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THE COMPLEMENTARY PIVOT
ALGORITHM AND ITS EXTENSION
TO FIXED POINT COMPUTING

LCPs of order � can be solved by drawing all the complementary cones in the q�� q��

plane as discussed in Chapter ��

Example ���

Let q �

��� �
��
���� M �

����� �
� ��

��� and consider the LCP 	q�M
� The class of

complementary cones corresponding to this problem is shown in Figure ����

w� w� z� z� q

� � � �� �

� � �� � ��
w�� w�� z�� z� �� �� w�z� � w�z� � �

q lies in two complementary cones Pos 	�M��� I��
 and Pos 	�M����M��
� This implies
that the sets of usable variables 	z�� w�
 and 	z�� z�
 lead to solutions of the LCP�

Putting w� � z� � � and solving the remaining system for the values of the

usable variables 	z�� w�
 lead to the solution 	z�� w�
 � 	�� �
� Here 	w�� w�� z�� z�
 �

	�� �� �� �
 is a solution of this LCP� Similarly putting w� � w� � � and solving it for

the value of the usable variables 	z�� z�
 leads to the second solution 	w�� w�� z�� z�
 �

	�� �� �� �
�
�
 of this LCP�
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Example ���

Let q �

�����
��
��� and M �

����� �
� ��

��� and consider the LCP 	q�M
� The class of

complementary cones corresponding to this problem is in Figure ���� Verify that q is

not contained in any complementary cone� Hence this LCP has no solution�

This graphic method can be conveniently used only for LCPs of order �� In

LCPs of higher order� in contrast to the graphic method where all the complementary

cones were generated� we seek only one complementary cone in which q lies� In this

chapter we discuss the complementary pivot algorithm 	which is also called the

complementary pivot method
 for solving the LCP� In the LCP 	���
 if q �
� ��

	w� z
 � 	q� �
 is a solution and we are done� So we assume q ��� �� First we will brie
y

review some concepts from linear programming� See ������ for complete details�

��� BASES AND BASIC FEASIBLE SOLUTIONS

Consider the following system of linear equality constraints in nonnegative variables

Ax � b

x �� �
	���


where A is a given matrix of order m � n� Without any loss of generality we assume

that the rank of A is m 	otherwise either 	���
 is inconsistent� or redundant equality

constraints in 	���
 can be eliminated one by one until the remaining system satis�es

this property� See ������
� In this system� the variable xj is associated with the column

A�j � j � � to n� A basis B for 	���
 is a square matrix consisting of m columns of

A which is nonsingular� and the column vector of variables xB associated with the

columns in B� arranged in the same order� is the basic vector corresponding to it�

Let D be the matrix consisting of the n � m columns of A not in B� and let xD be

the vector of variables associated with these columns� When considering the basis B

for 	���
� columns in B� D� are called the basic� nonbasic columns respectively�

and the variables in xB� xD are called the basic� nonbasic variables respectively�

Rearranging the variables� 	���
 can be written in partitioned form as

BxB � DxD � b

xB �
� �� xD �

� � �

The basic solution of 	���
 corresponding to the basis B is obtained by setting xD � �

and then solving the remaining system for the values of the basic variables� Clearly it

is 	xB � B��b� xD � �
� This solution is feasible to 	���
 i� B��b �� �� and in this

case B is said to be a feasible basis for 	���
 and the solution 	xB � B��b� xD � �
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is called the basic feasible solution 	abbreviated as BFS
 of 	���
 corresponding to

it� A basis B which is not feasible 	i� e�� if at least one component of B��b is strictly

negative
 is said to be an infeasible basis for 	���
� Thus each feasible basis B for

	���
 determines a unique BFS for it�

When referring to systems of type 	���
� the word solution refers to a vector x

satisfying the equality constraints �Ax � b�� that may or may not satisfy the nonneg�

ativity restrictions �x �
� ��� A solution x of 	���
 is a feasible solution if it satis�es

x �� ��

De	nition
 Degeneracy� Nondegeneracy of Basic Solutions for �����
 of �����

itself
 and of the b�Vector in ����� The basic solution associated with a given

basis B for 	���
� whether it is feasible or not� is said to be degenerate if at least one

component in the vector B��b is zero� nondegenerate otherwise�

A system of constraints of the form 	���
 is said to be nondegenerate if it has no

degenerate basic solutions 	i� e�� i� in every solution of 	���
� at least m variables are

nonzero� when the rank of A is m
� degenerate otherwise� When A has full row rank�

the system 	���
 is therefore degenerate i� the column vector b can be expressed as a

linear combination of r columns of A� where r � m� nondegenerate otherwise� Thus

whether the system of constraints 	���
 is degenerate or nondegenerate depends on the

position of the right hand side constants vector b in Rm in relation to the columns of

A� and if the system is degenerate� it can be made into a nondegenerate system by just

perturbing the b�vector alone�

The right hand side constants vector b in the system of constraints 	���
 is said to

be degenerate or nondegenerate in 	���
 depending on whether 	���
 is degenerate or

nondegenerate� See Chapter �� in �������

The de�nitions given here are standard de�nitions of degeneracy� nondegeneracy

that apply to either a system of constraints of the form 	���
 or the right hand con�

stants vector b in such a system� or a particular basic solution of such a system� This

should not be confused with the concepts of 	principal
 degeneracy or 	principal
 non�

degeneracy of square matrices de�ned later on in Section ���� or the degeneracy of

complementary cones de�ned in Chapter ��

As an example� consider the system of constraints given in Example ��� in Section

������ The BFS of this system associated with the basic vector 	x�� x�� x�� x�
 is �x �

	�� �� �� �� �� �� �� �
T and it is degenerate since the basic variable x� is zero in this

solution� The BFS of this system associated with the basic vector 	x�� x�� x�� x�
 can

be veri�ed to be x � 	�� �� �� �� �� �� �� �
T which is a nondegenerate BFS� Since the

system has a degenerate basic solution� this system itself is degenerate� also the b�

vector is degenerate in this system�

De	nition
 Lexico Positive A vector a � 	a�� � � � � ar
 � Rr� is said to be lexico

positive� denoted by a � �� if a �� � and the �rst nonzero component in a is strictly

positive� A vector a is lexico negative� denoted by a � �� if �a � �� Given two

vectors x� y � Rr� x � y i� x � y � �� x � y i� x � y � �� Given a set of vectors
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f a�� � � � � ak g � Rr� a lexico minimum in this set is a vector aj satisfying the property

that ai �� aj for each i � � to k� To �nd the lexico minimum in a given set of

vectors from Rr� compare the �rst component in each vector and discard all vectors

not corresponding to the minimum �rst component� from the set� Compare the second

component in each remaining vector and again discard all vectors not corresponding to

the minimum in this position� Repeat in the same manner with the third component�

and so on� At any stage if there is a single vector left� it is the lexico minimum� This

procedure terminates after at most r steps� At the end� if two or more vectors are left�

they are all equal to each other� and each of them is a lexico minimum in the set�

Example ���

The vector 	�� �� �����������
 is lexico positive� The vector 	����� ������ ����
 is
lexico negative� In the set of vectors f 	��� ����� �
� 	��� ����� �
� 	��� ���������
�
	�������������
 g� the vector 	��� ����� �
 is the lexico minimum�

Perturbation of the Right Hand Side Constants Vector

in ����� to make it Nondegenerate�

If 	���
 is degenerate� it is possible to perturb the right hand side constants vector b

slightly� to make it nondegenerate� For example� let � be a parameter� positive and

su�ciently small� Let b	�
 � b� 	�� ��� � � � � �m
T � It can be shown that if b in 	���
 is

replaced by b	�
� it becomes nondegenerate� for all � positive and su�ciently small

	this really means that there exists a positive number �� � � such that whenever

� � � � ��� the stated property holds
� This leads to the perturbed problem

Ax � b	�


x �� �
	���


which is nondegenerate for all � positive and su�ciently small� See Chapter �� in

������ for a proof of this fact� A basis B and the associated basic vector xB for 	���


are said to be lexico feasible if they are feasible to 	���
 whenever � is positive and

su�ciently small� which can be veri�ed to hold i� each row vector of the m� 	m� �


matrix 	B��b
��� B

��
 is lexico positive� Thus lexico feasibility of a given basis for 	���


can be determined by just checking the lexico positivity of each row of 	B��b
��� B

��


without giving a speci�c value to �� For example� if b �� �� and A has the unit matrix

of order m as a submatrix� that unit matrix forms a lexico feasible basis for 	���
�

Canonical Tableaus

Given a basis B� the canonical tableau of 	���
 with respect to it is obtained by mul�

tiplying the system of equality constraints in 	���
 on the left by B��� It is
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Tableau ��� � Canonical Tableau of 	���
 with

Respect to the Basis B

basic variables x

xB B��A B��b

Let D be the matrix consisting of the n � m columns of A not in B� and let xD be

the vector of variables associated with these columns� When the basic and nonbasic

columns are rearranged in proper order� the canonical Tableau ��� becomes

Tableau ���

basic variables xB xD

xB I B��D B��b � �b

�b is known as the updated right hand side constants vector in the canonical

tableau� The column of xj in the canonical tableau� B
��A�j � �A�j is called the

update column of xj in the canonical tableau� The inverse tableau corresponding

to the basis B is

Tableau ��� � Inverse Tableau

basic variables Inverse basic values

xB B�� B��b

It just provides the basis inverse and the updated right�hand�side constants column�

From the information available in the inverse tableau� the update column corresponding

to any nonbasic variable in the canonical tableau can be computed using the formulas

given above�

��� THE COMPLEMENTARY PIVOT

ALGORITHM

We will now discuss a pivotal algorithm for the LCP introduced by C� E� Lemke�

known as the Complementary Pivot Algorithm 	because it chooses the entering

variable by a complementary pivot rule� the entering variable in a step is always

the complement of the dropping variable in the previous step
� and also referred to as

Lemke�s Algorithm in the literature�
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����� The Original Tableau

An arti�cial variable z� associated with the column vector �en 	en is the column

vector of all ��s in Rn
 is introduced into 	���
 to get a feasible basis for starting the

algorithm� In detached coe�cient tableau form� 	���
 then becomes

w z z�

I �M �en q

w �
� �� z �� �� z� �� �

	���


����� Pivot Steps

The complementary pivot algorithm moves among feasible basic vectors for 	���
� The

primary computational step used in this algorithm is the pivot step 	or the Gauss�

Jordan pivot step� or the Gauss�Jordan elimination pivot step
� which is also the

main step in the simplex algorithm for linear programs� In each stage of the algorithm�

the basis is changed by bringing into the basic vector exactly one nonbasic variable

known as the entering variable� Its updated column vector is the pivot column

for this basis change� The dropping variable has to be determined according to the

minimum ratio test to guarantee that the new basis obtained after the pivot step

will also be a feasible basis�

For example� assume that the present feasible basic vector is 	y�� � � � � yn
 with yr
as the rth basic variable� and let the entering variable be xs� 	The variables in 	���
 are

w�� � � � � wn� z�� � � � � zn� z�� Exactly n of these variables are present basic variables� For

convenience in reference� we assume that these basic variables are called y�� � � � � yn
�

After we rearrange the variables in 	���
� if necessary� the canonical form of 	���
� with

respect to the present basis is of the form �

Basic y�� � � � � yn xs Other Right�hand

variable variables constant vector

y� � � � � � �a�s � � � �q�

�� �� �� �� �� ��

yn � � � � � �ans � � � �qn

Keeping all the nonbasic variables other than xs� equal to zero� and giving the

value � to the entering variable� xs� leads to the new solutions �

xs � �

yi � �qi � ��ais� i � �� � � � � n

All other variables � �

	���
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There are two possibilities here�

�� The pivot column may be nonpositive� that is� �ais �� � for all � �� i �� n� In

this case� the solution in 	���
 remains nonnegative for all � �� �� As � varies

from � to 	� this solution traces an extreme half�line 	or an unbounded

edge
 of the set of feasible solutions of 	���
� In this case the minimum ratio�

�� in this pivot step is �	� See Example ����
�� There is at least one positive entry in the pivot column� In this case� if the

solution in 	���
 should remain nonnegative� the maximum value that � can

take is � � �qr
�ars

� minimum
�

�qi
�ais

� i such that �ais � �
�
� This � is known as

the minimum ratio in this pivot step� For any i that attains the minimum

here� the present ith basic variable yi is eligible to be the dropping variable

from the basic vector in this pivot step� The dropping basic variable can be

chosen arbitrarily among those eligible� suppose it is yr� yr drops from the

basic vector and xs becomes the r
th basic variable in its place� The rth row

is the pivot row for this pivot step� The pivot step leads to the canonical

tableau with respect to the new basis�

If the pivot column 	�a�s� � � � � �ams

T is placed by the side of the present inverse

tableau and a pivot step performed with the element �ars in it in the pivot row as the

pivot element� the inverse tableau of the present basis gets transformed into the inverse

tableau for the new basis�

The purpose of choosing the pivot row� or the dropping variable� by the minimum

ratio test� is to guarantee that the basic vector obtained after this pivot step remains

feasible�

In this case 	when there is at least one positive entry in the pivot column
 the

pivot step is said to be a nondegenerate pivot step if the minimum ratio computed

above is � �� degenerate pivot step if it is �� See Examples ���� ����

Let B be the basis for 	���
 corresponding to the basic vector 	y�� � � � � yn
� As

discussed above� the basic vector 	y�� � � � � yn
 is lexico feasible for 	���
 if each row

vector of 	�q
��� B��
 is lexico positive� If the initial basic vector 	y�� � � � � yn
 is lexico

feasible� lexico feasibility can be maintained by choosing the pivot row according to the

lexico minimum ratio test� Here the pivot row is chosen as the rth row where r is

the i that attains the lexico minimum in
� 	�qi��i�������in


�ais
� i such that �ais � �

�
� where

	 � 		ij
 � B��� The lexico minimum ratio test identi�es the pivot row 	and hence

the dropping basic variable
 unambiguously� and guarantees that lexico feasibility is

maintained after this pivot step� In the simplex algorithm for linear programming�

the lexico minimum ratio test is used to guarantee that cycling will not occur under

degeneracy 	see Chapter �� of ������
� The lexico minimum ratio test is one of the rules

that can be used to resolve degeneracy in the simplex algorithm� and thus guarantee

that it terminates in a �nite number of pivot steps�
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Example ��� Extreme Half�line

Consider the following canonical tableau with respect to the basic vector 	x�� x�� x��

x�
�

basic x� x� x� x� x� x� x� x� b

variables

x� � � � � � �� � � �

x� � � � � � �� � �� �

x� � � � � �� � � � �

x� � � � � �� �� � � �

xj �� � for all j�

Suppose x� is the entering variable� The present BFS is �x � 	�� �� �� �� �� �� �� �
T �

The pivot column 	������ ����
T has no positive entry� Make the entering variable

equal to �� retain all other nonbasic variables equal to �� this leads to the solution

x	�
 � 	���� ��� �� ����� �� �� �� �
T � �x��xh� where xh � 	�� �� �� �� �� �� �� �
T � xh�

the coe�cient vector of � in x	�
� is obtained by making the entering variable equal

to �� all other nonbasic variables equal to zero� and each basic variable equal to the

negative of the entry in the pivot column in its basic row� Since the pivot column is

nonpositive here� xh �� �� it can be veri�ed that xh satis�es the homogeneous system

obtained by replacing the right hand side constants vector by �� Hence xh is known as

a homogeneous solution corresponding to the original system� Since xh �
� � here�

x	�
 remains �� � for all � �
� �� The half�line f �x � �xh � � �

� � g is known as an
extreme half�line of the set of feasible solutions of the original system�

A half�line is said to be a feasible half�line to a system of linear constraints� if

every point on the half�line is feasible to the system�

Example ��� Nondegenerate Pivot Step

See Tableau ��� in Example ��� of Section ����� a few pages ahead� This is the canonical

tableau with respect to the basic vector 	w�� w�� z�� w�
 and z� is the entering variable�

The minimum ratio occurs uniquely in row �� which is the pivot row in this step� and w�

is the dropping variable� Performing the pivot step leads to the canonical tableau with

respect to the new basic vector 	w�� w�� z�� z�
 in Tableau ���� This is a nondegenerate

pivot step since the minimum ratio in it was 	 �� 
 � �� As a result of this pivot step

the BFS has changed from 	w�� w�� w�� w�� z�� z�� z�� z�� z�
 � 	��� ��� �� �� �� �� �� �� �


to 	�� �� �� �� �� �� �� �� �
�
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Example ��� Degenerate Pivot Step

Consider the following canonical tableau �

Basic x� x� x� x� x� x� �b Ratio

variable

x� � � � � � �� � �
�

x� � � � � �� � � �
� Min�

x� � � � �� � � �

xj �� � for all j�

Here the BFS is �x � 	�� �� �� �� �� �
T � It is degenerate� If x� is chosen as the entering

variable� it can be veri�ed that the minimum ratio of � occurs in row �� Hence row �

is the pivot row for this step� and x� is the dropping variable� Performing the pivot

step leads to the canonical tableau with respect to the new basic vector 	x�� x�� x�
�

basic x� x� x� x� x� x�

variable

x� � �� � � � �� �

x� � � � � �� � �

x� � � � � �� � �

Eventhough the basic vector has changed� the BFS has remained unchanged through

this pivot step� A pivot step like this is called a degenerate pivot step�

A pivot step is degenerate� if the minimum ratio � in it is �� nondegenerate

if the minimum ratio is positive and �nite� In every pivot step the basic vector changes

by one variable� In a degenerate pivot step there is no change in the correponding

BFS 	the entering variable replaces a zero valued basic variable in the solution
� In a

nondegenerate pivot step the BFS changes�

Example ��� Ties for Minimum Ratio lead to Degenerate Solution

Consider the following canonical tableau�

basic x� x� x� x� x� x� �b Ratio

variable

x� � � � � �� � � �
�

x� � � � � � � � �
�

x� � � � � � �� �� ��
�
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The present BFS is �x � 	�� �� ��� �� �� �
T � Suppose x� is chosen as the entering variable�

There is a tie for the minimum ratio� Both x�� x� are eligible to be dropping variables�

Irrespective of which of them is chosen as the dropping variable� it can be veri�ed

that the other remains a basic variable with a value of � in the next BFS� So the BFS

obtained after this pivot step is degenerate�

In the same way it can be veri�ed that the BFS obtained after a pivot step is

always degenerate� if there is a tie for the minimum ratio in that step� Thus� if we

know that the right hand side constants vector q is nondegenerate in 	���
� in every

pivot step performed on 	���
� the minimum ratio test identi�es the dropping variable

uniquely and unambiguously�

����� Initialization

The arti�cial variable z� has been introduced into 	���
 for the sole purpose of obtaining

a feasible basis to start the algorithm�

Identify row t such that qt � minimum f qi � � �
� i �� n g� Break ties for t in

this equation arbitrarily� Since we assumed q ��� �� qt � �� When a pivot is made in

	���
 with the column vector of z� as the pivot column and the t
th row as the pivot

row� the right�hand side constants vector becomes a nonnegative vector� The result is

the canonical tableau with respect to the basic vector 	w�� � � � � wt��� z�� wt
�� � � � � wn
�

This is the initial basic vector for starting the algorithm�

����� Almost Complementary Feasible Basic Vectors

The initial basic vector satis�es the following properties �

	i
 There is at most one basic variable from each complementary pair of variables

	wj � zj
�

	ii
 It constains exactly one basic variable from each of 	n � �
 complementary

pairs of variables� and both the variables in the remaining complementary

pair are nonbasic�

	iii
 z� is a basic variable in it�

A feasible basic vector for 	���
 in which there is exactly one basic variable from

each complementary pair 	wj � zj
 is known as a complementary feasible basic

vector� A feasible basic vector for 	���
 satisfying properties 	i
� 	ii
� and 	iii
 above

is known as an almost complementary feasible basic vector� Given an almost

complementary feasible basic vector for 	���
� the complementary pair both of whose

variables are nonbasic� is known as the left�out complementary pair of variables

in it� All the basic vectors obtained in the algorithm with the possible exception of the
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�nal basic vector are almost complementary feasible basic vectors� If at some stage

of the algorithm� a complementary feasible basic vector is obtained� it is a �nal basic

vector and the algorithm terminates�

Adjacent Almost Complementary Feasible Basic Vectors

Let 	y�� � � � � yj��� z�� yj
�� � � � � yn
 be an almost complementary feasible basic vector

for 	���
� where yi � fwi� zig for each i �� j� Both the variables in the complementary

pair 	wj � zj
 are not in this basic vector� Adjacent almost complementary feasible basic

vectors can only be obtained by picking as the entering variable either wj or zj � Thus

from each almost complementary feasible basic vector there are exactly two possible

ways of generating adjcent almost complementary feasible basic vectors�

In the initial almost complementary feasible basic vector� both wt and zt are

nonbasic variables� In the canonical tableau with respect to the initial basis� the

updated column vector of wt can be veri�ed to be �en� which is negative� Hence� if
wt is picked as the entering variable into the initial basic vector� an extreme half�line

is generated� Hence� the initial almost complementary BFS is at the end of an almost

complementary ray�

So there is a unique way of obtaining an adjacent almost complementary feasible

basic vector from the initial basic vector� and that is to pick zt as the entering variable�

����� Complementary Pivot Rule

In the subsequent stages of the algorithm there is a unique way to continue the algo�

rithm� which is to pick as the entering variable� the complement of the variable that

just dropped from the basic vector� This is known as the complementary pivot

rule�

The main property of the path generated by the algorithm is the following� Each

BFS obtained in the algorithm has two almost complementary edges containing it� We

arrive at this solution along one of these edges� And we leave it by the other edge� So

the algorithm continues in a unique manner� It is also clear that a basic vector that

was obtained in some stage of the algorithm can never reappear�

The path taken by the complementary pivot algorithm is illustrated in Figure ����

The initial BFS is that corresponding to the basic vector 	w�� � � � � wt��� z�� wt
�� � � � �

wn
 for 	���
� In Figure ���� each BFS obtained during the algorithm is indicated by

a point� with the basic vector corresponding to it entered by its side� and consecutive

BFSs are joined by an edge� If wt is choosen as the entering variable into the initial

basic vector we get an extreme half�line 	discussed above
 and the initial BFS is at end

of this extreme half�line� When zt is choosen as the entering variable into the initial

basic vector� suppose wi is the dropping variable� Then its complement zi will be the

entering variable into the next basic vector 	this is the complementary pivot rule
�
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Figure ��� Path taken by the complementary pivot method� The 
 in�
dicates entering variable� � indicates dropping variable� The basic vector

corresponding to each point 	BFS
 is entered by its side� Finally if z� drops

from the basic vector� we get a complementary feasible basic vector�

The path continues in this unique manner� It can never return to a basic vector

visited earlier� since each BFS obtained in the algorithm has exactly two edges of the

path incident at it� through one of which we arrive at that BFS and through the other

we leave 	if the path returns to a basic vector visited earlier� the BFS corresponding

to it has three edges in the path incident at it� a contradiction
� So the path must

terminate after a �nite number of steps either by going o� along another extreme half�

line at the end 	ray termination� this happens when in some step� the pivot column�

the updated column of the entering variable� has no positive entries in it
� or by reaching

a complementary feasible basic vector of the LCP 	which happens when z� becomes

the dropping variable
� If ray termination occurs the extreme half�line obtained at the

end� cannot be the same as the initial extreme half�line at the beginning of the path

	this follows from the properties of the path discussed above� namely� that it never

returns to a basic vector visited earlier
�
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����� Termination

There are exactly two possible ways in which the algorithm can terminate�

�� At some stage of the algorithm� z� may drop out of the basic vector� or become

equal to zero in the BFS of 	���
� If 	 �w� �z� �z� � �
 is the BFS of 	���
 at that

stage� then 	 �w� �z
 is a solution of the LCP 	���
 to 	���
�

�� At some stage of the algorithm� z� may be strictly positive in the BFS of 	���
�

and the pivot column in that stage may turn out to be nonpositive� and in this

case the algorithm terminates with another almost complementary extreme

half�line� referred to in some publications as the secondary ray 	distinct

from the initial almost complementary extreme half�line or initial ray at the

beginning of the algorithm
� This is called ray termination�

When ray termination occurs� the algorithm is unable to solve the LCP� It is

possible that the LCP 	���
 to 	���
 may not have a solution� but if it does have a

solution� the algorithm is unable to �nd it� If ray termination occurs the algorithm

is also unable to determine whether a solution to the LCP exists in the general case�

However� when M satis�es some conditions� it can be proved that ray termination in

the algorithm will only occur� when the LCP has no solution� See Section ����

Problems Posed by Degeneracy of ������

De	nition
 Nondegeneracy� or Degeneracy of q in the LCP 	q�M
 As de�ned

earlier� the LCP 	q�M
 is the problem of �nding w� z satisfying

w z

I �M q

w� z �� �� wT z � �

This LCP is said to be nondegenerate 	in this case q is said to be nondegenrate in

the LCP 	q�M

 if in every solution 	w� z
 of the system of linear equations �w�Mz �

q�� at least n variables are non�zero� This condition holds i� q cannot be expressed as

a linear combination of 	n� �
 or less column vectors of 	I ��� �M
�

The LCP 	q�M
 is said to be degenerate 	in this case q is said to be degenerate

in the LCP 	q�M

 if q can be expressed as a linear combination of a set consisting of

	n� �
 or less column vectors of 	I ��� �M
�

De	nition
 Nondegeneracy� Degeneracy of q in the Complementary Pivot

Algorithm The system of contraints on which pivot operations are performed in the

complementary pivot algorithm is 	���
� This system is said to be degenerate 	and q

is said to be degenerate in it
 if q can be expressed as a linear combination of a set

of 	n � �
 or less column vectors of 	I
��� �M ��� �e
� nondegenerate otherwise� If
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	���
 is nondegenerate� in every BFS of 	���
 obtained during the complementary pivot

algorithm� all basic variables are strictly positive� and the minimum ratio test identi�es

the dropping basic variable in each pivot step uniquely and unambiguously�

The argument that each almost complementary feasible basis has at most two

adjacent almost complementary feasible bases is used in developing the algorithm� This

guarantees that the path taken by the algorithm continues unambiguously in a unique

manner till termination occurs in one of the two possibilities� This property that each

almost complementary feasible basis has at most two adjacent almost complementary

feasible bases holds when 	���
 is nondegenerate� If 	���
 is degenerate� the dropping

variable during some pivots may not be uniquely determined� In such a pivot step� by

picking di�erent dropping variables� di�erent adjacent almost complementary feasible

bases may be generated� If this happens� the almost complementary feasible basis

in this step may have more than two adjacent almost complementary feasible bases�

The algorithm can still be continued unambiguously according to the complementary

pivot rule� but the path taken by the algorithm may depend on the dropping variables

selected during the pivots in which these variables are not uniquely identi�ed by the

minimum ratio test� All the arguments mentioned in earlier sections are still valid� but

in this case termination may not occur in a �nite number of steps if the algorithm keeps

cycling along a �nite sequence of degenerate pivot steps� This can be avoided by using

the concept of lexico feasibility of the solution� In this case the algorithm deals with

almost complementary lexico feasible bases throughout� In each pivot step the

lexico minimum ratio test determines the dropping variable unambiguously and� hence�

each almost complementary lexico feasible basis can have at most two adjacent almost

complementary lexico feasible bases� With this� the path taken by the algorithm is

again unique and unambiguous� no cycling can occur and termination occurs after a

�nite number of pivot steps� See Section ������

Interpretation of the Path Taken by the Complementary

Pivot Algorithm

B� C� Eaves has given a simple haunted house interpretation of the path taken by the

complementary pivot algorithm� A man who is afraid of ghosts has entered a haunted

house from the outside through a door in one of its rooms� The house has the following

properties �

	i
 It has a �nite number of rooms�

	ii
 Each door is on a boundary wall between two rooms or on a boundary wall

of a room on the outside�

	iii
 Each room may have a ghost in it or may not� However� every room which

has a ghost has exactly two doors�

All the doors in the house are open initially� The man�s walk proceeds according to

the following property�

	iv
 When the man walks through a door� it is instantly sealed permanently and

he can never walk back through it�
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The man �nds a ghost in the room he has entered initially� by properties 	iii
 and

	iv
 this room has exactly one open door when the man is inside it� In great fear he

runs out of the room through that door� If the next room that he has entered has a

ghost again� it also satis�es the property that it has exactly one open door when the

man is inside it� and he runs out through that as fast as he can� In his walk� every

room with a ghost satis�es the same property� He enters that room through one of

its doors and leaves through the other� A sanctuary is de�ned to be either a room

that has no ghost� or the outside of the house� The man keeps running until he �nds

a sanctuary� Property 	i
 guarantees that the man �nds a sanctuary after running

through at most a �nite number of rooms� The sanctuary that he �nds may be either

a room without a ghost or the outside of the house�

We leave it to the reader to construct parallels between the ghost story and the

complementary pivot algorithm and to �nd the walk of the man through the haunted

house in Figure ���� The man walks into the house initially from the outside through

the door marked with an arrow�

Figure ��� Haunted house

Geometric Interpretation of a Pivot Step in the

Complementary Pivot Method

In a pivot step of the complementary pivot method� the current point moves between

two facets of a complementary cone in the direction of �e� This geometric interpreta�
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tion of a pivot step in the complementary pivot method as a walk between two facets

of a complementary cone is given in Section ����

Example ���

Consider the following LCP� 	This is not an LCP corresponding to an LP�


w� w� w� w� z� z� z� z� q

� � � � �� � � � �

� � � � � �� � � �

� � � � �� �� �� � ��
� � � � �� �� � �� ��
wi �

� �� zi �
� �� wizi � � for all i

When we introduce the arti�cial variable z� the tableau becomes �

w� w� w� w� z� z� z� z� z� q

� � � � �� � � � �� �

� � � � � �� � � �� �

� � � � �� �� �� � �� ��
� � � � �� �� � �� �� ��

The most negative qi is q�� Therefore pivot in the column vector of z� with the third

row as the pivot row� The pivot element is inside a box�

Tableau ���

Basic w� w� w� w� z� z� z� z� z� q Ratios

variables

w� � � �� � � � � � � �� ��
�

w� � � �� � � � � � � �� ��
�

z� � � �� � � � � � � � �
�

w� � � �� � � � � �� � � �
� Min�

By the complementary pivot rule we have to pick z� as the entering variable� The

column vector of z� is the pivot column� w� drops from the basic vector�
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Tableau ���

Basic w� w� w� w� z� z� z� z� z� q Ratios

variables

w� � � �
� � �

� � � � � � � �
� Min�

w� � � �
� � �

� � � � � � � �
�

z� � � � �� � � � � � � �
�

z� � � ��
�

�
�

� � � �� � �

Since w� has dropped from the basic vector� its complement� z� is the entering variable

for the next step� w� drops from the basic vector�

Basic w� w� w� w� z� z� z� z� z� q Ratios

variables

z�
�
� � �

� � �
� � �

� � � � �
�

w� �� � � � � �� � � � � �
� Min�

z� ��
� � ��

� � �
� � � � � � � �

�

z�
�
� � ��

�
�
� � �

� � � � ��
�

Since w� has dropped from the basic vector� its complement� z� is the new entering

variable� Now w� drops from the basic vector�

Basic w� w� w� w� z� z� z� z� z� q Ratios

variables

z�
�
� � �

� ��
� � �

� � � � �
� �

z� ��
�

�
� � � � �� � � � �

z� � ��
� ��

� ��
� � � � � � � � Min�

z�
�
� � ��

�
�
� � �

� � � � ��
� �

Since w� has dropped from the basic vector� its complement� z� is the entering variable�

Now z� drops from the basic vector�
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Basic w� w� w� w� z� z� z� z� z� q

variables

z�
�
�

�
�

�
� ��

� � � � � ��
� �

z� ��
� � ��

� ��
� � � � � � �

z� � ��
� ��

� ��
� � � � � � �

z�
�
�

�
�

��
�

�
�

� � � � ��
� �

Since the present basis is a complementary feasible basis� the algorithm terminates�

The correponding solution of the LCP is w � �� 	z�� z�� z�� z�
 � 	�� �� �� �
�

Example ���

w� w� w� z� z� z� q

� � � � � � ��
� � � �� � � ��
� � � � � � ��
wi �� �� zi �� �� wizi � � for all i

The tableau with the arti�cial variable z� is �

w� w� w� z� z� z� z� q

� � � � � � �� ��
� � � �� � � �� ��
� � � � � � �� ��

The initial canonical tableau is �

Basic w� w� w� z� z� z� z� q Ratios

variables

z� �� � � �� � �� � �

w� �� � � �� � � � �

w� �� � � � � �� � � �
�
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The next tableau is �

Basic w� w� w� z� z� z� z� q

variables

z� �� � � � � �� � �

w� �� � � � � � � �

z� �� � � � � �� � �

The entering variable here is z�� The pivot column is nonpositive� Hence� the algorithm

stops here with ray termination� The algorithm has been unable to solve this LCP�

����� IMPLEMENTATION OF THE

COMPLEMENTARY PIVOT METHOD

USING THE INVERSE OF THE BASIS

Let 	���
 be the original tableau for the LCP being solved by the complementary pivot

method� Let t be determined as in Section ������ After performing the pivot with

row t as the pivot row and the column vector of z� as the pivot column� we get the

initial tableau for this algorithm� Let P� be the pivot matrix of order n obtained by

replacing the tth column in I 	the unit matrix of order n
 by �en 	the column vector
in Rn all of whose entires are ��
� Let M � � P�M � q� � P�q� Then the initial tableau

in this algorithm is

Tableau ��� � Initial Tableau

w z z�

P� �M � I�t q�

The initial basic vector is 	w�� � � � � wt��� z�� wt
�� � � � � wn
 and the basis corresponding

to it in Tableau ��� is I� By choice of t� q� � �� So each row of 	q�
��� I
 is lexico�

positive� and hence the initial basic vector in this algorithm is lexico�feasible for the

problem in Tableau ����

At some stage of the algorithm� let B be the basis from Tableau ���� corresponding

to the present basic vector� Let 	 � 		ij
 � B�� and �q � B��q�� Then the inverse

tableau at this stage is

Basic vector Inverse

	 � B�� �q
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If the entering variable in this step� determined by the complementary pivot

rule� is ys � fws� zs g� then the pivot column� the updated column of ys� is 	P�I�s
if ys � ws� or 	P�	�M�s
 if ys � zs� Suppose this pivot column is 	�a�s� � � � � �ans


T � If

	�a�s� � � � � �ans

T 
 �� we have ray termination and the method has been unable to solve

this LCP� If 	�a�s� � � � � �ans

T �
 �� the minimum ratio in this step is � � minimum

�
�qi
�ais

�

i such that �ais � �
�
� If the i that attains this minimum is unique� it determines the

pivot row uniquely� The present basic variable in the pivot row is the dropping vari�

able� If the minimum ratio does not identify the dropping variable uniquely� check

whether z� is eligible to drop� and if so choose it as the dropping variable� If z� is not

eligible to drop� one of those eligible to drop can be choosen as the dropping variable

arbitrarily� but this can lead to cycling under degeneracy� To avoid cycling� we can

use the lexico�minimum ratio rule� which chooses the dropping basic variable so that

the pivot row is the row corresponding to the lexico�minimum among
� 	�qi��i�������in


�ais
�

i such that �ais � �
�
� This lexico minimum ratio rule determines the dropping vari�

able uniquely and unambiguously� If the lexico�minimum ratio rule is used in all steps

beginning with the initial step� the dropping variable is identi�ed uniquely in every

step� each of the updated vectors 	�qi� 	i�� � � � � 	in
� i � � to n� remain lexico�positive

throught� and cycling cannot occur by the properties of the almost complementary

path generated by this method� discussed above 	see Section �����
� Once the drop�

ping variable is identi�ed� performing the pivot leads to the next basis inverse� and the

entering variable in the next step is the complement of the dropping variable� and the

method is continued in the same way�

Clearly it is not necessary to maintain the basis inverse explicitly� The comple�

mentary pivot algorithm can also be implemented with the basis inverse maintained

in product form 	PFI
 or in elimination form 	EFI
 just as the simplex algorithm for

linear programming 	see Chapters �� � of ������
�

Example ����

Consider the LCP 	q�M
 where

M �

������� � � �
� � �
� � �

������� q �

������� ��
���
���

�������
To solve this LCP by the complementary pivot algorithm� we introduce the arti�cial

variable z� and construct the original tableau as in 	���
� When z� replaces w� in the

basic vector 	w�� w�� w�
� we get a feasible basic vector for the original tableau� So the

initial tableau for this problem is �
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Initial

Basic w� w� w� z� z� z� z� q

Vector

w� � � �� � � � � �

w� � � �� � � � � �

z� � � �� � � � � ��

The various basis inverses obtained when this LCP is solved by the complementary

pivot algorithm are given below�

Basic Inverse �q Pivot Ratios

Vector Column

z�

w� � � � � � �

w� � � � � � � Min�

z� � � � �� � ��

z�

w� � �� � � � �

z� � � � � � � Min�

z� � �� � �� � ��

w�

w� � �� � � � � Min�

z� � � � � ��
z� � �� � �� � ��

z�

w� � �� � � � � Min�

z� � �� � � � �

z� �� � � � � �
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Basic Inverse �q Pivot Ratios

Vector Column

z�

z� � �� � � ��
z� � � � � � � Min�

z� �� � � � � �

w�

z� � �� � � ��
z� � � � � � � Min�

z� �� � � � � �

w�

z� � � � � ��
w� � � � � ��
z� �� � � � � � Min�

z� �� � � �

w� �� � � �

w� �� � � �

So the solution of this LCP is 	w�� w�� w�� z�� z�� z�
 � 	�� �� �� �� �� �
�

����	 Cycling Under Degeneracy in the

Complementary Pivot Method

Whenever there is a tie for the pivot row in any step of the complementary pivot

method� suppose we adopt the rule that the pivot row will be chosen to be the topmost

among those eligible for it in that step� Under this rule it is possible that cycling occurs

under degeneracy� Here we provide an example of cycling under this rule� constructed

by M� M� Kostreva ������� Let

M �

������� � � �
� � �
� � �

������� q �

���������
��
��

�������
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and solve the LCP 	q�M
 by the complementary pivot method using the above pivot

row choice rule in each pivot step� It can be veri�ed that we get the following al�

most complementary feasible basic vectors� initial basic vector 	z�� w�� w�
 followed by

	z�� z�� w�
� 	z�� z�� w�
� 	z�� z�� w�
� 	z�� z�� w�
� 	z�� z�� w�
� 	z�� z�� w�
� 	z�� z�� w�
� in

this order� After the initial basic vector 	z�� w�� w�
 is obtained� all pivots made are

degenerate pivot steps� and at the end the method has returned to the basic vector

	z�� z�� w�
 and so the method has cycled on this problem� The matrix M is a P �

matrix� it will be proved later on the LCP 	q�M
 has a unique solution� and that the

complementary pivot method always terminates in a �nite number of pivot steps with

that solution� if it is carried out in such a way that cycling does not occur under degen�

eracy� Actually� for the LCP 	q�M
 considered here� it can be veri�ed that 	z�� z�� z�


is the complementary feasible basic vector�

As discussed above� after obtaining the initial basic vector� if the complementary

pivot method is carried out using the lexico�minimum ratio rule for choosing the pivot

row in each pivot step� cycling cannot occur� and the method must terminate either by

obtaining a complementary feasible vector� or in ray termination� after a �nite number

of pivot steps� because of the following arguments� If q is nondegenerate in 	���
�

the dropping basic variable is identi�ed uniquely by the usual minimum ratio test� in

every step of the complementary pivot algorithm applied on it� Using the properties

of the path traced by this algorithm we verify that in this case� the algorithm must

terminate after a �nite number of pivot steps either with a complementary feasible

basic vector or in ray termination� Suppose q is degenerate in 	���
� Perturb 	���
 by

replacing q by q	�
 � q�	�� ��� � � � � �n
T � as in 	���
� When � is positive but su�ciently

small� the perturbed problem is nondegenerate� So when the perturbed problem is

solved by the complementary pivot algorithm treating � � � to be su�ciently small�

it must terminate in a �nite number of pivot steps� If a complementary feasible basic

vector is obtained at the end for the perturbed problem� that basic vector is also a

complementary basic vector for the original LCP 	unperturbed original problem� with

� � �
� If ray termination occurs at the end on the perturbed problem� the �nal almost

complementary feasible basic vector is also feasible to the original LCP and satis�es

the condition for ray termination in it� The sequence of basic vectors obtained when

the complementary pivot algorithm is applied on the original problem 	���
 using the

lexico�minimum ratio rule for chosing the dropping variable in every pivot step� is

exactly the same as the sequence of basic vectors obtained when the complementary

pivot algorithm is applied on the perturbed problem got by replacing q in 	���
 by

q	�
 with � � � and su�ciently small� These facts show that the complementary pivot

algorithm must terminate in a �nite number of pivot steps 	i� e�� can not cycle
 when

operated with the lexico minimum ratio test for chosing the dropping variable in every

pivot step�
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��� CONDITIONS UNDER WHICH THE

COMPLEMENTARY PIVOT ALGORITHM

WORKS

We de�ne several classes of matrices that are useful in the study of the LCP� Let

