multiplicity is its algebraic multiplicity, then A has a complete set of
eigen values.

Thus if a square matrix A has an eigen value for which the geometric
multiplicity is < its algebraic multiplicity, then A is deficient in eigen
vectors; i.e., it does not have a complete set of eigen vectors.

6.2 Relationship of Eigen Values and Eigen

Vectors to the Diagonalizability of a

Matrix

Let A be a square matrix of order n. In Section 5.4 we mentioned that
the matrix diagonalization problem for matrix A is to find a square
nonsingular matrix P of order n such that P−1AP is a diagonal matrix
D = diag(d1, . . . , dn), say. In this case we say that the matrix P
diagonalizes A, i.e.,

P−1AP =




d1 0 . . . 0
0 d2 . . . 0
...

...
...

0 0 . . . dn


 = D = diag(d1, . . . , dn)

Then multiplying the above equation on both sides by P , we have

AP = PD.



516 Ch. 6. Eigen Values

P.1, . . . , P.n are the column vectors of P . Since D = diag(d1, . . . , dn),

we have PD = (d1P.1
... . . .

...dnP.n), and by the definition of matrix mul-

tiplication AP = (AP.1
... . . .

...AP.n). So, the above equation AP = PD
implies

(AP.1
... . . .

...AP.n) = (d1P.1
... . . .

...dnP.n)

i.e., AP.j = djP.j j = 1, . . . , n.

Since P is invertible, P.j �= 0 for all j. So, the above equation
AP.j = djP.j, i.e., (A−djI)P.j = 0 implies that (dj , P.j) are eigen pairs
for A for j = 1 to n.

Thus if the matrix P diagonalizes the square matrix A into diag(d1,
. . . , dn) then d1, . . . , dn are the eigen values of A; and P.j is an eigen
vector corresponding to dj for each j = 1 to n.

Conversely, suppose a square matrix A of order n has a complete set
of eigen vectors {P.1, . . . , P.n} with corresponding eigen values λ1, . . . , λn.
Let D = diag(λ1, . . . , λn). Since (λj, P.j) is an eigen pair for A for j =
1 to n; we have AP.j = λjP.j for j = 1 to n, i.e.

(AP.1
... . . .

...AP.n) = (λ1P.1
... . . .

...AP.n) = DP

i.e., AP = DP where P is the square matrix with the eigen vectors
P.1, . . . , P.n as the column vectors. Since {P.1, . . . , P.n} is a complete
set of eigen vectors, it is linearly independent, so P is invertible. So,
AP = PD implies P−1AP = D. Thus P diagonalizes A.

Thus the square matrix A of order n is diagonalizable iff it has a
complete set of eigen vectors; and a matrix which diagonalizes A is
the matrix whose column vectors are a basis for Rn consisting of eigen
vectors of A.

Thus the task of diagonalizing a square matrix A is equivalent to
finding its eigen values and a complete set of eigen vectors for it.

We now provide some examples. In this chapter we number all
the examples serially. So, continuing the numbering from the previous
section, we number the next example as Example 8.

Example 8: Consider the matrix
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A =




0 1 1
1 0 1
1 1 0




discussed in Examples 4, 7. From Examples 4, 7, we know that its
eigen values are−1 and 2, and that {(1, 0,−1)T , (0, 1,−1)T , (1, 1, 1)T}
is a complete set of eigen vectors for A. So

P =




1 0 1
0 1 1

−1 −1 1




is a matrix that diagonalizes A. In fact P−1AP = diag(−1,−1, 2).

Example 9: Let

A =




0 0 −1
10 1 2
0 0 1




In Example 3 we determined that its eigen values are 0 and 1, with
1 having algebraic multiplicity 2. But the geometric multiplicity of 1 is
1 < its algebraic multiplicity. So, this matrix does not have a complete
set of eigen vectors, and hence it is not diagonalizable.

Example 10: Let

A =

(
6 −5
4 −3

)

the matrix considered in Example 1. From Example 1 we know that
its eigen values are 2, 1 and a complete set of eigen vectors for it is
{(1, 4/5)T , (1, 1)T}. So, the matrix

P =

(
1 1

4/5 1

)
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diagonalizes A, and P−1AP = diag(2, 1).

We will now present some more important results, most of them
without proofs.

Result 6.2.1: Results on Eigen Values and Eigen Vectors
for Symmetric Matrices:

(i): All eigen values are real: If A is a square symmetric matrix
of order n, all its eigen values are real numbers, i.e., it has no complex
eigen values.

(ii): Eigen vectors corresponding to distinct eigen values
are orthogonal: If A is a square symmetric matrix of order n, eigen
vectors corresponding to distinct eigen values of A are orthogonal.

We will provide a proof of this result because it is so simple. Since
A is symmetric, A = AT . Let λ1 �= λ2 be eigen values associated with
eigen vectors v1, v2 respectively. So, Av1 = λ1v

1 and Av2 = λ2v
2. So

λ1(v
1)T v2 = (λ1v

1)T v2 = (Av1)T v2 = (v1)T AT v2 = (v1)T Av2 = λ2(v
1)T v2

Hence, λ1(v
1)T v2 = λ2(v

1)T v2, i.e., (λ1 − λ2)(v
1)T v2 = 0. Since

λ1 �= λ2, λ1 − λ2 �= 0. Hence (v1)T v2 must be zero; i.e., v1 and v2 are
orthogonal.

(iii): Special eigen properties of symmetric PD, PSD, ND,
NSD, Indefinite matrices: A square symmetric matrix is

Positive definite iff all its eigen values are > 0
Positive semidefinite iff all its eigen values are ≥ 0
Negative definite iff all its eigen values are < 0
Negative semidefinite iff all its eigen values are ≤ 0
Indefinite iff it has both a positive and a negative eigen value.

See Section 5.2 for definitions of these various classes of matrices.
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(iv): Geometric and algebraic multiplicities are equal: If
A is a square symmetric matrix of order n, for every one of its eigen
values, its geometric multiplicity is equal to its algebraic multiplicity.
Hence symmetric matrices can always be diagonalized.

(v): Orthonormal set of eigen vectors: If A is a square ma-
trix of order n, it has an orthonormal set of n eigen vectors iff it is
symmetric.

Orthogonal Diagonalization of a Square Matrix

As discussed in Section 5.4, orthogonal diagonalization of a
square matrix A deals with the problem of finding an orthogonal matrix
P such that

P−1AP = a diagonal matrix diag(λ1, . . . , λn) say.

When P is orthogonal P−1 = P T . The orthogonal matrix P is said
to orthogonally diagonalize the square matrix A if P−1AP = P TAP
is a diagonal matrix.

Result 6.2.2: Orthogonally diagonalizable iff symmetric: A
square matrix can be orthogonally diagonolized iff it is symmetric.

To see this, suppose the orthogonal matrix P orthogonally diago-
nalizes the square matrix A. So, P−1 = P T and P−1AP = a diagonal
matrix D. Since D is diagonal, DT = D. Now, P−1AP = D implies
A = PDP−1 = PDP T . So,

AT = (PDP T )T = PDTP T = PDP T = A

i.e., A is symmetric.
To orthogonally diagonalize a square symmetric matrix A of order n,

one needs to find its eigen values. If they are all distinct, let (λi, P.i) be
the various eigen pairs where each P.i is normalized to satisfy ||P.i|| = 1.
Then by Result 6.2.1 (ii), {P.1, . . . , P.n} is an orthonormal set of eigen
vectors for A. Let P be the matrix with P.1, . . . , P.n as its column
vectors, it orthogonally diagonalizes A.



520 Ch. 6. Eigen Values

If the eigen values of the symmetric matrix A are not all distinct,
find a basis for the eigenspace of each eigen value. Apply the Gram-
Schmidt process to each of these bases to obtain an orthonormal basis
for each eigen space. Then form the square matrix P whose columns are
the vectors in these various orthonormal bases. Then P orthogonally
diagonalizes A.

Result 6.2.3: Similar Matrices Have the Same Eigen Spec-
trum: Two square matrices A, B of order n are said to be similar if
there exists a nonsingular matrix P of order n satisfying B = P−1AP .
In this case we say that B is obtained by a similarity transforma-
tion on A. Since B = P−1AP implies A = PBP−1, if B can be ob-
tained by a similarity transformation on A, then A can be obtained by
a similarity transformation on B. When B = P−1AP , det(B − λI) =
det(P−1AP−λI) = det(P−1(AP−λP )) = det(P−1)det(A−λI)det(P )=
det(A − λI). Thus similar matrices all have the same charateristic
polynomial, so they all have the same eigen values with the same mul-
tiplicities. However, their eigen vectors may be different.

Result 6.2.4: Eigen values of powers of a matrix: Suppose
the square matrix A is diagonalizable, and let P−1AP = diag(λ1, . . . , λn).
Then for any positive integer s,

As = P−1(diag(λs
1, . . . , λ

s
n))P

Since λ1, . . . , λn are real numbers, computing λs
1, . . . , λ

s
n is much

easier than computing As because of the complexity of matrix multi-
plication.

So, calculating higher powers As of matrix A for large values of s
can be carried out efficiently if it can be diagonalized.