M � 	mij
 be a square matrix of order n� It is said to be a

Copositive matrix if yTMy �� � for all y �� ��

Strict copositive matrix if yTMy � � for all y � ��

Copositive plus matrix if it is a copositive matrix and whenever y �� ��

and satis�es yTMy � �� we have yT 	M �MT 
 � ��

P �matrix if all its principal subdeterminantes are positive�

Q�matrix if the LCP 	q�M
 has a solution for every q � Rn�

Negative de	nite matrix if yTMy � � for all y �� ��

Negative semide	nite matrix if yTMy �� � for all y � Rn�

Z�matrix if mij �� � for all i �� j

Principally nondegenerate matrix if all its principal subdeterminants

are non�zero�

Principally degenerate matrix if at least one of its principal subdeter�

minants is zero�

L��matrix if for every y � �� y � Rn� there is an i such that yi � � and

Mi�y �� �� If M is an L��matrix� an i like it is called a de	ning index for

M and y� These matrices are also called semimonotone matrices�

L��matrix if for every y � �� y � Rn� such that My �
� � and yTMy �

�� there are diagonal matrices�  �
� �� ! �

� � such that !y �� � and 	 M �

MT!
y � �� An equivalent de�nition is that for each z � �� satisfying w �

Mz �� � and wT z � �� there exists a "z � � satisfying "w � �	"zTM
T � w �
�

"w �
� �� z �� "z �� ��

L�matrix if it is both an L��matrix and an L��matrix�

L��matrix if for every y � �� y � Rn� there is an i such that yi � � and

Mi�y � �� If M is an L��matrix� an i like it is called a de	ning index for

M and y�

P��matrix if all its principal subdeterminants are �� ��

Row adequate matrix if it is a P��matrix and whenever the principal

subdeterminant corresponding to some subset J � f �� � � � � n g is zero� then
the set of row vectors of M corresponding to J� fMi� � i � J g is linearly
dependent�

Column adequate matrix if it is a P��matrix and whenever the principal

subdeterminant corresponding to some subset J � f �� � � � � n g is zero� then
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the set of column vectors of M corresponding to J� fM�j � j � J g is linearly
dependent�

Adequate matrix if it is both row and column adequate�

In this book the only type of degeneracy� nondegeneracy of square matrices that

we discuss is principal degeneracy or principal nondegeneracy de�ned above� So� for

notational convenience we omit the term �principally� and refer to these matrices

as being degenerate or nondegenerate matrices� Examples of degenerate matrices

are

��� � �
� ���

���� ��� � �
� �

���� Examples of nondegenerate matrices are ����� �
� ��

������� � �
� ��

���� The notation C��matrix is used to denote copositive matrices� and the

notation C
�matrix is used to denote copositive plus matrices�

Theorem ���� implies that every PSD matrix is also a copositive plus matrix�

Also� the square matrixM is negative de�nite or negative semi�de�nite� i� �M is PD

or PSD respectively�

����� Results on LCPs Associated with

Copositive Plus Matrices

Theorem ��� If M is a copositive plus matrix and the system of constraints �����

and ����� of Section ����� has a feasible solution	 then the LCP ����� 
 ����� has a so�

lution and the complementary pivot algorithm will terminate with the complementary

feasible basis� Conversely	 when M is a copositive plus matrix	 if the complementary

pivot algorithm applied on ����� 
 ����� terminates in ray termination	 the system of

constraints �����	 ����� must be infeasible�

Proof� Assume that either 	���
 is nondegenerate� or that the lexico�minimum ratio

rule is used throughout the algorithm to determine the dropping basic variable in

each step of the algorithm� This implies that each almost complementary feasible 	or

lexico feasible
 basis obtained during the algorithm has exactly two adjacent almost

complementary feasible 	or lexico feasible
 bases� excepting the initial and terminal

bases� which have exactly one such adjacent basis only� The complementary pivot

algorithm operates on the system 	���
�

The initial basic vector is 	w�� � � � � wt��� z�� wt
�� � � � � wn
 	as in Section �����
�

The corresponding BFS is z � �� wt � �� z� � �qt� and wi � qi� qt for all i �� t� If wt

is taken as the entering variable into this basic vector� it generates the half�line 	called

the initial extreme half�line


wi � qi � qt � � for all i �� t

wt � �

z � �

z� � �qt � �
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where � �
� �� 	This can be seen by obtaining the canonical tableau corresponding to

the initial basic vector�
 This initial extreme half�line contains the initial BFS of 	���


as its end point� Among the basic vectors obtained during the algorithm� the only one

that can be adjacent to the initial basic vector is the one obtained by introducing zt
into it� Once the algorithm moves to this adjacent basic vector� the initial basic vector

will never again appear during the algorithm� Hence� if the algorithm terminates with

ray termination� the extreme half�line obtained at termination cannot be the initial

extreme half�line�

At every point on the initial extreme half�line all the variables w� z� are strictly

positive� It is clear that the only edge of 	���
 that contains a point in which all the

variables w� z� are strictly positive is the initial extreme half�line�

Suppose the algorithm terminates in ray termination without producing a solution

of the LCP� Let Bk be the terminal basis� When the complementary pivot algorithm is

continued from this basis Bk� the updated column vector of the entering variable must

be nonpositive resulting in the generation of an extreme half�line� Let the terminal

extreme half�line be�
	w� z� z�
 � 	wk � �wh� zk � �zh� zk� � �zh� 
 � � �� �

�
	���


where 	wk� zk� zk� 
 is the BFS of 	���
 with respect to the terminal basis Bk� and

	wh� zh� zh� 
 is a homogeneous solution corresponding to 	���
 that is�

wh �Mzh � enz
h
� � �

wh �
� �� zh �� �� zh� �

� �
	���


	wh� zh� zh� 
 �� �� If zh � �� 	���
 and the fact that 	wh� zh� zh� 
 �� � together imply

that wh �� � and hence zh� � �� and consequently wh � �� Hence� if zh � �� points on

this terminal extreme half�line have all the variables w� z� strictly positive� which by

earlier arguments would imply that the terminal extreme half�line is the initial extreme

half�line� a contradiction� So zh �� ��

Since every solution obtained under the algorithm satis�es the complementarity

constraint� wT z � �� we must have 	wk � �wh
T 	zk � �zh
 � � for all � �
� �� This

implies that 	wk
T zk � 	wk
T zh � 	wh
T zk � 	wh
T zh � �� From 	���
 	wh
T �

	Mzh � enz
h
� 


T � Hence from 	wh
T zh � �� we can conclude that 	zh
TMT zh �

	zh
TMzh � �eTn zhzh� �
� �� Since zh �� �� and M is copositive plus by the hypothesis�

	zh
TMzh cannot be � �� and hence� by the above� we conclude that 	zh
TMzh � ��

This implies that 	zh
T 	M � MT 
 � �� by the copositive plus property of M � So

	zh
TM � �	zh
TMT � Also since �eTn zhzh� � 	zh
TMzh � �� zh� must be zero 	since

zh � �
� Since 	wk� zk� zk� 
 is the BFS of 	���
 with respect to the feasible basis Bk�

wk �Mzk � q � enz
k
� � Now
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� � 	wk
T zh � 	Mzk � q � enz
k
� 


T zh

� 	zk
TMT zh � qT zh � zk�e
T
n z

h

� 	zh
TMzk � 	zh
T q � zk� e
T
n z

h

� �	zh
TMT zk � 	zh
T q � zk�e
T
n z

h

� �	zk
TMzh � 	zh
T q � zk� e
T
n z

h

� �	zk
Twh � 	zh
T q � zk�e
T
n z

h

� 	zh
T q � zk�e
T
n z

h

So 	zh
T q � �zk� eTn zh� Since zh � � and zk� � � �otherwise 	wk� zk
 would be a solution

of the LCP�� zk� e
T
n z

h � �� Hence� 	zh
T q � �� Hence� if 
 � 	zh
T we have� 
q � ��


 �
� �� 
	�M
 � �	zh
TM � 	zh
TMT � 	wh
T �

� �� that is�


q � �


	I
��� �M
 �� �

By Farakas lemma 	Theorem � of Appendix �
� this implies that the system �

	I
��� �M


������� w
� � �
z

������� � q �

������� w
� � �
z

������� �
� �

has no feasible solution� Hence� if the complementary pivot algorithm terminates in

ray termination� the system 	���
 and 	���
 has no feasible solutions in this case and

thus there cannot be any solution to the LCP�

This also implies that whenever 	���
 and 	���
 have a feasible solution� the LCP

	���
 to 	���
 has a solution in this case and the complementary pivot algorithm �nds

it�

The following results can be derived as corollaries�

Result ��� In the LCPs corresponding to LPs and convex quadratic programs	

the matrix M is PSD and hence copositive plus� Hence	 if the complementary pivot

algorithm applied to the LCP corresponding to an LP or a convex quadratic program

terminates in ray termination	 that LP or convex quadratic program must either be

infeasible	 or if it is feasible	 the objective function must be unbounded below on the

set of feasible solutions of that problem�

Hence the complementary pivot algorithm works when used to solve LPs or convex

quadratic programs�

Result ��� If M is strict copositive the complementary pivot algorithm applied on

����� to ����� terminates with a solution of the LCP�
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Proof� If the complementary pivot algorithm terminates in ray termination� as seen

in the proof of the above theorem there exists a zh � � such that 	zh
TMzh � ��

contradicting the hypothesis that M is strict copositive�

Thus all strict copositive matrices are Q�matrices� Also� if M � 	mij
 �� � and

mii � � for all i� M is strict copositive and hence a Q�matrix�

Exercise

��� Suppose M �
� � and m�� � �� Prove that if q � 	��� �� � � � � �
T � the LCP 	���
 to

	���
 cannot have a solution� Thus prove that a square nonegative matrix is a Q�matrix

i� all its diagonal entries are strictly positive�

Later on we prove that if M is a P �matrix� the complementary pivot algorithm

terminates with a complementary feasible solution when applied on the LCP 	q�M
�

When the complementary pivot algorithm is applied on a LCP in which the matrix

M is not a copositive plus matrix or a P �matrix� it is still possible that the algorithm

terminates with a complementary feasible basis for the problem� However� in this

general case it is also possible that the algorithm stops with ray termination even if a

solution to the LCP exists�

To Process an LCP 	q�M


An algorithm for solving LCPs is said to process a particular LCP 	q�M
 for given q

and M � if the algorithm is guaranteed to either determine that the LCP 	q�M
 has no

solution� or �nd a solution for it� after a �nite amount of computational e�ort�

Suppose M is a copositive plus matrix� and consider the LCP 	q�M
� for given

q� When the complementary pivot algorithm is applied on this LCP 	q�M
� either it

�nds a solution� or ends up in ray termination which implies that this LCP has no

solution by the above theorem� Hence� the complementary pivot algorithm processes

the LCP 	q�M
 whenever M is a copositive plus matrix�

����� Results on LCPs Associated with

L
 and L�
Matrices

Here we show that the complementary pivot algorithm will process the LCP 	q�M


whenever M is an L� or L��matrix� The results in this section are from B� C� Eaves

����� ����� they extend the results proved in Section ����� considerably� Later on� in

Section ����� we derive some results on the general nonconvex programming problem

using those proved in this section�
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Lemma ��� If M is an L��matrix	 the LCP 	q�M
 has a unique solution for all

q � �	 and conversely�

Proof� When q � �� one solution of the LCP 	q�M
 is 	w � q� z � �
� So if 	 �w� �z
 is

an alternate solution� we must have �z � �� But �w �M �z � q� Let M be an L��matrix

and let i be the de�ning index for M and �z� We have

�wi � 	M �z
i � qi � �

So �wi�zi � �� contradiction to complementarity�

Now suppose M is not an L��matrix� So� there must exist a �y � 	�yi
 � � such

that for all i such that �yi � �� Mi� �y � �� Let J � f i � �yi � � g� Select a positive
number � such that � �

� jMi��yj � i �� J
�
� De�ne the vector q � 	qj
 � Rn by

qj �

��Mj��y� for all j � J
�� for all j �� J�

Then q � � and the LCP 	q�M
 has two distinct solutions namely 	w� z
 � 	q� �
 and	
�w � 	 �wj
� �z � �y



� where

�wj �

�
�� for all j � J
��Mj��y� for all j �� J�

This establishes the converse�

Lemma ��� If M is an L��matrix	 the LCP 	q�M
 has a unique solution for every

q �� �	 and conversely�

Proof� Similar to Lemma ����

Lemma ��� If M is an L��matrix and the complementary pivot method applied

on the LCP 	q�M
 terminates with the secondary ray f 	 �wk� zk� zk� 
 � �	wh� zh� zh� 
 �

� �� � g as in �
���	 where 	wk� zk� zk� 
 is the terminal BFS of �
��� and 	wh� zh� zh� 
 is a

homogeneous solution corresponding to �
��� satisfying �
���� and zk� � � and zh� � ��

then the LCP 	q�M
 is infeasible	 that is	 the system �w�Mz � q	 w �
� �	 z �� �� has

no feasible solution�

Proof� As in the proof of Theorem ��� we assume that either 	���
 is nondegenerate

or that the lexico minimum ratio rule is used throughout the algorithm to determine

the dropping basic variable in each step of the algorithm� Using the hypothesis that

zh� � � in 	���
� we have
wh �Mzh � �

	zh
Twh � �

Since 	wh� zh� zh� 
 �� �� this implies that zh � �� Therefore � � 	zh
Twh � 	zh
TMzh

� �� and zh � �� So� using the hypothesis that M is an L��matrix� we have diagonal
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matrices ! �
� ��  �

� � such that !zh �� � and 	 M �MT!
zh � �� Since  Mzh �
�

� 	since Mzh � wh �
� � and  �

� � is a diagonal matrix
 this implies that MT!zh �

	zh
T!M �
� �� Now � � 	zk
Twh � 	zk
T wh 	since  is a diagonal matrix with

nonnegative entries and wh �
� �� zk �

� �
 � 	zk
T Mzh � 	zk
T 	�MT!zh
� So

	zh
T!Mzk � �� Now

	zh
T!	wk �Mzk � ezk� 
 � 	zh
T!q

Since ! is a nonnegative diagonal matrix and 	zh
Twk � � and 	zh
T �
� �� wk �

�
�� we have 	zh
T!wk � �� Also 	zh
T!Mzk � 	zk
TMT!zh � �	zk
T Mzh �

�	zk
T wh � � 	since zk �� �� wh �
� ��  is a diagonal matrix which is �� �� 	zk
Twh �

� implies 	zk
T wh � �
� Using these in the above equation� we get

�	zh
T!ezk� � 	zh
T!q

since 	zh
T � �� ! �
� �� !zh �� �� we have !zh � 	zh
T! � �� this implies that

	zh
T!e � �� Also� by hypothesis zk� � �� So from the above equation 	zh
T!q � ��

So if 
 � 	zh
T!� we have


 � �

�
M � �	zh
T!M � �MT!zh �  Mzh �  wh �
� �


q � �

which implies that q �� Pos	I��M
 by Farakas� theorem 	Theorem � of Appendix �
�

So the system
w �Mz � q

w� z �� �

is itself infeasible�

Theorem ��� The complementary pivot algorithm processes the LCP 	q�M
 if M

is an L�matrix�

Proof� When we apply the complementary pivot algorithm on the LCP 	q�M
� sup�

pose the secondary ray f 	wk � �wh� zk � �zh� zk� � �zh� 
 � � �� � g is generated� So we
have

	wk � �wh
�M	zk � �zh
 � q � e	zk� � �zh� 
 �

If zh� � �� and in the above equation if �� is a large positive value such that q � e	zk� �

�zh� 
 � �� then 	wk���wh� zk���zh
 is a complementary solution for the LCP
	
q�e	zk��

��zh
�M


which by Lemma ��� implies that zk � ��zh � �� which means that zk �

zh � �� a contradiction to the fact that this is the secondary ray� So zh� cannot be

� �� that is zh� � �� and in this case 	q�M
 has no solution by Lemma ���� So the

complementary pivot algorithm processes the LCP 	q�M
�
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Theorem ��� If M is an L��matrix	 when the complementary pivot algorithm is

applied on the LCP 	q�M
	 it terminates with a complementary feasible solution�

Proof� In this case we show that there can be no secondary ray� Suppose f 	wk��wh�

zk��zh� zk���z
h
� 
 � � �� � g is a secondary ray� As in the proof of Theorem ���� zh � �

	otherwise this ray will be the same as the initial ray� a contradiction
� Let i be the

de�ning index of M � zh� So we have zhi � � which implies wh
i � � by complementarity

and

� � 	Mzh
i � �	ezh� 
i �� �

a contradiction� So a secondary ray cannot exist in this case� and the complementary

pivot method must terminate with a complementary feasible solution�

Theorem ��� and ��� make it possible for us to conclude that the complementary

pivot algorithm processes that LCP 	q�M
 for a much larger class of matricesM than

the copositive plus class proved in Theorem ���� We will now prove several results

establishing that a variety of matrices are in fact L� or L��matrices� By virtue of

Theorem ��� and ���� this establishes that the complementary pivot method processes

the LCP 	q�M
 whenever M is a matrix of one of these types�

All copositive plus matrices are L�matrices� This follows because when M is

copositive plus� y �
� � implies yTMy �

� �� and if y is such that y �
� �� yTMy � �

then 	M �MT 
y � �� hence M satis�es the de�nition of being an L�matrix by taking

the diagonal matrices  and ! to be both I� A strictly copositive matrix is clearly an

L��matrix� From the de�nitions� it can be veri�ed that PMPT 	obtained by principal

rearrangement ofM
�  M! 	obtained by positive row and column scaling ofM
 are L�

matrices if M is� whenever P is a permutation matrix and  � ! are diagonal matrices

with positive diagonal elements� Copositive plus matrices M satisfy the property

that PMPT is also copositive plus whenever P is a permutation matrix� but if M is

copositive plus�  M! may not be copositive when  � ! are diagonal matrices with

positive diagonal entries� Also if M � N are L�matrices� so is

���M �
� N

���� Again� from
Theorem ���� of Section ���� it follows that all P �matrices are L� matrices�

Lemma ��� M is row adequate i� for any y	 	yTM�i
yi �� � for i � � to n implies

that yTM � ��

Proof� Suppose M is row adequate� and there exists a y �� � such that 	yTM�i
yi �� �

for i � � to n� By a standard reduction technique used in linear programming 	see

Section ����� in ������
 we can get a solution x of

xTM � yTM

x �� �

such that fMi� � xi � � g � fMi� � yi � � g and fMi� � xi � � g is linearly independent�
So we also have 	xTM�i
xi �� � for all i � � to n� Let J � f i � xi � � g� Since M
is a P��matrix� so is its principal submatrix MJJ � 	mij � i � J� j � J
� By linear
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independence of the set of row vectors fMi� � i � J g� since M is row adequate� we

know that the determinant of MTT �� � for all T � J� and therefore that MJJ is a

P �matrix� The facts J � f i � xi � � g� xi � � if i �� J� and 	xTM�i
xi �� � for all

i � � to n� together imply that MJJxJ �� � where xJ � 	xj � j � J
� which implies by

Theorem ���� of Section ��� that xJ � � since MJJ is a P �matrix� a contradiction� So

J must be empty and x � �� and hence yTM � �� Now if y � Rn� y not necessarily
�
� �� satis�es 	yTM�i
yi �� � for all i � � to n� let �i � � if yi �� �� or �� if yi � ��

and let # be the diagonal matrix with diagonal entries ��� � � � � �n� Then y
T# �

� � and	
yT#	#M
�i



��i yi �

	
	yT#
	#M#
�i



	�iyi
 �� � for all i� But #M# is row adequate

since M is� and by the above we therefore have yT#	#M#
 � � or yTM � ��

Conversely� if M is a square matrix such that for any y� 	yTM�i
yi �� � for all

i � � to n implies that yTM � �� it follows that M is a P��matrix by the result in

Exercise ��� and that M is row adequate�

Lemma ��� Let M be a P��matrix� If

My � �

y � �

has a solution y	 then the system

xTM � �

x � �

has a solution�

Proof� Let y satisfy My � �� y � �� By the result in Exercise ��� we know that

since M is a P��matrix� there is a x satisfying x
TM �

� �� x � �� If xTM �� �� then

	xTM
y � � but xT 	My
 � �� a contradiction� So this x must satisfy xTM � ��

Theorem ��� If M is row adequate	 then M is an L�matrix�

Proof� By the result in Exercise ��� M is a P��matrix i� for all y �� �� there exists an

i such that yi �� � and yi	Mi�y
 �� �� This implies that all P��matrices are L��matrices�

Suppose y satis�es y � �� My �
� �� yTMy � �� Let J � f i � yi � � g� These

facts imply MJJyJ � � where MJJ is the principal submatrix 	mij � i � J� j � J
� and

yJ � 	yj � j � J
 � �� By Lemma ���� there exists an xJ � 	xj � j � J
 satisfying

xJ � �� xTJMJJ � �� From Lemma ���� these facts imply that xTJMJ� � �� where MJ�
is the matrix with rowsMi� for i � J� Select the diagonal matrix ! so that xJ � 	!y
J
	possible because yJ � �
 and � � 	!y
�J where �J � f �� � � � � n g n J� Then yT!M � �

and 	 M � MT!
y � � with  � �� So M is an L��matrix too� Thus M is an

L�matrix�
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Lemma ��� If R	 S are L�matrices and P � �	 N � � are matrices of appropriate

orders	 then

A �

��� R P
N S

��� and B �

��� S N
P R

���
are also L�matrices�

Proof� Consider the product A� where

� �

���x
y

��� � �

Case � 
 Let x � �� y � �� Select a de�ning index for R and x� suppose it is i� Then

xi	Rx� Py
i � �� since P � � and y � � �

This veri�es that in this case the same i will serve as a de�ning index for A to satisfy

the condition for being an L��matrix with this vector �� Also verify that in this case�

A satis�es the condition for being an L��matrix� with this vector �� trivially�

Case � 
 Let x � �� y � �� The select i as in case � and it will serve as a de�ning index

for A to satisfy the conditions for being an L��matrix� with this vector �� Also verify

that in this case A satis�es the condition for being an L��matrix� with this vector ��

trivially� since A� �� � would imply in this case x � �� a contradiction�

Case � 
 Let x � �� y � �� Select a de�ning index for S and y� suppose it is i� Verify

that the same i will serve as a de�ning index for A to satisfy the condition for being

an L��matrix� If y is such that A� �� � and �TA� � �� then Sy �� �� yTSy � �� Since

S is an L��matrix� there must exist diagonal matrices  �� !� �� � such that !�y �� �

and 	 �S � ST!�
y � �� Now� it can be veri�ed easily that there is an appropriate

choice of diagonal matrices  �� !� such that 	since x � � in this case
��� �P �NT!�

 �S � ST!�

��� y �

�

���� �

 �

������ R P
N S

����

���RT NT

PT ST

������!�

!�

�������x
y

���
� �

So A satis�es the condition for being an L��matrix� with this vector ��

These facts establish that A is an L�matrix� The proof that B is an L�matrix is

similar�

Lemma ��� If R	 S are L��matrices and P �
� �	 Q arbitrary	 are matrices of

appropriate orders	 then

A �

���R P
Q S

��� and B �

��� S Q
P R

���
are also L��matrices�
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Proof� Let

� �

���x
y

���
Consider the product A�� If x � �� select i to be a de�ning index for R and x� Since

P �
� �� the same i serves as a de�ning index for A and � in the condition for A to be

an L��matrix with this �� If x � �� then select i to be a de�ning index for S and y� the

same i serves as a de�ning index for A and � in the condition for A to be an L��matrix�

with this �� So A is an L��matrix� The proof that B is an L��matrix is similar�

Lemma ��� If P � � is of order n�m and N � � is of order m�n	 then
��� � P
N �

���
is an L�matrix�

Proof� Since � is an L�matrix� this results follows from Lemma ����

In Exercise ���� we ask the reader to prove that one formulation of the bimatrix

game problem as an LCP can be solved directly by the complementary pivot algorithm�

to yield a solution� using this lemma�

Lemma ��� Let T 	n � n
	 R 	n �m
	 
 	n � �
	 S 	m � n
	 � 	� � n
 be given

matrices with 
 � �	 � � �� where n �
� �	 m �

� �� If for each x � 	x�� � � � � xm

T 	 � real

satisfying 	x�� � � � � xm� �
 � �	 Rx� 
� �� �� there exist diagonal matrices  �
� �	 $ �� �

of orders n� n and 	m� �
� 	m� �
 respectively such that

$

���x
�

��� �� � and
	
 	R� 

 � 	ST � �T 
$


���x
�

��� � �

then the following matrix M is an L��matrix

M �

�������T R 

S � �
� � �

�������
Proof� Follows from the de�nition of L��matrices�

Notice that in Lemma ���� m could be zero� this will correspond to R� S being

vacuous�

Theorem ��� Let T 	n � n
	 R 	n � m
	 
 	n � �
	 S 	m � n
	 � 	� � n
 be

given matrices satisfying 
 � �	 � � �� Let N � n � m � �� Let J� � f �� � � � � n g	
J� � fn � �� � � � � n �m g	 J� � fn �m � � g� For vectors w� z� q � RN 	 let wJt etc�

be de�ned to be the vectors wJt � 	wj � j � Jt
	 etc� Assume that q � RN is a given

column vector satisfying qJ� � 	qn
m
�
 � �� Let

M �

�������T R 

S � �
� � �

�������
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If M is an L��matrix	 when the complementary pivot method is applied on the LCP

	q�M
 with the original column vector of the arti�cial variable z� taken to be 	��� � � � �
��� �
T � RN 	 either we get a complementary feasible solution of the problem	 or the

system

�
���S
�

���x ��

��� qJ�
qJ�

���
x �� �

must be infeasible�

Proof� Suppose the complementary pivot algorithm is applied on the LCP 	q�M
 with

the original column vector of the arti�cial variable z� taken to be 	��� � � � ���� �
T �
RN � and it terminates with the secondary ray

�
	wk��wh� zk��zh� zk� ��z

h
� 
 � � ��

�
�
� Then �������wh

J�

wh
J�

wh
J�

��������
�������T R 

S � �
� � �

�������
������� zhJ�
zhJ�
zhJ�

��������
������� en
em
�

������� zh� � �

So wh
J�
� �zhJ� and since z

h
J�

�
� �� wh

J�
�
� � and � � �� we have zhJ� � �� wh

J�
� ��

If zh� � �� then wh
J�
� SzhJ��emz

h
� � emz

h
� � �� which by complementarity implies

that zhJ� � zkJ� � �� So wh
J�
� RzhJ� � 
zhJ� � enz

h
� � 
zhJ� � enz

h
� � � 	since 
 � �
� By

complementarity zkJ� � �� and so wk
J�
� �zkJ� � qJ� � qJ� � �� So by complementarity�

zkJ� � zhJ� � �� Thus zh � zk � �� contradiction to the fact that this is a secondary

ray� Therefore zh� must be zero� SinceM is an L��matrix� by Lemma ���� the existence

of this secondary ray with zh� � � implies that

w �Mz � q

w� z �� �

has no feasible solution� which� by Faraka�s theorem 	Theorem � of Appendix �
 implies

that there exists a row vector � � RN such that

�M �
� �

�q � �

� � �

�M �
� � includes the constraints �J� �� � and since �J� �� �� 
 � �� this implies that

�J� � �� So the above system of constraints becomes

	�J� � �J�


���S
�

��� �
� �

	�J� � �J�


��� qJ�
qJ�

��� � �

	�J� � �J�
 �� �
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By Faraka�s theorem 	Theorem � of Appendix �
 this implies that the system

�
���S
�

���x ��

��� qJ�
qJ�

���
x �� �

is infeasible�

In Section ������ Lemma ��� and Theorem ��� are applied to show that KKT

points for general quadratic programs can be computed� when they exist� using the

complementary pivot algorithm�

����� A Variant of the Complementary Pivot Algorithm

In the version of complementary pivot algorithm discussed so far� we have choosen the

original column vector associated with the arti�cial variable z� to be �en� Given a
column vector d � Rn satisfying d � �� clearly we can choose the original column vector

associated with z� to be �d instead of �en in the complementary pivot algorithm� If
this is done� the original tableau turns out to be �

w z z�

I �M �d q

w �
� �� z �� �� z� �� �

	���


If q �� �� 	w � q� z � �
 is a solution of the LCP 	q�M
 and we are done� So assume

q ��� �� Determine t to satisfy
	
qt
dt



� minimum

� 	
qi
di



� i � � to n

�
� Ties for t can be

broken arbitrarily� It can be veri�ed that if a pivot step is performed in 	���
� with the

column vector of z� as the pivot column� and the t
th row as the pivot row� the right hand

side constants vector becomes nonnegative after this pivot step� So 	w�� � � � � wt��� z��

wt
�� � � � � wn
 is a feasible basic vector for 	���
� It is an almost complementary feasible

basic vector as de�ned earlier� Choose zt as the entering variable into this initial almost

complementary feasible basic vector 	w�� � � � � wt��� z�� wt
�� � � � � wn
� and continue by

choosing entering variables using the complementary pivot rule as before�

We will now illustrate this variant of the complementary pivot algorithm using a

numerical example by M� M� Kostreva �������

Example ����

Consider the LCP 	q�M
� where

M �

������� �
�� �

��� q �

�����
��

���
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Let d � 	�� ��
T � We will apply the complementary pivot algorithm on this LCP� using

�d as the original column of the arti�cial variable z��

Basic w� w� z� z� z� q

variables

� � ��� �� �� �� t � �

� � � �� ��� ��

z� ��
� � � �

��
�
� � �

w� ���
� � � �

��
��
� � ��

The entering variable is z�� The updated column vector of z� in the canonical tableau

with respect to the basic vector 	z�� w�
 is nonpositive� So the algorithm ends up in

ray termination�

Example ����

Consider the LCP 	q�M
 discussed in Example ����� Let d � e� � 	�� �
T � We will

apply the complementary pivot algorithm on this LCP with �e� as the original column
of the arti�cial variable z��

Basic w� w� z� z� z�

variables

� � ��� �� �� �� t � �

� � � �� �� ��

z� �� � � �
� � � �

w� �� � �
� �� � ��

z� ��
�

�
� � �

� � ��
�

z� ��
�

�
� � ��

� � ��
�

z� �� �
� � � �

�
��
�

z� �� � � � � ��

Now we have terminated with a complementary feasible basic vector� and the corre�

sponding solution of the LCP is w � �� z � 	z�� z�
 � 	��� ��� 
�

These examples taken from M� M� Kostreva ������ illustrate the fact that� given

a general LCP 	q�M
� the complementary pivot algorithm applied on it with a given
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positive vector d may end up in ray termination� and yet when it is run with a di�erent

positive d vector it may terminate with a solution of the LCP� The question of how

to �nd a good d vector seems to be a hard problem� for which no answer is known�

There are LCPs which are known to have solutions� and yet when the complementary

pivot algorithm is applied on them with any positive d vector� it always ends up in ray

termination� See Exercise �����

If M is a copositive plus matrix� and if the complementary pivot algorithm with

any positive d vector ends up in ray termination when applied on the LCP 	q�M
� then

it can be proved that the LCP 	q�M
 has no solution 	in fact it can be proved that

�w �Mz � q� does not even have a nonnegative solution
� using arguments exactly

similar to those in the proof of Theorem ���� Thus any LCP 	q�M
 where M is a

copositive plus matrix� will be processed by the complementary pivot algorithm with

any positive d vector�

Exercise

��� Prove that whenM is an L�matrix or an L��matrix� the variant of the complemen�

tary pivot algorithm discussed in this section� with any vector d � � of appropriate

dimension� will process the LCP 	q�M
� 	Proofs are similar to those in Section ������


����� Lexicographic Lemke Algorithm

This variant of the complementary pivot algorithm is known as the Lexicographic

Lemke Algorithm if the original column vector of the arti�cial variable z� is taken to

be �d � �	�n� �n��� � � � � �
T where � is a su�ciently small positive number� It is not

necessary to give � a speci�c numerical value� but the algorithm can be executed leaving

� as a small positive parameter and remembering that �r�� � �r for any nonnegative

r� and that � is smaller than any positive constant not involving �� In this case� if D

is any square matrix of order n� Dd � D	�n� �n��� � � � � �
T � �nD�� � �n��D�� � � � ��

�D�n� Using this� it is possible to execute this algorithm without giving the small

positive parameter � any speci�c value� but using the equivalent lexicographic rules�

hence the name�

����� Another Su�cient Condition for the

Complementary Pivot Method to Process the LCP 	q�M


We will now discuss some results due to J� M� Evers ������ on another set of su�cient

conditions under which the complementary pivot algorithm can be guaranteed to pro�

cess the LCP 	q�M
� First� we discuss some lemmas� These lemmas are used later

on in Theorem ��� to derive some conditions under which the complementary pivot

algorithm can be guaranteed to solve the LCP 	q�M
 when M is a matrix of the form

E �N where E is a symmetric PSD matrix� and N is copositive�
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Lemma ���� Let M � E � N where E is a symmetric PSD matrix and N is

copositive� If the system
	E �N
z �� �

cz � �

zT 	E �N
z � �

z �� �

	���


has a solution z	 then the system

Ex�NT y �� cT

y �� �
	���


has no solution 	x� y
�

Proof� Let �z be a feasible solution for 	���
� Since E is PSD and N is copositive�

�zT 	E �N
�z � � implies that �zTE�z � �zTN �z � �� Since E is symmetric� by Theorem

����� �zTE�z � � implies that E�z � �� So by 	���
� N �z �� �� Let 	�x� �y
 be feasible to

	���
� So � �� �yTN �z � ��xTE�z � �yTN �z 	since E�z � �
 � �zT 	�E�x�NT �y
 �� �c�z � ��

a contradiction�

Lemma ���� If the variant of the complementary pivot algorithm starting with an

arbitrary positive vector d for the column of the arti�cial variable z� in the original

tableau ends up in ray termination when applied on the LCP 	q�M
 in which M is

copositive	 there exists a �z satisfying

M �z �� �

qT �z � �

�zTM �z � �

�z �� �

	����


Proof� Let the terminal extreme half�line obtained in the algorithm be
�
	w� z� z�
 �

	wk � �wh� zk � �zh� zk� � �zh� 
 � � �
� �

�
where 	wk� zk� zk� 
 is the BFS of 	���
 and

	wh� zh� zh� 
 is a homogeneous solution corresponding to 	���
� that is

wh �Mzh � dzh� � �

wh� zh� zh� �� �

	wh� zh� zh� 
 �� �

	����


and every point on the terminal extreme half�line satis�es the complementarity con�

straint� that is

	wk � �wh
T 	zk � �zh
 � � for all � �� � � 	����


Clearly zh �� � 	otherwise the terminal extreme half�line is the intial one� a contradic�

tion
� so zh � �� By complementarity� we have 	wh
T zh � �� from 	����
 this implies
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that 	zh
TMzh � �dT zhzh� �
� �� 	since d � �� zh � � implies that dT zh � �
 which

implies by the copositivity of M � that 	zh
TMzh � � and zh� � �� Using this in 	����


we conclude that

Mzh � wh �
� � � 	����


Since 	wk� zk� zk� 
 is a BFS of 	���
 we have w
k �Mzk�dzk��q� Using this and 	����
 in

	����
 we get� for all � �� �� 	zk��zh
T dzk��	z
k��zh
T q � �	zk��zh
TM	zk��zh
 ��

� 	since M is copositive and zk � �zh �
� �
� Make � � �� divide this inequality by �

and take the limit as � tends to �	� This leads to

	zh
T dzk� � 	z
h
T q �� � � 	����


But zk� � � 	otherwise 	wk� zk
 will be a solution to the LCP 	q�M
� contradicting

the hypothesis that the algorithm terminated with ray termination without leading to

a solution of the LCP
� d � �� zh � �� Using these facts in 	����
 we conclude that

qT zh � �� All these facts imply that zh � �z satis�es 	����
�

Theorem ��� Let M � E � N where E is a symmetric PSD matrix and N is

copositive� If the system �
��� with cT � �q has a solution 	x� y
 there exists no

secondary ray	 and the complementary pivot algorithm terminates with a solution of

the LCP 	q�M
�

Proof� Follows from Lemma ���� and �����

Corollary ��� Putting E � � in Theorem 
��	 we conclude that if N is copositive	

for every u �� �	 v �� � in Rn	 there exists w� z � Rn satisfying

Nz � w � �NTu� v

z� w �
� �� zTw � � �

����� Unboundedness of the Objective Function

Consider a mathematical program in which an objective function f	x
 is required to

be minimized subject to constraints on the decision variables x � 	x�� � � � � xn

T � This

problem is said to be unbounded below if the set of feasible solutions of the problem

is nonempty and f	x
 is not bounded below on it� that is� i� there exists an in�nite

sequence of feasible solutions fx�� � � � � xr� � � �g such that f	xr
 diverges to �	 as r

goes to �	�
It is well known that if a linear program is unbounded below� there exists a

feasible half�line 	in fact an extreme half�line of the set of feasible solutions� see ������


along which the objective function diverges to �	� This half�line is of the form
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fx� � �x� � � �
� � g satisfying the property that x� � �x� is a feasible solution for all

� �
� �� and the objective value at x� � �x� diverges to �	 as � goes to �	� This

property may not hold in general convex programming problems� that is� problems in

which a convex function is required to be minimized over a closed convex set� Consider

the following example due to R� Smith and K� G� Murty�

Minimize � x�

Subject to x� � x�� �� � �

x�� x� �� �

	����


The set of feasible solutions of this problem is drawn in Figure ����

1x

(α ,α )2

x2

0
0

Figure ��� The feasible region for 	����
 is the area between the x� axis

and the parabola� For every � � �� the straight line x� � �x� � � intersects

the parabola at exactly two points�

The equation x��x�� � � represents a parabola in the x�� x��Cartesian plane� For

every � � �� the straight line x� � �x� � � intersects this parabola at the two points

	�� �
 and 	�� ��
� These facts clearly imply that even though �x� is unbounded below
in 	����
� there exists no half�line in the feasible region along which �x� diverges to
�	�
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However� for convex quadratic programs 	i�e�� problems of the form 	����
 in which

the matrix D is PSD
 we have the following theorem�

Theorem ��� Consider the quadratic program ������ in which D is PSD and sym�

metric� Suppose ������ is feasible and that Q	x
 is unbounded below in it� Then

there exists a feasible half�line for ������ along which Q	x
 diverges to �	� Such a

half�line can be constructed from the data in the terminal tableau obtained when the

complementary pivot algorithm is applied to solve the corresponding LCP �������

Proof� For any positive integer r� let er denote the column vector in R
r� all of whose

entries are �� By Theorem ���� when the complementary pivot algorithm is applied to

solve 	����
 it must end in ray termination� When this happens� by the results estab�

lished in the proof of Theorem ���� we get vectors 	uk� vk� xk� yk
 and 	uh� vh� xh� yh


satisfying ���uk

vk

����
���D �AT

A �

������xk

yk

����
��� en
em

��� zk� �

��� cT

�b
��� 	����


uk� vk� xk� yk �� �� 	uk
Txk � 	vk
T yk � �� zk� � � �

���uh

vh

����
���D �AT

A �

������xh

yh

��� � � 	����


uh� vh� xh� yh �� �� 	uh
Txh � 	vh
T yh � �� 	xh� yh
 � � �

	uk
Txh � 	vk
T yh � 	uh
Txk � 	vh
T yk � � � 	����


	
	xh
T � 	yh
T


��� cT

�b
��� � � � 	����


So we have vh � Axh and � � 	yh
T vh � 	yh
TAxh� We also have uh �Dxh � AT yh

� �� and hence � � 	xh
Tuh � 	xh
TDxh � 	xh
TAT yh � 	xh
TDxh� Since D is PSD

and symmetric by Theorem ����� this implies that Dxh � �� So AT yh � �uh �
� ��

that is 	yh
TA �
� �� From 	����
� �b � vk � Axk � emz

k
� � z

k
� � �� So 	�bT yh
 �

	vk
T yh�	xk
TAT yh�zk� eTmyh � �	xk
TAT yh�zk� eTmyh � �	xk
T 	�uh
�zk� eTmyh �
�zk� 	eTmyh
 �� � since zk� � � and yh �� �� So bT yh � zk� 	e

T
my

h
 �� ��

If bT yh � �� 	����
 must be infeasible� To see this� suppose "x is a feasible solution

of 	����
� Then A"x �
� b� "x �

� �� So 	yh
TA"x �
� 	yh
T b� But it has been established

earlier that 	yh
TA � �	uh
T �
� �� Using this in the above� we have� 	yh
T b �

�
	yh
TA"x � �	uh
T "x �� � 	since both uh and "x are �� �
� and this contradicts the fact

that 	yh
T b � ��

So� under the hypothesis that 	����
 is feasible� we must have bT yh � �� In

this case� from 	����
 we have cxh � �� From earlier facts we also have Axh �

vh �
� �� xh �

� � and Dxh � �� Let %x be any feasible solution to 	����
� These facts

together imply that %x� �xh is also feasible to 	����
 for any � �� � and Q	%x� �xh
 �

Q	%x
 � �	cxh
 	this equation follows from the fact that Dxh � �
 diverges to �	 as
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� tends to �	� Thus in this case� f %x � �xh � � �
� � g is a feasible half�line along

which Q	x
 diverges to �	�

Since D is assumed to be PSD� we have xTDx �
� � for all x � Rn� So� in this

case� if Q	x
 is unbounded below in 	����
� the linear function cx must be unbounded

below on the set of feasible solutions of 	����
� and this is exactly what happens on

the half�line constructed above�

If ray termination occurs in the complementary pivot algorithm applied on 	����


when D is PSD� we get the vectors satisfying 	����
� 	����
� 	����
 and 	����
 from the

terminal tableau� If bT yh � �� we have shown above that 	����
 must be infeasible�

On the other hand� if bT yh � �� Q	x
 is unbounded below in 	����
 if 	����
 is feasible�

At this stage� whether 	����
 is feasible or not can be determined by using Phase I of

the Simplex Method or some other algorithm to �nd a feasible solution of the system

Ax �� b� x �� ��

With a slight modi�cation in the formulation of a convex quadratic program as

an LCP� we can make sure that at termination of the complementary pivot algorithm

applied to this LCP� if ray termination has occurred� then either a proof of infeasibility

or a feasible extreme half�line along which the objective function is unbounded� are

readily available� without having to do any additional work� See Section ����� for this

version�

����� Some Results on Complementary BFSs

Theorem ��� If the LCP 	q�M
 has a complementary feasible solution	 then it has

a complementary feasible solution which is a BFS of

w �Mz � q

w �
� �� z �� � �

	����


Proof� Let 	 �w� �z
 be a complementary feasible solution for the LCP 	q�M
� So for

each j � � to n� we have �wj �zj � �� If 	 �w� �z
 is a BFS of 	����
� we are done� Otherwise�

using the algorithm discussed in Section ����� of ������� starting with 	 �w� �z
� we can

obtain a BFS 	 "w� "z
 of 	����
 satisfying the property that the set of variables which

have positive values in 	 "w� "z
� is a subset of the set of variables which have positive

values in 	 �w� �z
� So "wj"zj � �� for j � � to n� Hence 	 "w� "z
 is a complementary feasible

solution of the LCP 	q�M
 and it is also a BFS of 	����
�

Note ��� The above theorem does not guarantee that whenever the LCP 	q�M


has a complementary feasible solution� there exists a complementary feasible basis for

	����
� See Exercise �����
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Theorem ��� Suppose M is nondegenerate� If 	 �w� �z
 is a complementary feasible

solution for the LCP 	q�M
	 the set of column vectors f I�j � j such that �wj � � g �
f�M�j � j such that �zj � � g is linearly independent� Also	 in this case	 de�ne a vector

of variables y � 	y�� � � � � yn
 by

yj �

�
�
wj � if �wj � �
zj � if �zj � �
either wj or zj choosen arbitrarily � if both �wj and �zj are � �

Then y is a complementary feasible basic vector for �
�
���

Proof� From Corollary ��� of Chapter �� when M is nondegenerate� every comple�

mentary vector is basic� Since 	 �w� �z
 is a complementary feasible solution� this implies

that the set f I�j � j such that �wj � � g � f�M�j � j such that �zj � � g is linearly
independent� Also from this result� y is a complementary basic vector� and the BFS

of 	����
 with y� as the basic vector is 	 �w� �z
� and hence y is a complementary feasible

basic vector�

Theorem ���� If M is PSD or copositive plus	 and �
�
�� is feasible	 then there

exists a complementary feasible basic vector for �
�
���

Proof� When the complementary pivot algorithm is applied to solve the LCP 	q�M
�

it terminates with a complementary feasible basic vector when M is copositive plus

and 	����
 is feasible� by Theorem ����

��� A METHOD OF CARRYING OUT THE

COMPLEMENTARY PIVOT ALGORITHM

WITHOUT INTRODUCING ANY

ARTIFICIAL VARIABLES�

UNDER CERTAIN CONDITIONS

Consider the LCP 	q�M
 of order n� suppose the matrix M satis�es the condition �

there exists a column vector of M in which all the entries are

strictly positive�
	����


Then a variant of the complementary pivot algorithm which uses no arti�cial variable

at all� can be applied on the LCP 	q�M
� We discuss it here� The original tableau for
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this version of the algorithm is �

w z

I �M q

w �
� �� z �� �

	����


As before� we assume that q ��� �� Let s be such that M�s � �� So the column vector

associated with zs is strictly negative in 	����
� Hence the variable zs can be made to

play the same role as that of the arti�cial variable z� in versions of the complementary

pivot algorithm discussed earlier� and thus there is no need to introduce the arti�cial

variable� Determine t to satisfy
	

qt
mts



� minimum

� 	
qi
mis



� i � � to n

�
� Ties for t

can be broken arbitrarily� When a pivot step is carried out in 	����
 with the column

of zs as the pivot column and row t as the pivot row� the right hand side constants

vector becomes nonnegative after this pivot step 	this follows because �mis � � for

all i and by the choice of t
� Hence� 	w�� � � � � wt��� zs� wt
�� � � � � wn
 is a feasible basic

vector for 	����
� and if s � t� it is a complementary feasible basic vector and the

solution corresponding to it is a solution of the LCP 	q�M
� terminate� If s �� t� the

feasible basic vector 	w�� � � � � wt��� zs� wt
�� � � � � wn
 for 	����
 satis�es the following

properties �

i
 It contains exactly one basic variable from the complementary pair 	wi� zi


for n� � values of i 	namely i �� s� t here
�

ii
 It contains both the variables from a �xed complementary pair 	namely

	ws� zs
 here
� as basic variables�

iii
 There exists exactly one complementary pair both the variables in which are

not contained in this basic vector 	namely 	wt� zt
 here
�

The complementary pair of variables identi�ed by property 	iii
� both of which are

not contained in the basic vector� is known as the left out complementary pair of

variables in the present basic vector�

For carrying out this version of the complementary pivot algorithm� any feasible

basic vector for 	����
 satisfying 	i
� 	ii
� 	iii
 is known as an almost complemen�

tary feasible basic vector� All the basic vectors obtained during this version of the

algorithm� with the possible exception of the terminal one 	which may be a comple�

mentary basic vector
� will be such almost complementary feasible basic vectors� and

the complementary pair in property 	ii
 both of whose variables are basic� will be the

same for all of them�

In the canonical tableau of 	����
 with respect to the initial almost complementary

feasible basic vector� the updated column vector of wt can be veri�ed to be strictly

negative 	because the pivot column in the original tableau� �M�s� is strictly negative
�
Hence if wt is selected as the entering variable into the initial basic vector� an almost

complementary extreme half�line is generated� Hence the initial almost complementary

BFS of 	����
 is at the end of an almost complementary ray�

The algorithm chooses zt as the entering variable into the initial almost comple�

mentary feasible basic vector 	w�� � � � � wt��� zs� wt
�� � � � � wn
� In all subsequent steps�
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the entering variable is uniquely determined by the complementary pivot rule� that

is� the entering variable in a step is the complement of the dropping variable in the

previous step� The algorithm can terminate in two possible ways �

�� At some stage one of the variables form the complementary pair 	ws� zs
 	this

is the pair speci�ed in property 	ii
 of the almost complementary feasible

basic vectors obtained during the algorithm
 drops out of the basic vector� or

becomes equal to zero in the BFS of 	����
� The BFS of 	����
 at that stage

is a solution of the LCP 	q�M
�

�� At some stage of the algorithm both the variables in the complementary pair

	ws� zs
 may be strictly positive in the BFS� and the pivot column in that stage

may turn out to be nonpositive� and in this case the algorithm terminates with

another almost complementary ray� This is ray termination�

When ray termination occurs� the algorithm bas been unable to solve the LCP

	q�M
�

Example ����

Consider the LCP 	q�M
� where

M �

������� � � �
� � �
� � �

������� q �

���������
��
��

�������
All the column vectors of M are strictly positive here� We will illustrate the algorithm

on this problem using s � ��

Original Tableau

w� w� w� z� z� z� q

� � � �� �� �� ��
� � � �� �� �� ��
� � � �� �� �� ��

�M�� � �� The minimum f ��
� �

��
� �

��
� g � ��� and hence t � � here� So the pivot

row is row �� and the pivot element for the pivot operation to get the initial almost

complementary feasible basic vector is inside a box in the original tableau� Applying

the algorithm we get the following canonical tableaus�
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Basic w� w� w� z� z� z� q Ratios

variables

w� � �� � �� � � � �
� Min�

z� � �� � � � � � �
�

w� � �� � � � � � �
�

z� � �� � �� � � �

z� �� � � � � � � �
�Min�

w� �� � � � � � � �
�

z�
�
� ��

� � � � �
� �

z� ��
�

�
� � � � �

� �

w� ��
� ��

� � � � ��
� �

So the solution of this LCP is w � 	w�� w�� w�
 � 	�� �� �
� z � 	z�� z�� z�
 � 	�� �� �
�

Exercise

��� Show that the version of the complementary pivot algorithm discussed in this

section can be used to process all LCPs 	q�M
 in which M is copositive plus and at

least one of its columns is strictly positive� In this case� prove that ray termination

cannot occur� and that the algorithm will terminate with a complementary feasible

basic vector for the problem�

��� TO FIND AN EQUILIBRIUM PAIR OF

STRATEGIES FOR A BIMATRIX GAME

USING THE COMPLEMENTARY PIVOT

ALGORITHM

The LCP corresponding to the problem of �nding an equilibrium pair of strategies in

a bimatrix game is 	����
� where A� BT are positive matrices� The original tableau for

this problem is �
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u v � �

Im � � �A �em
� IN �BT � �eN
u �
� �� v �

� �� � �
� �� � �

� �

	����


where for any r� Ir denotes the identity matrix of order r� The complementary pairs

of variables in this problem are 	ui� �i
� i � � to m� and 	vj � �j
� j � � to N �

We leave it to the reader to verify that when the complementary pivot algorithm

discussed in Section ��� is applied on this problem� it ends up in ray termination right

after obtaining the initial almost complementary feasible basic vector� However� it

turns out that the variant of the complementary pivot algorithm discussed in Section

��� can be applied to this problem� and when it is applied it works� We discuss the

application of this version of the algorithm here�

So� here� an almost complementary feasible basic vector for 	����
� is de�

�ned to be a feasible basic vector that contains exactly one basic variable from each

complementary pair excepting two pairs� Both variables of one of these pairs are basic

variables� and both variables in the other pair are nonbasic variables� These are the

conditions for almost complementarity 	i
� 	ii
� 	iii
� discussed in Section ����

The column vectors of the variables �i� �j � in 	����
 are all nonpositive� but none

of them is strictly negative� But� because of their special structure� an almost com�

plementary feasible basic vector for 	����
 can be constructed by the following special

procedure�

Initially make the variable �� a basic variable and the variables ��� � � � � �m nonbasic

variables� Make �� equal to �
�
� � the smallest positive number such that v

� � �eN �

	BT 
���
�
� � �� At least one of the components in v�� say� v�r is zero� Make vr a nonbasic

variable too� The complement of vr is �r� Make the value of �r to be the smallest

positive value� ��r � such that u
� � A�r�

�
r � em � �� At least one of the components in

u�� say u�s is �� If s � �� the basic vector 	u�� � � � � um� v�� � � � � vr��� vr
�� � � � � vN � ��� �r


is a complementary feasible basic vector� and the feasible solution corresponding to it

is a solution of the LCP 	����
� terminate�

If s �� �� the basic vector� 	u�� � � � � us��� us
�� � � � � um� v�� � � � � vr��� vr
�� � � � � vN �

��� �r
 is a feasible basic vector� Both the variables in the complementary pair 	u�� ��


are basic variables in it� Both variables in the complementary pair 	us� �s
 are nonbasic

variables� And this basic vector contains exactly one basic variable from every comple�

mentary pair in 	����
� excepting 	u�� ��
� 	us� �s
� Hence this initial basic vector is an

almost complementary feasible basic vector� All the basic vectors obtained during the

algorithm 	excepting the terminal complementary feasible basic vector
 will be almost

complementary feasible basic vectors containing both the variables in the pair 	u�� ��


as basic variables�

When us is made as the entering variable into the initial basic vector� an almost

complementary extreme half�line is generated� Hence the BFS of 	����
 with respect
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to the initial basic vector is an almost complementary BFS at the end of an almost

complementary extreme half�line�

The algorithm begins by taking �s as the entering variable into the initial basic

vector� In all subsequent steps� the entering variable is picked by the complementary

pivot rule� The algorithm terminates when one of the variables in the pair 	u�� ��


drops from the basic vector� It can be proved that temination occurs after at most

a �nite number of pivots� The terminal basis is a complementary feasible basis� In

this algorithm if degeneracy is encountered� its should be resolved using the lexico

minimum ratio rule 	see Section �����
�

Example ����

We will solve the LCP 	����
 corresponding to the � person game in Example ���� In

tableau form it is

u� u� v� v� v� �� �� �� �� �� q

� � � � � � � �� �� �� ��
� � � � � � � �� �� �� ��
� � � � � �� �� � � � ��
� � � � � �� �� � � � ��
� � � � � �� �� � � � ��

u� v� �� � �
� � and u��� � u��� � v��� � v��� � v��� � �

Making �� � �� the smallest value of �� that will yield nonnegative values to the v�s is

�� When �� � �� �� � � the value of v� is �� Hence� v� will be made a nonbasic variable�

The complement of v� is ��� So make �� and �� nonbasic variables� The smallest value

of �� that will make the u�s nonnegative is �� � �� When �� � � with �� � �� � ��

u� becomes equal to �� So make u� a nonbasic variable� The canonical tableau with

respect to the initial basic vector is therefore obtained as below by performing pivots

in the columns of �� and ��� with the elements inside a box as pivot elements�

Basic u� u� v� v� v� �� �� �� �� �� q Ratios

variables

u� � �� � � � � � � � � �

�� � �� � � � � � � � � �

�� � � �� � � � � � � � � �
�

v� � � �� � � � � � � � � �
� Min�

v� � � �� � � � � � � � � �
�
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The algorithm continues by selecting ��� the complement of u�� as the entering variable�

v� drops from the basic vector�

Basic u� u� v� v� v� �� �� �� �� �� q

variables

u� � �� � � � � � � � � �

�� � �� � � � � � � � � �

�� � � �
� ��

� � � � � � � �
�

�� � � ��
�

�
� � � � � � � �

�

v� � � ��
� ��

� � � � � � � �
�

Since v� has dropped from the basic vector� its complement �� is the next entering

variable� There is a tie in the minimum ratio when �� is the entering variable� since it

can replace either u� or �� from the basic vector� Such ties should be resolved by the

lexico minimum ratio test� but in this case we will let u� drop from the basic vector�

since that leads to a complementary feasible basis to the problem�

Basic u� u� v� v� v� �� �� �� �� �� q

variables

��
�
� �� � � � � � � � �

�
�
�

�� �� � � � � � � � � �� �

�� � � �
� ��

� � � � � � � �
�

�� � � ��
�

�
� � � � � � � �

�

v� � � ��
� ��

� � � � � � � �
�

The present basic vector is a complementary feasible basic vector� The solution 	u�� u��

v�� v�� v�� ��� ��� ��� ��� ��
 � 	�� �� �� �� �� �
�
� �

�
� � ��

�
� � �
 is a solution of the LCP� In this

solution �� � �� �
�
� and �� � �� � �� �

�
� � Hence the probability vector x �

�

	
P

�i

�	

�
� �

�
�


T
and y � �

	
P

�j

� 	�� �� �
T constitute an equilibrium pair of strategies for this

game�

Theorem ���� If the lexicographic minimum ratio rule is used to determine the

dropping variable in each pivot step �this is to prevent cycling under degeneracy� of

the complementary pivot algorithm discussed above for solving ����
�	 it terminates in

a �nite number of pivot steps with a complementary feasible solution�

Proof� The original tableau for this problem is 	����
� in which A � �� BT � �� by

the manner in which the problem is formulated� In the algorithm discussed above
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for this problem� both variables from exactly one complementary pair are nonbasic in

every almost complementary feasible basic vector obtained� and this pair is known as

the left out complementary pair of variables� The left out complementary pair

may be di�erent in the various almost complementary feasible basic vectors obtained

during the algorithm� but the complementary pair both of whose variables are basic�

remains the same in all of them�

Let 	u�� � � � � us��� us
�� � � � � um� v�� � � � � vr��� vr
�� � � � � vN � ��� �r
 be the initial al�

most complementary feasible basic vector obtained in the algorithm� by the special

procedure discussed above� Let the initial tableau be the canonical tableau of 	����


with respect to the initial almost complementary feasible basic vector� In this� the left

out complementary pair is 	us� �s
 both of which are nonbasic at present� Let

u� � 	u�i 
� u�i � �� � 	 air
asr



� for i �� s� u�s � � �

v� � 	v�j 
� v�j � �� � 	b�j
b�r



� for j �� r� v�r � � �

�� �
	 �
b�r

� �� � � � � �



�� � 	��j 
� ��j � �� for j �� r� ��r �
�

asr
�

�uh � 	�uhi 
� �uhi �
	ais
air



� for i �� s� �uhs � � �

�vh � �� ��h � �

��h � 	��hj 
� ��hj � �� for j �� r� ��hr �
	 �
asr



�

The present BFS can be veri�ed to be 	u�� v�� ��� ��
� It can also be veri�ed that 	�uh�

�vh� ��h� ��h
 is a homogeneous solution corresponding to the initial tableau� and that the

initial almost complementary extreme half�line generated when us is brought into the

basic vector in the initial tableau is
�
	u�� v�� ��� ��
 � �	�uh� �vh� ��h� ��h
 � � �� �

�
�

The algorithm begins by bringing the nonbasic variable �s into the basic vector in

the initial tableau� and continues by using the complementary pivot rule to choose the

entering variable and the lexico�minimum ratio rule to choose the dropping variable in

each step�

Let B be the basis consisting of the columns of the basic variables in the initial

tableau 	not the original tableau
� in a step of this procedure and let 	 � 		ij
 � B���

Let �q be the updated right hand side constants vector in this step� If u� or ��� is

eligible to be a dropping variable in this step by the usual minimum ratio test� it

is choosen as the dropping variable� and the pivot step is carried out� leading to a

complementary feasible basic vector for the problem� If both u� and �� are ineligible to

be dropping variables in this step� the lexico minimum ratio rule chooses the dropping

variable so that the pivot row corresponds to the row which is the lexico minimum� 	�qi��i�

pit

� i such that pit � �
�
where p � 	p�t� � � � � pm
N�t


T is the pivot column

	updated column of the entering variable
 in this step� This lexico minimum ratio rule

determines the dropping variable uniquely and unambiguously in each pivot step�
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In each almost complementary feasible basic vector� obtained during the algo�

rithm� there is exactly one left out complementary pair of variables� and hence it can

have at most two adjacent almost complementary feasible basic vectors� that can be

obtained by bringing one variable from the left out complementary pair into it�

The left out complementary pair in the initial almost complementary feasible

basic vector is 	us� �s
� and when us is brought into the initial almost complementary

feasible basic vector� we obtain the initial almost complementary extreme half�line� So

the only manner in which the almost complementary path can be continued from the

initial almost complementary BFS is by bringing �s into the basic vector� The updated

column of �s in the initial tableau can be veri�ed to contain at least one positive entry�

Hence when �s is brought into the initial basic vector� we get an adjacent almost

complementary feasible basic vector� and the almost complementary path continues

uniquely and unambiguously from there� Each almost complementary feasible basic

vector has at most two adjacent ones� from one of them we arrive at this basic vector�

we move to the other when we leave this basic vector� These facts� and the perturbation

interpretation of the lexico minimum ratio rule imply that an almost complementary

feasible basic vector obtained in the algorithm can never reappear later on� Since

there are at most a �nite number of almost complementary feasible basic vectors� the

algorithmmust terminate in a �nite number of pivot steps� If it terminates by obtaining

a complementary feasible basic vector� the BFS corresponding to it is a solution of the

LCP 	����
 and we are done� The only other possibility in which the algorithm can

terminate is if the updated column vector of the entering variable in some step has no

positive entries in it� in which case we get a terminal almost complementary extreme

half�line 	this is the ray termination discussed earlier
� We will now show that this

second possibility 	ray termination
 cannot occur in this algorithm�

Suppose ray termination occurs in pivot step k� Let the almost complementary

BFS in this step be 	uk� vk� �k� �k
 and let the terminal extreme half�line be� f 	uk� vk�
�k� �k
 � �	uh� vh� �h� �h
 � � �

� � g� From this and from the almost compelementary

property being maintained in the algorithm� we have ����uk � �uh

vk � �vh

����
��� � A
BT �

������ �k � ��h

�k � ��h

��� �

����em
�eN

��� 	����


	uki � �uhi 
	�
k
i � ��hi 
 � � for all i �� � 	����


	vkj � �vhj 
	�
k
j � ��hj 
 � � for all j 	����


uk� vk� �k� �k� uh� vh� �h� �h �� � 	����


for all � �
� �� 	uh� vh� �h� �h
 is a homogeneous solution satisfying the nonnegativity

restrictions and ���uh

vh

����
��� � A
BT �

������ �h

�h

��� � � �

That is �
uh � A�h

vh � BT �h �
	����
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We also have 	uh� vh� �h� �h
 �� �� which implies by 	����
 and 	����
 that 	�h� �h
 � ��

Now suppose �h �� �� So �h � �� Since B � �� this implies by 	����
 that vh � BT �h �

�� From 	����
 this implies that �kj � ��hj � � for all j and for all � �
� �� From 	����


this implies that 	uk � �uh
 � �em � �� a contradiction�

Suppose we have �h � � but �h �� �� So �h � � and since A � �� uh � A�h � ��So

from 	����
� we must have �ki � � for all i �� �� Since �h � �� by 	����
 vh � �� So

from 	����


vk � �eN �BT �k 	����


and since �ki � � for all i �� �� vk is obtained by the same procedure as v�� the value of

v in the initial BFS 	since �k� must be the smallest value that makes v
k nonnegative in

	����
 in order to get an extreme point solution
� So vk is the same as v� in the initial

BFS in 	����
� By our discussion earlier� this implies that vkj � � for all j �� r� and

vkr � �� By 	����
 this implies that �kj � ��hj � � for all � �
� � and j �� r� These facts

clearly imply that 	uk� vk� �k� �k
 is the same as the initial BFS obtained for 	����
�

This is a contradiction� since a BFS obtained in a step of the algorithm cannot reappear

later on� along the almost complementary path�

These facts imply that ray termination cannot occur� So the algorithm must

terminate in a �nite number of steps by obtaining a complementary feasible basic

vector� and the terminal BFS is therefore a solution of the LCP 	����
�

Comments ��� The complementary pivot algorithm for computing equilibrium stra�

tegies in bimatrix games is due to C� E� Lemke and J� T� Howson ������� C� E� Lemke

������ extended this into the complementary pivot algorithm for LCPs discussed in Sec�

tion ���� The proof of Theorem ��� is from the paper of R� W� Cottle and G� B� Dantzig

����� which also discusses various applications of the LCP and some principal pivoting

methods for solving it� C� E� Lemke was awarded the ORSA&TIMS John Von Neumann

Theory Prize in ���� for his contributions to this area� The citation of the award says

�Nash�s equilibrium proofs were nonconstrutive� and for many years it seemed that

the nonlinearity of the problem would prevent the actual numerical solution of any

but the simplest noncooperative games� The breakthrough came in ���� with an inge�

nious algorithm for the bimatrix case devised by Carlton Lemke and L� T� Howson Jr�

It provided both a constructive existence proof and a practical means of calculation�

The underlying logic� involving motions on the edges of an appropriate polyhedron�

was simple and elegant yet conceptually daring in an epoch when such motions were

typically contemplated in the context of linear programming� Lemke took the lead

in exploiting the many rami�cations and applications of this procedure� which range

from the very basic linear complementary problem of mathematical programming to

the problem of calculating �xed points of continuous� nonlinear mappings arising in

various contexts� A new chapter in the theory and practice of mathematical program�

ming was thereby opened which quickly became a very active and well�populated area

of research�����
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The geometric interpretation of the LCP using complementary cones was initiated

in K� G� Murty ������ ������

��� A VARIABLE DIMENSION ALGORITHM

We consider the LCP 	q�M
 which is to �nd w� z � Rn satisfying

w �Mz � q 	����


w� z �� � 	����


and wT z � � 	����


De	nition 
 Principal Subproblem

Let J � f�� � � � � ng� Denote wJ � 	wj � j � J
	 zJ � 	zj � j � J
	 qJ � 	qj � j �
J
	 and the principal submatrix of M corresponding to J	 MJJ � 	mij � i� j � J
�

The principal subproblem of the LCP �
������
��
� in the variables wJ	 zJ �or the

principal subproblem of the LCP �
������
��
� associated with the subset J� is the

LCP 	qJ�MJJ
 of order jJj	 the complementary pairs of variables in it are fwj � zjg for
j � J and it is� �nd wJ	 zJ satisfying

wJ �MJJzJ � qJ

wJ� zJ �� �

wT
J zJ � � �

This principal subproblem is therefore obtained from �
������
��
� by striking o� the

columns of all the variables wj 	 zj for j �� J and the equation in �
���� corresponding

to j �� J�

Let J � f�� � � � � ng n fig� � � 	w�� � � � � wi��� wi
�� � � � � wn

T � � � 	z�� � � � � zi���

zi
�� � � � � zn

T � The following results follow by direct veri�cation�

Results ��� If 	 "w � 	 "w�� � � � � "wn

T � "z � 	"z�� � � � � "zn


T 
 is a solution of the LCP 	q�M


and "zi � �� then 	"� � 	 "w�� � � � � "wi��� "wi
�� � � � � "wn

T � "� � 	"z�� � � � � "zi��� "zi
�� � � � � "zn


T 


is a solution of its principal subproblem in the variables �� ��

Results ��� Suppose that 	%� � 	 %w�� � � � � %wi��� %wi
�� � � � � %wn

T � %� � 	%z�� � � � � %zi���

%zi
�� � � � � %zn

T 
 is a solution of the principal subproblem of the LCP 	q�M
 in the

variables �� �� De�ne %zi � � and let %z � 	%z�� � � � � %zi��� %zi� %zi
�� � � � � %zn

T � If qi�Mi�%z ��

�� de�ne %wi � qi �Mi�%z� and let %w � 	 %w�� � � � � %wi��� %wi� %wi
�� � � � � %wn

T � then 	 %w� %z
 is

a solution of the original LCP 	q�M
�
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Example ����

Consider the following LCP 	q�M


w� w� w� z� z� z� q

� � � � � �� �

� � � �� �� �� ���
� � � � � �� ��

wj �� �� zj �� �� wjzj � � for all j � � to �

Let � � 	w�� w�

T � � � 	z�� z�


T � Then the principal subproblem of this LCP in the

variable �� � is

w� w� z� z� �

� � � � �

� � �� �� ���
wj �� �� zj �� �� wjzj � � for j � �� �

	 "w � 	�� �� �
T � "z � 	�� �� �
T 
 is a solution of the original LCP and "z� is equal to

zero in this solution� This implies that 	"� � 	�� �
� "� � 	�� �

 is a solution of this

principal subproblem which can easily be veri�ed� Also� 	%� � 	�� �
T � %� � 	�� ��� 

T 


is another solution of the principal subproblem� De�ning %z� � �� %z � 	�� ��� � �

T � we

verify that q� �M��%z � �� � 	������ �
	�� ��� � �
T � � � �� Hence� de�ne %w� � ��

and %w � 	�� �� �
T � It can be veri�ed that 	 %w � 	�� �� �
T � %z � 	�� ��� � �

T 
 is another

solution of the original LCP�

We now discuss a variable dimension algorithm for the LCP 	q�M
 due to L� Van

der Heyden ������� If q �� �� 	w � q� z � �
 is a readily available solution� So we assume

that q ��� �� The method proceeds by solving a sequence of principal subproblems of

	����
� 	����
� 	����
 always associated with subsets of the form J � f�� � � � � kg 	this
problem is called the k�problem
� for some k satisfying � �� k �� n� When the method is

working on the k�problem� the bottom n�k constraints in 	����
 as well as the columns
of variables wj � zj for j � k can be ignored� hence the reason for the name� All the

intermediate solutions for 	����
 obtained during the method 	with the exception of the

terminal solution which is a complementary feasible solution satisfying 	����
� 	����
�

	����

 are of two types called position � and position � solutions de�ned below�

Position � Solution 
 This is a solution 	 %w� %z
 for 	����
 satisfying the following

properties �

i
 there exists an index k such that %zk � � and %wk � ��



���� A Variable Dimension Algorithm ���

ii
 %zj � � for j � k�

iii
 if k � �� %w	k��
 � 	 %w�� � � � � %wk��
� %z
	k��
 � 	%z�� � � � � %zk��
 is a solution for

the principal subproblem of 	����
� 	����
� 	����
 determined by the subset

f�� � � � � k � �g� that is� %w	k��
 �
� �� %z	k��
 �� � and 	 %w	k��

T %z	k��
 � ��

From the de�nition� a position � solution 	 �w� �z
 always satis�es �wT �z � �� it is

complementary 	but infeasible
 and it will be a complementary basic solution associ�

ated with a complementary 	but infeasible in the same sense that the solution violates

	����

 basic vector for 	����
�

Position � Solution 
 This is a solution 	 "w� "z
 for 	����
 satisfying the following

properties �

a
 there exists an index k such that "zk � �� "wk � ��

b
 "zj � � for j � k�

c
 there is a u � k such that both "zu and "wu are zero�

d
 "w	k��
 � 	 "w�� � � � � "wk��

T �
� �� "z	k��
 � 	"z�� � � � � "zk��


T �
� � and

	 "w	k��

T "z	k��
 � ��

From the de�nition� a position � solution discussed above is an almost complemen�

tary solution 	not feasible� since some of the variables are � �
 of the type discussed

in Section ���� it satis�es "wT "z � "wk"zk� It will be an almost complementary basic

solution associated with an almost complementary basic vector for 	����
 which has

both wk� zk as basic variables� and contains exactly one basic variable from the com�

plementary pair 	wj � zj
 for each j �� k or u 	both variables wu� zu are out of this

almost complementary basic vector� so the complementary pair 	wu� zu
 is the left out

complementary pair in this basic vector
� This almost complementary basic vector

has wj as a basic variable for all j � k� All intermediate 	i� e�� except the initial and

terminal
 solutions obtained by the method when it is working on the k�problem wiil

be position � solutions of 	����
 as de�ned above�

Note ��� As mentioned above� all the solutions obtained during the algorithm will

be basic solutions of 	����
�The de�nitions given above for positions �� � solutions are

under the assumption that q is nondegenerate in the LCP 	q�M
 	i� e�� that every

solution to 	����
 has at least n nonzero variables
� In the general case when q may be

degenerate� the algorithm perturbs q by adding the vector 	�� ��� � � � � �n
T to it� where

� is treated as a su�ciently small positive number without giving any speci�c value to

it 	see Section ���� ������ �����
� and all the inequalities for the signs of the variables

should be understood in the usual lexico sense�

The Algorithm

The algorithm takes a path among basic vectors for 	����
 using pivot steps� All basic

vectors obtained will be almost complementary basic vectors as de�ned in Section ����

or complementary basic vectors�
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Initial Step
 STEP � 
 The initial basic vector is w � 	w�� � � � � wn
� The

initial solution is the Position � basic solution of 	����
 corresponding to it� de�ne k �

minimum fi � qi � �g� Begin with the k�problem� by making a type � pivot step to
increase the value of the nonbasic variable zk from �� as described below�

STEP � 
 Type � Pivot Step� to increase the Value of a Nonbasic Vari�

able from Zero� Let 	y�� � � � � yk� wk
�� � � � � wn
 be the basic vector in some stage of

working for the k�problem� If this is the initial basic vector� 	y�� � � � � yk
 will be a com�

plementary basic vector for the principal subproblem of 	����
� 	����
� 	����
 de�ned

by the subset f�� � � � � kg� Except possibly at termination of work on the k�problem� yk
will always be wk� y�� � � � � yk�� will all be wj or zj for j �� k � �� This type of pivot
step occurs when the value of a nonbasic variable� say v� selected by the rules speci�ed

in the algorithm� is to be increased from its present value of zero� The variable v will

be either wj or zj for some j �� k� Let the canonical tableau for 	����
 with respect to

the present basic vector be

Tableau ��� Canonical Tableau

y� � � � yk wk
� � � � wn � � � v � � �

a� �q�

I � � � �� � � � ��

an �qn

While working on the k�problem� in all the canonical tableaus� we will have �q�� � � � �

�qk�� �� � and �qk � � 	and yk � wk
� Let 	 � B�� be the inverse of the present basis�

The algorithm always maintains 	�qi� 	i�
 � � for i � � to k � �� Let � denote the

nonnegative value given to the nonbasic variable v� The new solution as a function of

� is
all nonbasic variables other than v are �

v � �

yi � �qi � �ai� i � � to k

wj � �qj � �aj � j � k � � to n

	����


We will increase the value of � from � until one of the variables yi for i � � to k�

changes its value from its present to zero in 	����
� and will change sign if � increases

any further� This will not happen if the updated column of the entering variable v

satis�es

ai �� �� i � �� � � � � k � � and ak �� � 	����


If condition 	����
 is satis�ed� the method is unable to proceed further and termination

occurs with the conclusion that the method is unable to process this LCP� If condition

	����
 is not satis�ed� de�ne

� � Max
� �qi
ai
� Over � �� i �� k � � such that ai � � � and

�qk
ak
� if ak � �

�
	����
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Let ### be the set of all i between � to k which tie for the maximum in 	����
� If ### is

a singleton set� let r be the element in it� Otherwise let r be the element which at�

tains the lexicomaximum in lexicomaximum
� 	 	�qi��i�


ai



� i � ###�� If r � k� v replaces

yk	� wk
 from the basic vector� After this pivot step we are lead to the basic vector

	y�� � � � � yk��� v� wk
�� � � � � wn
 which will be a complementary basic vector for 	����


	except that the variables y�� � � � � yk��� v may have to be rearranged so that the j
th

variable here is from the jth complementary pair
� and 	y�� � � � � yk��� v
 is a comple�

mentary lexico feasible basic vector for the k�problem 	except for the rearrangement

of the basic variables as mentioned above
� If 	y�� � � � � yk
�� v� wk
�� � � � � wn
 is feasible

to 	����
 	this happens if the updated right hand side constants vector is �� � after

the pivot step of replacing yk by v
� it is a complementary feasible basic vector for

	����
� the method terminates with the basic solution corresponding to it as being a

solution for 	����
� 	����
� 	����
� On the other hand� if 	y�� � � � � yk��� v� wk
�� � � � � wn


is not a feasible basic vector for 	����
� the k�problem has just been solved and the

method moves to another principal subproblem with index greater than k 	this is called

a forward move
� go to Step ��

If r � k� v replaces yr from the basic vector� leading to the new basic vector

	y�� � � � � yr��� v� yr
�� � � � � yk� wk
�� � � � � wn
� Two things can happen now� If yr �

zk� then this new basic vector is a complementary basic vector for 	����
 	except for

rearrangement of the variables as mentioned above
� but 	y�� � � � � yr��� v� yr
�� � � � � yk


is not lexico feasible for the k�problem� In this case the method moves to make a type

� pivot step 	discussed next
 leading to a principal subproblem with index less than k

	this is called a regressive move� moving to a smaller principal subproblem already

solved earlier
� The next steps of the algorithm will be concerned with �nding yet

another solution for this smaller principal subproblem� Go to Step ��

The second possibility is that yr �� zk� In this case the basic vector 	y�� � � � � yr���

v� yr
�� � � � � yk� wk
�� � � � � wn
 is another almost complementary basic vector� the basic

solution of 	����
 associated with which is another position � solution� In this case�

the method continues the work on the k�problem by making a type � pivot step next�

to increase the value of the complement of yr from zero�

STEP � 
 Type � Pivot Step to Decrease the Value of a Nonbasic Variable

wg from Zero� This pivot step will be made whenever we obtain a complementary

basic vector 	y�� � � � � yk� wk
�� � � � � wn
 after doing some work on the k�problem� with

yk � wk� Let Tableau ��� be the canonical tableau with respect to this complementary

basic vector� We will have �qi �� �� i � � to k � � and 	�qk� 	k�
 � � at this stage 		k� is

the kth row of the present basis inverse
� Let g be the maximum j such that yj � zj �

Now the algorithm decreases the value of the nonbasic variable wg from zero� Letting

v � wg� and giving this variable a value � 	we want to make � �� �
� the new solution

obtained is of the same form as in 	����
� We will decrease the value of � from � until

one of the variables yi for i � � to g� changes its value from its present to zero in 	����
�

and will change sign if � decreases any further� This will not happen if the updated

column of the entering variable v satis�es
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ai �� �� i � � to g 	����


in which case termination occurs with the conclusion that the method is unable to

process this LCP� If 	����
 is not satis�ed� de�ne

� � Minimum
��	 �qi

ai



� � �� i �� g� i such that ai � �

�
� 	����


Let ### be the set of all i between � to g which tie for the minimum in 	����
� If ### is a

singleton set let r be the element in it� Otherwise let r be the element which attains

the lexicominimum in lexico minimum
�� 	�qi��i�


ai
� i � ###�� Replace yr in the present

basic vector by v 	� wg here
 and move over to the g�problem after this pivot step� by

going to Step � to increase the value of the complement of yr from ��

STEP � 
 We move to this step when we have solved a k�problem after performing a

type � pivot step on it in Step �� Let 	y�� � � � � yk� wk
�� � � � � wn
 be the complementary

basic vector at this stage with yj � fwj � zjg for j � � to k� Let �q � 	�q�� � � � � �qn

T be the

current updated right hand side constants vector� Since 	y�� � � � � yk
 is a complementary

feasible basic vector for the k�problem� we have �qi �� � for i � � to k� If �qi �� � for

i � k�� to n also� this basic vector is complementary feasible to the original problem

	����
� 	����
� 	����
� and we would have terminated� So �qi � � for at least one i

between k � � to n� Let u be the smallest i for which �qi � �� replace k by u and go

back to Step � to increase the value of zk from zero�

Numerical Example ����

We provide here a numerical example for this algorithm from the paper ������ of L� Van

der Heyden� Consider the LCP 	q�M
 where

q �

������� ��
��
���

������� � M �

������� � � �
� � �
� � �

�������
Since q� � �� the algorithm begins with k � �� on the ��problem� Pivot elements are

inside a box�

Basic w� w� w� z� z� z�

Vector

w� � � � �� �� �� �� k � �� Increase z�� In this

w� � � � �� �� �� �� type � pivot step� w�

w� � � � �� �� �� ��� drops from basic vector�

z� �� � � � � � � k � ��

w� �� � � � � � � Increase z��

w� �� � � � � � �� w� drops�
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Basic w� w� w� z� z� z�

Vector

z�
�
� ��

� � � � � �
� k � �� Increase z�

z� ��
�

�
� � � � � �

� 	complement of w�
�

w� ��
� ��

� � � �� � ���
� z� drops�

z�
�
�

��
� � � � � �

� Need a type � pivot step�

z� ��
�

�
� � � � � �

� Decrease w��

w� �� � � � � � �� z� drops�

w� �� � � �� � � �� k � �� Increase w� 	compl�

z� �� � � � � � � of z� that just dropped


w� �� � � � � � �� w� drops�

w� � �� � � � � � k � ��

z� � �� � � � � � Increase z��

w� � �� � � � � �� z� drops�

w� � �� � � � � � Increase w� 	complement

z� � �� � � � � � of z� that just dropped
�

w� � �� � � �� � �� w� drops�

w� � � �� � � � � Complementary

z� � � �� � � � �� feasible

w� � � �� �� � � � basic vector

Thus 	w�� w�� w�� z�� z�� z�
 � 	�� �� �� �� �� ��
 is a complementary feasible solution of

this problem�

Conditions Under Which the Algorithm is Guaranteed to Work

Theorem ���� For every J � f�� � � � � ng	 if the principal submatrix MJJ of M

associated with J satis�es the property that there exists no positive vector zJ such that

the last component of MJJzJ is nonpositive and the other components are zero	 the

termination criteria �
���� or �
���� will never be satis�ed and the algorithm terminates
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with a complementary feasible basic vector for the LCP 	q�M
 after a �nite number

of steps�

Proof� When 	����
 or 	����
 is satis�ed� we have a solution of the type given in

equation 	����
� which we denote by 	w	�
� z	�

 � 	 �w � �wh� �z � �zh
 satisfying the

property that for � � �� there exists a k such that wk	�
 � �� zk	�
 � �� zj	�
 � �

for j � k� and if k � � the vectors w	k��
	�
 � 	w�	�
� � � � � wk��	�

� z
	k��
	�
 �

	z�	�
� � � � � zk��	�

 are nonnegative and complementary� Let J � f�� � � � � kg� wh
J �

	wh
� � � � � � w

h
k 


T � zhJ � 	zh� � � � � � z
h
k 


T � Then

wh
J �MJJz

h
J � �

zhJ �� �

wh
k
�
� �

	����


and if k � �� 	wh
� � � � � � w

h
k��
 �� �� and wh

j z
h
j � � for j � � to k � �� Let P � f j �

� �
� j �

� k� and zhj � � g� Clearly P �� �� otherwise 	wh
J� z

h
J
 � �� Letting zhP �

	zhj � j � P
� all the components of MPPz
h
P are zero except possibly the last one

because of 	����
 and the fact that wh
j z

h
j � � for j � � to k � �� Also� the last

component of MPPz
h
P is �� � because of 	����
� And since zhP � �� this contradicts the

hypothesis in the theorem�

The �niteness of the algorithm follows from the path argument used in Sections

���� ���� the argument says that the algorithm never returns to a previous position

as this situation implies the existence of a position with three adjacent positions� a

contradiction� Since there are only a �nite number of positions we must terminate

with a solution for the original LCP�

Corollary ��� IfM has the property that for every J � f�� � � � � ng	 the corresponding
submatrix MJJ of M satis�es the property that the system