Result 6.2.5: Spectral Theorem for Diagonalizable Ma-
trices: Let A be a square matrix of order n with spectrum σ(A) =
{λ1, . . . , λk}. Suppose A is diagonalizable, and for i = 1 to k, let ri =
algebraic multiplicity of λi = geometric multiplicity of λi. Then there
exist square matrices of order n, G1, . . . , Gk satisfying
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i) GiGj = 0 for all i �= j
ii) G1 + . . . + Gk = I
iii) λ1G1 + . . . + λkGk = A
iv) G2

i = Gi for all i
v) Rank(Gi) = ri for all i.

Let Xi be the matrix of order n × ri whose column vectors form a

basis for the eigen space N(A − λiI). Let P = (X1
...X2

... . . .
...Xk). Then

P is nonsingular by Result 6.1.2. Partition P−1 as follows

P−1 =




Y1

. . .
Y2

. . .
...

. . .
Yk




where Yi is an ri × n matrix. Then Gi = XiYi for i = 1 to k satisfies
all the above properties. All these properties follow from the following
facts

PP−1 = P−1P = I

A = PDP−1 = (X1
...X2

... . . .
...Xk)




λ1Ir1 0 . . . 0
0 λ2Ir2 . . . 0
...

...
...

0 0 . . . λkIrk







Y1

. . .
Y2

. . .
...

. . .
Yk




where Iri
is the unit matrix of order ri for i = 1 to k.

The decomposition of A into λ1G1 + . . . + λkGk is known as the
spectral decomposition of A, and the Gis are called the spectral
projectors associated with A.
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Example 11: Consider the matrix

A =




0 1 1
1 0 1
1 1 0




discussed in Example 8. Its eigen values are λ1 = −1 with an algebraic
and geometric multiplicity of two, and λ2 = 2 with an algebraic and
geometric multiplicity of one. A basis for the eigen space correponding
to −1 is {(1, 0,−1)T , (0, 1,−1)T}; and an eigen vector corresponding
to 2 is (1, 1, 1)T . So, using the notation in Result 6.2.5, we have

X1 =


 1 0

0 1
−1 −1


 , X2 =


 1

1
1


 , P =




1 0
... 1

0 1
... 1

−1 −1
... 1


 .

We compute P−1 and obtain

P−1 =




2/3 −1/3 −1/3
−1/3 2/3 −1/3

. . . . . . . . .
1/3 1/3 1/3


 ,

Y1 =

(
2/3 −1/3 −1/3

−1/3 2/3 −1/3

)
,

Y2 =
(

1/3 1/3 1/3
)
.

So

G1 = X1Y1 =


 2/3 −1/3 −1/3

−1/3 2/3 −1/3
−1/3 −1/3 2/3




G2 = X2Y2 =


 1/3 1/3 1/3

1/3 1/3 1/3
1/3 1/3 1/3


 .

It can be verified that rank(G1) = 2 = algebraic multiplicity of the
eigen value −1, and rank(G2) = 1 = algebraic multiplicity of the eigen
value 2. Also, we verify that

G1 + G2 = I = unit matrix of order 3

2G1 + G2 = A, the spectral decomposition of A.



6.3 An Application 523

G1, G2 are the spectral projectors associated with A.

Result 6.2.6: Eigen pairs for A and A− 1 If (λ, x) is an eigen
pair for a nonsingular square matrix A, then (1/λ, x) is an eigen pair
for A−1.

By hypothesis we have Ax = λx, and since A is nonsingular, we
have λ �= 0. Multiplying both sides of the equation Ax = λx on the
left by (1/λ)A−1 we get (A−1 − (1/λ)I)x = 0. Therefore ((1/λ), x) is
an eigen pair for A−1.

Result 6.2.7: Sylvester’s Law of Inertia: Let A be a square
symmetric matrix of order n. Let C be any nonsingular square matrix
of order n, and B = CT AC. Then we say that B is obtained from
A by a congruent transformation, and that A, B are congruent.
Since C is nonsingular, B = CTAC implies A = (CT )−1BC−1 =
(C−1)T B(C−1), so if B can be obtained by a congruent transformation
on A, then A can be obtained by a congruent transformation on B.

The inertia of a real symmetric matrix is defined to be the triple
(ρ, ν, ζ) where

ρ, ν, ζ are the numbers of positive, negative, and zero eigen
values of the matrix respectively.

Sylvester’s law states that two symmetric matrices are congruent iff
they have the same inertia.

6.3 An Illustrative Application of Eigen

Values, Eigen Vectors, and Diagonal-

ization in Differential Equations

Eigen values, eigen vectors, and diagonalization of square matrices find
many applications in all branches of science. Here we provide one il-
lustrative application in differential equations, which are equations in-
volving functions and their derivatives. Mathematical models involving
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differential equations appear very often in studies in chemical engi-
neering and other branches of engineering, physics, chemistry, biology,
pharmacy, and other sciences.

Let u1(t), . . . , un(t) be n real valued differentiable functions of a sin-
gle real variable t; and let u′

i(t) denote the derivative of ui(t). Suppose
the formulas for these functions are unknown, but we know that these
functions satisfy the following equations.

u′
1(t) = a11u1(t) + . . . + a1nun(t)

...
...

u′
n(t) = an1u1(t) + . . . + annun(t)

and ui(0) = ci i = 1, . . . , n

where A = (aij) is a given square matrix of order n, and c = (c1, . . . , cn)
T

is a given vector of function values corresponding to t = 0.
A system like this is known as a homogeneous system of first

order linear differential equations with constant coefficients.
Solving this system means to find the formulas for the functions u1(t),
. . . , un(t) satisfying these equations. Let

A =




a11 . . . a1n
...

...
an1 . . . ann


 , u(t) =




u1(t)
...

un(t)


 , u′(t) =




u′
1(t)
...

u′
n(t)


 .

Then the system can be written in matrix form as

u′(t) = Au(t), u(0) = c.

For simplicity, we only consider the case where the matrix A is
diagonalizable. Let the spectrum of A be σ(A) = {λ1, . . . , λk}, and let
the spectral projector associated with λi be Gi for i = 1 to k. Then it
can be shown that the unique solution of this system is

u(t) = eλ1tv1 + . . . + eλktvk
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where vi = Gic for i = 1 to k.

Example 12: Consider the following linear differential equa-
tion involving three functions u1(t), u2(t), u3(t) and their derivatives
u′

1(t), u
′
2(t), u

′
3(t).

u′
1(t) = u2(t) +u3(t)

u′
2(t) = u1(t) +u3(t)

u′
3(t) = u1(t) +u2(t)

(u1(0), u2(0), u3(0))T = (12,−15, 18)T

Letting u(t) = (u1(t), u2(t), u3(t))
T , u′(t) = (u′

1(t), u
′
2(t), u

′
3(t))

T ,
c = (12,−15, 18)T , the system in matrix notation is

u′(t) = Au(t)

u(0) = c

where

A =




0 1 1
1 0 1
1 1 0




the matrix discussed in Example 8, 11. Its eigen values are λ1 = −1
and λ2 = 2, and the associated spectral projectors are

G1 =




2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3


 , G2 =




1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3




from Example 11. So, in the notation given above, we have

v1 = G1c =




2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3






12
−15

18


 =




7
−20

13




v2 = G2c =




1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3






12
−15

18


 =




5
5
5


 .
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So, from the above, we know that the unique solution of this system
is

u(t) =




u1(t)
u2(t)
u3(t)


 = e−t




7
−20

13


+ e2t




5
5
5


 =




7e−t + 5e2t

−20e−t + 5e2t

13e−t + 5e2t


 .

i.e., u1(t) = 7e−t + 5e2t, u2(t) = −20e−t + 5e2t, u3(t) = 13e−t + 5e2t.
It can be verified that these functions do satisfy the given differential
equations.

6.4 How to Compute Eigen Values ?

Computing the eigen values of a matrix A of order n using the main
definition boils down to finding the roots of a polynomial equation of
degree n. Finding the roots of a polynomial equation of degree ≥ 5 is
not a simple task, it has to be carried out using iterative methods.The
most practical eigen value computation method is the QR iteration
algorithm, an iterative method that computes the QR factors (see Sec-
tion 4.12) of a matrix in every iteration. Providing a mathematical
description of this algorithm, and the details of the work needed to
convert it into a practical implementation, are beyond the scope of this
book. For details see the references given below.

Exercises

6.4.1: Obtain the characteristic polynomial of the following ma-
trices. Using it obtain their eigen values, and then the corresponding
eigen vectors and eigen spaces.

(
3 2
8 3

)
,

(
3 1/3

31/3 5

)
,




5 1 2
6 5 3
6 2 6


 ,




3 1 2
2 4 4
3 3 8


 .

6.4.2: Compute eigen values and eigen vectors of the following
matrices.
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1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


 ,




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ,


 2 −1 1

0 3 −1
2 1 3


 .

6.4.3: Let A be a square matrix of order n in which all diagonal
entries are = α, and all off-diagonal entries are = β. Show that it has
an eigen value α−β with algebraic multiplicity n−1, and α+(n−1)β
as the only other eigen value.

6.4.4: If λ is an eigen value of A associated with the eigen vector
x, show that λk is an eigen value of Ak associated with the same eigen
vector x for all positive integers k.

6.4.5: If A, B are square matrices of order n, show that the eigen
values of AB, BA are the same.
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