MJJzJ �� �

zJ �� �

has the unique solution zJ � �	 then the variable dimension algorithm discussed above

will terminate with a solution of the LCP 	q�M
 for any q � Rn�

Proof� Follows from Theorem �����

R� W� Cottle ����� has shown that the class of matricesM satisfying the hypothesis

in Theorem ���� or Corollary ���� is the strictly semi�monotone matrices de�ned later

on in Section ���� which is the same as �Q 	completely Q�matrices� that is� matrices all

of whose principal submatrices are Q�matrices
� This class includes all P �matrices and

positive or strictly copositive matrices�

By the results discussed in Chapter �� the LCP 	q�M
 has a unique solution when

M is a P �matrix� So if M is s P �matrix and the LCP 	q�M
 is solved by the variable

dimension algorithm� type � pivot steps will never have to be performed�



���� Extensions to Fixed Point Computing ���

M� J� Todd ������ ����� has shown that when q is nondegenerate in 	����
 and M

is a P �matrix� the variable dimension algorithm discussed above corresponds to the

lexicographic Lemke algorithm discussed in Section ������

Now consider the LCP 	q�M
 of order n� Let en denote the column vector of all

��s in Rn� Introduce the arti�cial variable z� associated with the column vector �en�
as in the complementary pivot algorithm 	see equation 	���

� Introduce an additional

arti�cial variable w�� which is the complement of z�� and the arti�cial constraint �w��
eTn z � q��� where q� is treated as a large positive number� without giving it any speci�c

value� This leads to an LCP of order n��� in which the variables are 	w�� w�� � � � � wn
�

	z�� z�� � � � � zn
 and the data is

M� �

��� � �eTn
en M

��� � q� �

��� q�
q

��� �

Since q� is considered as a large positive parameter� w� � � and z� � � in any com�

plementary solution of this larger dimensional LCP 	q��M�
� and hence if 		 �w�� �w
�

	�z�� �z

 is a solution of this LCP� then 	 �w� �z
 is a solution of the original LCP 	q�M
�

Essentially by combining the arguments in Theorems ��� and ����� L� Van der Hey�

den ������ has shown that if M is a copositive plus matrix and the system �w�Mz �

q� w �
� �� z �

� �� has a feasible solution� when the variable dimension algorithm is

applied on the LCP 	q��M�
� it will terminate with a complementary feasible solution

		 �w�� �w
� 	�z�� �z

 in a �nite number of steps� This shows that the variable dimension

algorithm will process LCP�s associated with copositive plus matrices� by introduc�

ing an arti�cial dimension and by applying the variable dimension algorithm to the

enlarged LCP�

��	 EXTENSIONS TO FIXED POINT

COMPUTING� PIECEWISE LINEAR

AND SIMPLICIAL METHODS

It has also been established that the arguments used in the complementary pivot al�

gorithm can be generalized� and these generalizations have led to algorithms that can

compute approximate Brouwer and Kakutani �xed points' Until now� the greatest

single contribuition of the complementarity problem is probably the insight that it has

provided for the development of �xed point computing algorithms� In mathematics�

�xed point theory is very higly developed� but the absence of e�cient algorithms for

computing these �xed points has so far frustrated all attempts to apply this rich theory

to real life problems� With the development of these new algorithms� �xed point the�

ory is �nding numerous applications in mathematical programming� in mathematical

economics� and in various other areas� We present one of these �xed point computing
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algorithms� and some of its applications� in this section� We show that the problem of

computing a KKT point for an NLP can be posed as a �xed point problem and solved

by these methods�

The algorithms that are discussed later in this section trace a path through the

simplices of a triangulation in Rn� that is why they are called simplicial methods�

Since they use piecewise linear approximations of maps� these methods are also called

piecewise linear methods� Since the path traced by these methods has exactly the

same features as that of the complementary pivot algorithm 	see Sections ������ �����


these methods are also called complementary pivot methods�

����� Some De�nitions

Let g	x
 be a real valued function de�ned over a convex subset $$$ � Rn� We assume

that the reader is familiar with the de�nition of continuity of g	x
 at a point x� �
$$$� and the de�nition of the vector of partial derivatives of g	x
 at x�� rg	x�
 �	�g	x�


�x�
� � � � � �g	x

�

�xn



� when it exists� The function g	x
 is said to be di�erentiable at x�

if rg	x�
 exists� and for any y � Rn� �
	

	
g	x� � �y
� g	x�
� �

	rg	x�

y
 tends in
the limit to zero as � tends to zero� If g	x
 is di�erentiable at x�� for any y � Rn�

we can approximate g	x� � �y
 by g	x�
 � �
	rg	x�

y for values of � for which j�j

is small� This is the 	rst order Taylor series expansion for g	x� �y
 at x � x��

If g	x
 is di�erentiable at x�� the partial derivative vector rg	x�
 is known as the
gradient vector of g	x
 at x��

When the second order partial derivatives of g	x
 exist at x�� we denote the n�n

matrix of second order partial derivatives
	��g	x�

�xi �xj



by the symbol H	g	x�

� It is

called the Hessian matrix of g	x
 at x��

Let g�	x
� � � � � gm	x
 be m real valued convex functions de�ned on the convex sub�

set $$$� Rn� For each x � $$$� de�ne s	x
 � Maximum f g�	x
� � � � � gm	x
 g� The function
s	x
 is known as the pointwise supremum or maximum of fg�	x
� � � � � gm	x
g� It
is also convex on $$$� See Figure ��� where we illustrate the pointwise supremum of

several a�ne functions de�ned on the real line�
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(    )
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  )x
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(    )xl2

(    )xl3

x

Function Values

Figure ��� l�	x
 to l�	x
 are �ve a�ne functions de�ned on R
�� Function

values are plotted on the vertical axis� Their pointwise maximum is the

function marked with thick lines here�

Subgradients and Subdi�erentials of Convex Functions

Let g	x
 be a real valued convex function de�ned on Rn� Let x� � Rn be a point

where g	x�
 is �nite� The vector d � 	d�� � � � � dn

T is said to be a subgradient of g	x


at x� if

g	x
 �� g	x�
 � dT 	x� x�
� for all x � Rn � 	����


Notice that the right hand side of 	����
 is l	x
 � 	g	x�
 � dtx�
 � dTx� is an

a�ne function in x� and we have g	x�
 � l	x�
� One can verify that l	x
 is the �rst

order Taylor expansion for g	x
 around x�� constructed using the vector d in place of

the gradient vector of g	x
 at x�� So d is a subgradient of g	x
 at x�� i� this modi�ed

Taylor approximation is always an underestimate for g	x
 at every x�
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Example ����

Let x � R�� g	x
 � x�� g	x
 is convex� Consider the point x� � �� d � �� It can be

veri�ed that the inequality 	����
 holds in this case� So d � 	�
 is a subgradient for

g	x
 at x� � � in this case� The a�ne function l	x
 on the right hand side of 	����
 in

this case is � � �	x � �
 � �x� �� See Figures ���� ��� where the inequality 	����
 is
illustrated�

f(
x)

 =
 x

x

Function Values

l(x
) =

 2
x 

- 1

x = 10

2

Figure ��� A Convex Function� and the A�ne Function Below it Con�

structed Using a Subgradient for it at the Point x��
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θ (x)

x
x

Figure ��� The subdi�erential to �	x
 at �x is the set of slope vectors of all

lines in the cone marked by the angle sign�

The set of all subgradients of g	x
 at x� is denoted by the symbol �g	x�
� and called

the subdi�erential set of g	x
 at x�� It can be proved that if g	x
 is di�erentiable

at x�� then its gradient rg	x�
 is the unique subgradient of g	x
 at x�� Conversely if
�g	x�
 contains a single vector� then g	x
 is di�erentiable at x� and �g	x�
 � frg	x�
g�
See references �����(����� for these and other related results�

Subgradients of Concave Functions

Let h	x
 be a concave function de�ned on a convex subset $$$ � Rn� In de�ning a

subgradient vector for h	x
 at a point x� � $$$� the inequality in 	����
 is just reversed�
in other words� d is a subgradient for the concave function h	x
 at x� if h	x
 �� h	x�
�

dT 	x � x�
 for all x� With this de�nition� all the results stated above also hold for

concave functions�
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Computing a Subgradient

Let �	x
 be a convex function de�ned on Rn� Let �x � Rn� if �	x
 is di�erentiable at

�x� then the gradient vector r�	�x
 is the only subgradient of �	x
 at �x� If �	x
 is not
di�erentiable at �x� in general� the computation of a subgradient for �	x
 at �x may be

hard� However� if �	x
 is the pointwise supremum of a �nite set of di�erentiable convex

functions� say

�	x
 � Maximum f g�	x
� � � � � gm	x
 g
where each gi	x
 is di�erentiable and convex� then the subdi�erential of �	x
 is easily

obtained� Let

J	�x
 � f i � �	�x
 � gi	�x
 g
the the subdi�erential of �	x
 at �x�

��	�x
 � convex hull of frgi	�x
 � i � J	�x
 g �

See references �����(������

����� A Review of Some Fixed Point Theorems

Let $$$ � Rn be a compact convex subset with a nonempty interior� Let f	x
 � $$$� $$$ be

a single valued map� that is� for each x � 	x�� � � � � xn

T � $$$� f	x
 � 	f�	x
� � � � � fn	x



T

� $$$� which is continuous� We have the following celebrated theorem�
Theorem ���� 
 Brouwer�s Fixed Point Theorem If f	x
 � $$$� $$$ is continuous	

it has a �xed point	 that is	 the system

f	x
� x � � 	����


which is a system of n equations in n unknowns	 has a solution x � $$$�
See references ������ ����� ����� ����� ����� for proofs of this theorem� We now

provide an illustration of this theorem�

Example ����

Consider n � �� Let $$$ � fx � x � R�� � �� x �
� � g denoted by ��� ��� Consider the

continuous function f	x
 � ��� ��� ��� ��� We can draw a diagram for f	x
 on the two

dimensional Cartesian plane by plotting x on the horizontal axis� and the values of

f	x
 along the vertical axis� as in Figure ���� Since f	x
 is de�ned on ��� �� the curve

of f	x
 begins somewhere on the thick vertical line x � �� and goes all the way to the

thick vertical line x � �� in a continuous manner� Since f	x
 � ��� ��� the curve for

f	x
 lies between the two thin horizontal lines f	x
 � � and f	x
 � �� The dashed
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diagonal line is f	x
� x � �� It is intuitively clear that the curve of f	x
 must cross

the diagonal of the unit square� giving a �xed point for f	x
�

f(x)

0 1

1

x0

Figure ��� The curve of f	x
 � ��� ��� ��� ��� Points of intersection of the

curve with the dashed diagonal line are the Brouwer �xed points of f	x
�

Example ����

This example illustrates the need for convexity in Theorem ����� Let n � �� Let K

denote the dotted ring in Figure ��� between two concentric circles� Let f	x
 denote

the continuous mapping K � K obtained by rotating the ring through a speci�ed

angle � in the anti�clockwise direction� Clearly this f	x
 has no �xed points in K�
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x

f(x)
θ

Figure ��� The need of convexity for the validity of Brouwer�s �xed point

theorem�

The need for the boundedness of the set $$$ for the validity of Theorem ���� follows

from the fact that the mapping f	x
 � x � a for each x � Rn� where a �� � is a

speci�ed point in Rn� has no �xed points� The need for the closedness of the set $$$ for

the validity of Theorem ���� follows from the fact that the mapping f	x
 � �
�	x � �


from the set fx � � �� x � �g into itself has no �xed point in the set�
The system 	����
 is a system of n equality constraints in n unknowns� An e�ort

can be made to solve 	����
 using methods for solving nonlinear equations�

A Monk	s Story

The following story of a monk provides a nice intuitive justi�cation for the concept and

the existence of a �xed point� A monk is going on a pilgrimage to worship in a temple

at the top of a mountain� He begins his journey on Saturday morning at ���� AM

promptly� The path to the temple is steep and arduous and so narrow that trekkers on

it have to go in a single �le� Our monk makes slow progress� he takes several breaks

on the way to rest� and at last reaches the temple by evening� He spends the night

worshipping at the temple� Next morning� he begins his return trip from the temple

exactly at ���� AM� by the same path� On the return trip� since the path is downhill�

he makes fast progress and reaches the point from where he started his hjourney on

Saturday morning� well before the evening�
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Suppose we call a point 	or spot or location
 on the path� a �xed point� if the monk

was exactly at that spot at precisely the same time of the day on both the forward

and return trips�

The existence of a �xed point on the path can be proved using Brouwer�s �xed

point theorem� but there is a much simpler and intuitive proof for its existence 	see

A� Koestler� The Act of Creation� Hutchinson� ����� London
� Imagine that on Satur�

day morning exactly at ���� AM� a duplicate monk starts from the temple� down the

mountain� proceeding at every point of time at exactly the same rate that the original

monk would on Sunday� So� at any point of time of the day on Saturday� the duplicate

monk will be at the same location on the path as the original monk will be at the time

on Sunday� Since the path is so narrow that both cannot pass without being in each

other�s way� the two monks must meet at some time during the day� and the spot on

the path where they meet is a �xed point�

Successive Substitution Method for Computing a

Brouwer	s Fixed Point

One commonly used method to compute a Brouwer�s �xed point of the single valued

map f	x
 � $$$ � $$$ is an iterative method that begins with an arbitrary point x� � $$$�
and obtains a sequence of points fxr � r � �� �� � � �g in $$$ using the iteration

xr
� � f	xr
 �

The sequence so generated� converges to a Brouwer�s �xed point of f	x
 if f	x
 satis�es

the contraction property� that is� if there exists a constant � satisfying � �� � � �

such that for every x� y � $$$� we have

kf	x
� f	y
k �� �kx� yk � 	����


If the map f	x
 satis�es the contraction proprety� this successsive substituitions method

is a very convenient method for computing a Brouwer�s �xed point of f	x
� Unfor�

tunately� the contraction property is a strong property and does not usually hold in

many practical applications�

Newton
Raphson Method for Solving a System

of n Equations in n Unknowns

The system 	����
 is a system of n equations in n unknowns� and we can try to solve it

using approaches for solving nonlinear equations of this type� like Newton�Raphson

method� which we now present� The method is also called Newton�s method often in

the literature� or Newton�s method for solving equations� Consider the system

gi	x
 � � i � � to n 	����
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where each gi	x
 is a real valued function de�ned on R
n� Assume that each function

gi	x
 is di�erentiable� Let rgi	x
 be the row vector of partial derivatives and let the

Jacobian be

rg	x
 �

���������
rg�	x


���
rgn	x


���������
in which the ith row vector is the partial derivative vector of gi	x
 written as a row�

To solve 	����
 the Newton�Raphson method begins with an arbitrary point x�

and generates a sequence of points fx�� x�� x�� � � �g� Given xr in the sequence� the

method approximates 	����
 by its �rst order Taylor approximation around xr leading

to

g	xr
 �rg	xr
	x� xr
 � �

whose solution is xr�	rg	xr

��g	xr
� which is taken as the next point in the sequence�
This leads to the iteration

xr
� � xr � 	rg	xr

��g	xr
 �

If the Jacobian is nonsingular� the quantity y � 	rg	xr

��g	xr
 can be computed
e�ciently by solving the system of linear equations

	rg	xr

y � g	xr


If the Jacobian rg	xr
 is singular� the inverse 	rg	xr

�� does not exist and the
method is unable to proceed further� Several modi�cations have been proposed to

remedy this situation� see references ������ ������ ������� Many of these modi�cations

are based on the applications of Newton�s method for unconstrained minimization or

a modi�ed version of it 	see Sections ������� ������
 to the least squares formulation of

	����
 leading to problem of �nding the unconstrained minimum of

nX
i��

	gi	x


� �

As an example� consider the system

g�	x
 � x�� � x�� � � � �

g�	x
 � x�� � x� � �

The Jacobian matrix is ��� �x� �x�
�x� ��

���
Let x� � 	�� �
T be the initial point� So g	x�
 � 	�� �
T � The Jacobian matrix at

x� is

��� � �
� ��

���� This leads to the next point x� � 	�� �
T � It can be veri�ed that
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x� �
	
�
� �

�
�


T
� and so on� The actual solution in this example can be seen from Figure

����

x2

x1

x

x

x

x1

2

0

Figure ��� The circle here is the set of all points 	x�� x�
 satisfying x
�
� �

x�� � � � �� The parabola is the set of all points satisfying x�� � x� � ��

The two intersect in two points 	solutions of the system
 one of which is �x�

Beginning with x�� the Newton�Raphson method obtains the sequence x��

x�� � � � converging to �x�

In order to solve 	����
 by Newton�Raphson method or some modi�ed versions

of it� the map f	x
 must satisfy strong properties like being di�erentiable etc�� which

do not hold in may many practical applications� Thus� to use Brouwer�s �xed point

theorem in practical applications we should devise methods for solving 	����
 without

requiring the map f	x
 to satisfy any conditions besides continuity� In ���� H� Scarf

in a pioneering paper ������ developed a method for �nding an approximate solu�

tion of 	����
 using a triangulation of the space� that walks through the simplices of

the triangulation along a path satisfying properties similar to the one traced by the

complementary pivot algorithm for the LCP� This method has the advantage that it

works without requiring any conditions on the map f	x
 other than those required by

Brouwer�s theorem for the existence of the �xed point 	i� e�� continuity
� Subsequently

vastly improved versions of these methods have been developed by many researches�

We will discuss one of these methods in detail�
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Approximate Brouwer Fixed Points

Let f	x
 � $$$� $$$ be continuous as de�ned in Theorem ����� A true Brouwer �xed point

of f	x
 is a solution of 	����
� However� in general� we may not be able to compute

an exact solution of 	����
 using �nite precision arithmetic� In practice� we attempt

to compute an approximate Brouwer �xed point� There are two types of approximate

Brouwer �xed points� we de�ne them below�

Type �
 A point �x � $$$ is said to be an approximate Brouwer �xed point of f	x
 of
Type � if

jj�x� f	�x
jj � �

for some user selected tolerance � 	a small positive quantity
�

Type �
 A point x� � $$$ is said to be an approximate Brouwer �xed point of Type
� if there exists an exact solution y of 	����
 such that

jjx� � yjj � � �

In general� a Type � approximate Brouwer �xed point �x may not be a Type �

approximate Brouwer �xed point� that is� �x may be far away from any exact solution

of 	����
� If some strong conditions hold 	such as� f	x
 is continuously di�erentiable

in the interior of $$$ and all the derivatives are Lipschitz continuous� or f	x
 is twice

continuously di�erentiable in the interior of $$$
 a Type � approximate Brouwer �xed

point can be shown to be also a Type � approximate Brouwer �xed point with a

modi�ed tolerance� At any rate� the algorithms discussed in the following sections are

only able to compute approximate Brouwer �xed points of Type ��

Kakutani Fixed Points

In many applications� the requirement that f	x
 be a point�to�point map is itself too

restrictive� In ���� S� Kakutani generalized Theorem ���� to point�to�set maps� As

before� let $$$ be a compact convex subset of Rn� Let F	x
 be a point�to�set map on $$$�

that is� for each x � $$$� F	x
 is itself a speci�ed subset of $$$�

Example ����

Let n � �� Let $$$ � fx � R� � � �� x �
� � g� For each x � $$$� suppose F	x
 � f y �

x �� y �� � g � �x� ��� See Figure �����
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F(  )x

x 10
x

1

0

Figure ���� For each x � $$$� F	x
 is the closed interval �x� ���

We consider only maps in which F	x
 is a compact convex subset of $$$ for each

x � $$$� The point�to�set map F	x
 is said to be an USC 	Upper Semi�Continuous
 map
if it satis�es the following properties� Let fxk � k � �� �� � � �g be any sequence of points
in $$$ converging to a point x� � $$$� For each k� suppose yk is an arbitrary point selected
from F	xk
� k � �� �� � � �� Suppose that the sequence f yk � k � �� �� � � �g converges to
the point y�� The requirement for the upper semi�continuity of the point�to�set map

F	x
 is that these conditions imply that y� � F	x�
�

It can be veri�ed that the point�to�set map F	x
 given in Figure ��� satis�es this

USC property�

Theorem ���� Kakutani�s Fixed Point Theorem

If F	x
 is a USC point�to�set map de�ned on the compact convex subset $$$ � Rn	

there exists a point x � $$$ satisfying

x � F	x
 � 	����
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Any point satisfying 	����
 is known as a Kakutani�s 	xed point of the point�

to�set map F	x
� To prove his theorem� Kakutani used the fundamental notion of

a piecewise linear approximation to the map F	x
� The same picewise linear

approximation scheme is used in the method discussed later on for computing �xed

points� See reference ������ for the proof of Kakutani�s theorem�

For each x � $$$� if F	x
 is a singleton set 	i� e�� a set containing only a single ele�
ment
 ff	x
g � $$$� it can be veri�ed that this F	x
 is USC i� f	x
 is continuous� Thus

the USC property of point�to�set maps is a generalization of the continuity property of

point�to�point maps� Also� every Brouwer �xed point of the point�to�point map f	x


can be viewed as a Kakutani �xed point of F	x
 � ff	x
g�

Approximate Kakutani Fixed Points

Given the USC point�to�set map F	x
 as de�ned in Theorem ����� a Kakutani �xed

point is a point x � $$$ satisfying 	����
� As under the Brouwer �xed point case� using
�nite precision arithmetic� we may not be able to �nd x � $$$ satisfying 	����
 exactly�
We therefore attempt to compute an approximate Kakutani �xed point� Again� there

are two types of approximate Kakutani �xed points� we de�ne them below

Type �
 A point �x � $$$ is said to be an approximate Kakutani �xed point of F	x
 of
Type � if there exists a z � F	�x
 satisfying

jj�x� zjj � �

for some user selected tolerance � 	a small positive quantity
�

Type �
 A point x� � $$$ is said to be an approximative Kakutani �xed point of F	x

of Type � if there exists a y satisfying 	����
 and

jjx� � yjj � � �

The algorithms discussed in the following sections are only able to compute Type

� approximate Kakutani �xed points�

Use in Practical Applications

In pratical applications we have to deal with either point�to�point or point�to�set maps

de�ned over the whole space Rn� not necessarily on only a compact convex subset

of Rn� Also� it is very hard� if not computationally impossible� to check whether

properties like USC etc� hold for our maps� For such maps� the existence of a �xed

point is not guaranteed� Because of this� the algorithms that we discuss for computing

�xed points may not always work on these problems� Also� it is impossible for us to

continue the computation inde�nitely� we have to terminate after a �nite number of

steps� In practice� from the path traced by the algorithm� it will be clear whether it

seems to be converging� or running away� If it seems to be converging� from the point
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obtained at termination� an approximate solution of the problem can be obtained� If

the algorithm seems to be running away� either we can conclude that the algorithm

has failed to solve the problem� or an e�ort can be made to run the algorithm again

with di�erent initial conditions� Before discussing the algorithm� we will now discuss

some standard applications of �xed point computing�

����� Applications in Unconstrained Optimization

Let �	x
 be a real valued function de�ned on Rn and suppose it is required to solve

the problem

minimize �	x


over x � Rn 	����


If �	x
 is di�erentiable� a necessary condition for a point x � Rn to be a local minimum

for 	����
 is

r�	x
 � � 	����


which is a system of n equations in n unknowns� De�ne f	x
 � x� 	r�	x

T � Then
every Brouwer �xed point of f	x
 is a solution of 	����
 and vice versa� Hence every

�xed point of f	x
 satis�es the �rst order necessary optimality conditions for 	����
� If

�	x
 is convex� every solution of 	����
 is a global minimum for 	����
 and vice versa�

and hence in this case 	����
 can be solved by computing a �xed point for f	x
 de�ned

above� However� if �	x
 is not convex� there is no guarantee that a solution of 	����
�

	i�e�� a �xed point of f	x
 � x � 	r�	x

T 
 is even a local minimum for 	����
 	it

could in fact be a local maximum
� So� after obtaining an approximate �xed point�

�x� of f	x
� one has to verify whether it is a local minimum or not� If �	x
 is twice

continuously di�erentiable� a su�cient condition for a solution of 	����
 to be a local

minimum for 	����
 is that the Hessian matrix H	�	�x

 be positive de�nite�

If �	x
 is not di�erentiable at some points� but is convex� then the subdi�erential

set ��	x
 exists for all x� In this case de�ne F	x
 � fx� y � y � ��	x
 g� Then every
Kakutani �xed point of F	x
 is a global minimum for 	����
 and vice versa�

One strange feature of the �xed point formulation for solving 	����
 is worth

mentioning� De�ne G	x
 � fx� y � y � ��	x
 g� Clearly� every Kakutani �xed point
of G	x
 also satis�es the necessary optimality conditions for 	����
� Mathematically�

the problems of �nding a Kakutani �xed point of F	x
 or G	x
 are equivalent� but

the behavior of the �xed point computing algorithm discussed in Section ����� on the

two problems could be very di�erent� This is discussed later on under the subsection

entitled� �Su�cient Conditions for Finite Termination� in Section ������ In practical

applications� one might try computing the Kakutani �xed point of F	x
 using the

algorithm discussed in Section ������ and if its performance is not satisfactory switch

over and use the same algorithm on G	x
 instead�



��� Chapter �� The Complementary Pivot Algorithm

����� Application to Solve a System of

Nonlinear Inequalities

Consider the system

gi	x
 �� �� for i � � to m 	����


where each gi	x
 is a real valued convex function de�ned on R
n� De�ne the pointwise

supremum function s	x
 � Maximum f g�	x
� � � � � gm	x
 g� As discussed earlier� s	x

is itself convex� and �s	x
 � Si�J	x
 �gi	x
� where J	x
 � f i � gi	x
 � s	x
 g� If each
gi	x
 is di�erentiable� then �s	x
 � convex hull of frgi	x
 � i � J	x
 g� If 	����
 has a
feasible solution �x� then s	�x
 �� �� and conversely every point x satisfying s	x
 �� � is

feasible to 	����
� So the problem of �nding a feasible solution of 	����
 can be tackled

by �nding the unconstrained minimum of s	x
� which is the same as the problem of

�nding a Kakutani �xed point of F	x
 � fx� y � y � �s	x
 g as discussed in Section
������ If �x is a Kakutani �xed point of this map and �s	x
 � �� 	����
 is infeasible� On

the other hand if s	�x
 �� �� �x is a feasible solution of 	����
�

����� Application to Solve a System of

Nonlinear Equations

Consider the system of equations

hi	x
 � �� i � � to r 	����


where each hi	x
 is a real valued function de�ned on Rn� Let h	x
 � 	h�	x
� � � � �

hr	x


T � If r � n� 	����
 is said to be an overdetermined system� In this case there

may be no solution to 	����
� but we may be interested in �nding a point x � Rn that

satis�es 	����
 as closely as possible� The least squares approach for �nding this

is to look for the unconstrained minimum of
Pr

i��	hi	x


�� which can be posed as a

�xed point problem as in Section ������

If r � n� 	����
 is known as an underdetermined system� and it may have

many solutions� It may be possible to develop additional n � r equality constraints

which when combined with 	����
 becomes a system of n equations in n unknowns� Or

the least squares method discussed above can be used here also�

Assume that r � n� In this case de�ne f	x
 � x � h	x
� Then every Brouwer

�xed point of f	x
 solves 	����
 and vice versa� As mentioned in Section ������ it may

be worthwhile to also consider the equivalent problem of computing the �xed point of

d	x
 � x� h	x
 in this case�
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����� Application to Solve the

Nonlinear Programming Problem

Consider the nonlinear program

Minimize �	x


subject to gi	x
 �� �� i � � to m
	����


where �	x
� gi	x
 are real valued functions de�ned over R
n� We will assume that each

of these functions is convex� and continuously di�erentiable� We make an additional

assumption that if 	����
 is feasible 	i� e�� the set fx � gi	x
 �� �� i � � to m g �� �
� then
there exists an x � Rn satisfying gi	x
 � �� for each i � � to m� This assumption is

known as a constraint quali	cation� As before� let s	x
 be the pointwise supremum

function� maximum f g�	x
� � � � � gm	x
 g� Then 	����
 is equivalent to

Minimize �	x


s	x
 �� �
	����


By our assumption� and the results discussed earlier� s	x
 is also convex and �s	x
 �

convex hull of frgi	x
 � i � J	x
 g� where J	x
 � f i � s	x
 � gi	x
 g� Consider the
following point�to�set mapping de�ned on Rn�

F	x
 �

�
�
�
x� 	r�	x

T �� if s	x
 � � ��
x� y � y � convex hull of fr�	x
� �s	x
g�� if s	x
 � � �

fx� y � y � �s	x
 g� if s	x
 � � �

	����


Under our assumptions of convexity and di�erentiability� it can be veri�ed that F	x


de�ned in 	����
 is USC� Let �x be a Kakutani �xed point of F	x
� If s	�x
 � �� then � �

r�	�x
� and thus �x is a global minimum for �	x
 over Rn and is also feasible to 	����
�

and therefore solves 	����
� If s	�x
 � �� then � � �s	�x
� thus � is a global minimum of

s	x
� and since s	�x
 � �� 	����
 has no feasible solution� If s	�x
 � �� then � � convex
hull of fr�	�x
� �s	�x
 g � convex hull of fr�	�x
�rgi	�x
 for i � J	�x
g� so there exists
nonnegative numbers ��� �i for i � J	�x
 satisfying

��r�	�x
 �
X

i�J	�x


�irgi	�x
 � �

�� �
X

i�J	�x


�i � � 	����


��� �i �� � for all i � J	�x


If �� � �� 	����
 implies that � � �s	�x
 and so s	�x
 is a global minimizer of s	�x
� �x

is feasible to 	����
 since s	�x
 � �� and these facts lead to the conclusion that fx �
gi	x
 �� �� for i � � to m g �� � and yet there exists no x satisfying gi	x
 � � for all

i � � to m� violating our constraint quali�cation assumption� So �� � � in 	����
�
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So if we de�ne �
i �

i

�
if i � J	�x
� � � otherwise� then from 	����
 we conclude that

�x� �
 together satisfy the Karush�Kuhn�Tucker necessary conditions for optimality for

	����
� and our convexity assumption imply that �x is the global minimum for 	����
�

Thus solving 	����
 is reduced to the problem of �nding a Kakutani �xed point of

the mapping F	x
 de�ned in 	����
�

Example ����

Consider the problem �

minimize �	x
 � x�� � x�� � �x� � �x�
subject to g�	x
 � x� � x� �� �

	����


Clearlyr�	x
 � 	�x���� �x���
� rg�	x
 � 	�� �
� The mapping F	x
 for this problem

is

F	x
 �

�
�
��x� � ���x� � �
T �� if x� � x� � � �
Convex hull of f	�x� � ���x� � �
T � 	x� � �� x� � �
Tg� if x� � x� � � �
f 	x� � �� x� � �
T g� if x� � x� � � �

It can be veri�ed that �x � 	 �� �
�
� 


T is a Kakutani �xed point of this mapping F	x
� and

that �x is the global optimum solution of the nonlinear program 	����
�

If �	x
� gi	x
 are all continuously di�erentiable� but not necessarily convex� we can

still de�ne the point�to�set mapping F	x
 as in 	����
 treating �s	x
 � convex hull of

frgi	x
 � i � J	x
 g� In this general case� any Kakutani �xed point �x of F	x
 satis�es
the �rst order necessary optimality conditions for 	����
� but these conditions are not

su�cient to guarantee that �x is a global or even a local minimum for 	����
� see Section

���� for de�nitions of a global minimum� local minimum� One can then try to check

whether �x satis�es some su�cient condition for being a local minimum for 	����
 	for

example� if all the functions are twice continuously di�erentiable� a su�cient condition

for �x to be a local minimum for 	����
 is that the Hessian matrix of the Lagrangian

with respect to x is positive de�nite at �x� See references ������ ����� ������ ������ A��

A���
� If these su�cient optimality conditions are not satis�ed� it may be very hard

to verify whether �x is even a local minimum for 	����
� As an example� consider the

problem� minimize xTDx� subject to x �
� �� The point � � Rn is a global minimum

for this problem if D is PSD� If D is not PSD� � is a local minimum for this problem i�

D is a copositive matrix� Unfortunately� there are as yet no e�cient methods known

for checking whether a matrix which is not PSD� is copositive� See Section ������

Thus� in the general nonconvex case� the �xed point approach for 	����
 �nds a

point satisfying the �rst order necessary optimality conditions for 	����
� by computing

a Kakutani �xed point of F	x
 de�ned in 	����
� In this general case� many of the other

solution techniques of nonlinear programming for solving 	����
 	see Chapter ��
 are

usually based on descent methods� These techniques generate a sequence of points
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fxr � r � �� �� � � �g� Given xr� they generate a yr �� � such that the direction xr��yr�

� �� �� is a descent direction� that is� it is either guaranteed to decrease the objective

value or a measure of the infeasibility of the current solution to the problem or some

criterion function which is a combination of both� The next point in the sequence xr
�

is usually taken to be the point which minimizes the criterion function on the half line

fxr � �yr � � �� � g obtained by using some one dimensional 	� is the only variable to
be determined in this problem
 line minimization algorithm� And the whole process

is then repeated with the new point� On general problems� these methods su�er from

the same di�culties� they cannot theoretically guarantee that the point obtained at

termination is even a local minimum� However� these descent methods do seem to

have an edge over the �xed point method presented above in the general case� In

the absence of convexity� one has more con�dence that a solution obtained through

a descent process is likely to be a local minimum� than a solution obtained through

�xed point computation which is based purely on �rst order necessary conditions for

optimality�

The approach for solving the nonlinear program 	����
 using the �xed point trans�

formation has been used quite extensively� and seems to perform satisfactorily� See

references ������ ����� ������

Many practical nonlinear programming models tend to be nonconvex� The �xed

point approach outlined above� provides additional arsenal in the armory for tackling

such general problems�

Now consider the general nonlinear programming problem in which there are both

equality and inequality constraints�

minimize �	x


subject to gi	x
 �� �� i � � to m

ht	x
 � �� t � � to p

	����


The usual approach for handling 	����
 is the penality function method which

includes a term with a large positive coe�cient corresponding to a measure of violation

of the equality constraints in the objective function� One such formulation leads to the

problem

minimize �	x
 � �
pP

t��
	ht	x



�

subject to gi	x
 �� �� i � � to m
	����


In 	����
� �� a large positive number� is the penalty parameter� If 	����
 has a

feasible solution� every optimum solution of 	����
 would tend to satisfy ht	x
 � ��

t � � to p as � becomes very large� and thus would also be optimal to 	����
� When

� is �xed to be a large positive number� 	����
 is in the same form as 	����
� and can

be tackled through a �xed point formulation as discussed above�

Advantages and Disadvantages of this Approach

In the NLP 	����
 there may be several constraints 	i� e�� m may be large
 and the

problem di�culty can be expected to increase with the number of constraints� The
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�xed point approach for solving 	����
� �rst transforms 	����
 into the equivalent 	����
�

which is an NLP in which there is only a single constraint� The fact that 	����
 is a

single constraint problem is de�nitely advantageous�

The original problem 	����
 is a smooth problem since the objective and constraint

functions are all assumed to be continuously di�erentiable� Eventhough gi	x
 are con�

tinuously di�erentiable for all i� there may be points x where s	x
 is not di�erentiable�

However� s	x
 is di�erentiable almost everywhere and so 	����
 is a nonsmooth NLP�

That this approach transforms a nice smooth NLP into a nonsmooth NLP is a disad�

vantage� But� because of the special nature of the function s	x
� for any x� we are able

to compute a point in the subdi�erential set �s	x
 e�ciently� as discussed above� For

computing a �xed point of the map F	x
 de�ned in 	����
� the algorithms discussed in

the following sections need as inputs only subroutines to compute r�	x
� or a point
from �s	x
 for any given x� which are easy to provide� Thus� eventhough 	����
 is

a nonsmooth NLP� the �xed point approach is able to handle it e�ciently� Practical

computational experience with this approach is quite encouraging�

The �xed point approach solves NLPs using only the �rst order necessary con�

ditions for optimality� The objective value is never computed at any point� This is

a disadvantage in this approach� In nonconvex NLPs� a solution to the �rst order

necessary conditions for optimality� may not even be a local minimum� Since the ob�

jective value is not used or even computed in this approach� we lack the circumstantial

evidence� or the neighborhood information about the behaviour of objective values� to

conclude that the �nal solution obtained is at least likely to be a local minimum�

����� Application to Solve the

Nonlinear Complementarity Problem

As discussed in Section ���� the nonlinear complementary problem 	NLCP
 is the

following� Given g	x
 � 	g�	x
� � � � � gn	x


T � Rn


 � Rn� where Rn

 is the nonnegative

orthant of Rn� �nd x �� � satisfying g	x
 �� �� xT g	x
 � ��

De�ne �	x
 � Maximum f�x�� � � � ��xng� So ��	x
 � convex hull of f�I�j � j
such that �xj �� �xi for all i � � to n in x g� De�ne the point�to�set map on Rn�

F	x
 �

�
� fx� y � y � ��	x
 g� if �	x
 � � ��
x� y � y � convex hull of fg	x
� ��	x
g�� if �	x
 � � �

fx� g	x
g� if �	x
 � � �
	����


It can be veri�ed that every Kakutani �xed point of F	x
 de�ned here is a solution of

the NLCP and vice versa� Thus the NLCP can be solved by computing a Kakutani

�xed point of F	x
�
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����	 Merrill
s Algorithm for Computing

a Kakutani Fixed Point

Let F	x
 be a point�to�set map de�ned on Rn� We describe in this section� Merrill�s

method for computing a Kakutani �xed point of F	x
�

Data Requirements of the Algorithm

If the algorithm requires the storage of the complete set F	x
 for any x� it will not be

practically useful� Fortunately� this algorithm does not require the whole set F	x
 for

even one point x � Rn� It only needs a computational procedure 	or a subroutine
�

which� for any given x � Rn� outputs one point from the set F	x
� The algorithm will

call this subroutine a �nite number of times� Thus the data requirements of the algo�

rithm are quite modest� considering the complexity of the problem being attempted�

and it can be implemented for the computer very e�ciently� Also� the primary com�

putational step in the algorithm is the pivot step� which is the same as that in the

simplex method for linear programs�

n
Dimensional Simplex

The points v�� � � � � vr in R
n are the vertices of an 	r � �
 dimensional simplex if the

set of column vectors

���� �
v�

��� � � � � �

��� �
vr

���� in Rn
� form a linearly independent set�

The simplex itself is the convex hull of its vertices and will be denoted by the symbol

hv�� � � � � vri� Given the simplex with vertices v�� � � � � vr� the convex hull of any subset
of its vertices is a face of the simplex� An n�dimensional simplex has 	n� �
 vertices�

See Figure ����� Clearly a ��dimensional simplex is a line segment of positive length

joining two distinct points� a ��dimensional simplex is the triangle enclosed by three

points which are not collinear� etc�
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v1

v3

v4

v2

Figure ���� The tetrahedron which is the convex hull of vertices fv�� v�� v��
v�g is a ��dimensional simplex� Its vertices v�� v�� v�� v� are its ��dimensional
faces� Its � edges� of which the thick line segment joining v� and v� is one� are

its ��dimensional faces� The dashed ��dimensional simplex which is the convex

hull of fv�� v�� v�g is one of the four ��dimensional faces of the tetrahedron�

Triangulations

Let K be either Rn or a convex polyhedral subset of Rn of dimension n� A triangu�

lation of K is a partition of K into simplexes satisfying the following properties

i
 the simplexes cover K�

ii
 if two simplexes meet� their intersection is a common face�

iii
 each point x � K has a neighborhood meeting only a �nite number of the

simplexes�

iv
 each 	n��
 dimensional simplex in the triangulation is the face of either two
n�dimensional simplexes 	in which case� the 	n � �
 dimensional simplex is

said to be an interior face in the triangulation
 or exactly one n�dimensional

simplex 	in this case the 	n��
 dimensional simplex is said to be a boundary
face in the triangulation
�

v
 for every point x � K there exists a unique least dimension simplex� say �� in

the triangulation� containing x� If dimension of � is � n� � may be a face of

several simplexes in the triangulation of dimension � dimension of �� and x

is of course contained on the boundary of each of them� There exists a unique

expression for x as a convex combination of vertices of �� and this is the same

expression for x as the convex combination of the vertices of any simplex in

the triangulation containing x�
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Example ����

In Figure ���� we give a triangulation of the unit cube in R�� The two ��dimensional

simplexes in this triangulation are the convex hulls of fv�� v�� v�� g� fv�� v�� v�g� The
thick line segments in Figure ���� are the ��dimensional simplexes in this triangulation

which are the faces of exactly one two dimensional simplex� These ��dimensional

simplexes are the boundary faces in this triangulation� The thin diagonal line segment

joining vertices v� and v� is the face of exactly two ��dimensional simplexes� and hence

is an interior face in this triangulation�

= (0,0)

= (0,1) = (1,1)

= (1,0)v
0

v
3

v
2

v
1

Figure ���� Triangulation K� of the unit square in R
��

Example ����

Consider the partition of the unit square in R� into simplexes in Figure ����� It is not

a triangulation since the two simplexes hv�� v�� v�i and hv�� v�� v�i intersect in hv�� v�i
which is a face of hv�� v�� v�i but not a face of hv�� v�� v�i 	it is a proper subset of the
face hv�� v�i of hv�� v�� v�i
� So the partition of the unit square in R� in Figure ����

into simplexes violates property 	ii
 given above� and is therefore not a triangulation�
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V
3

V
1

V
2
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V
5
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Figure ���� A partition of the unit cube in R� into simplexes which is not

a triangulation�

The triangulation for the unit cube inR� given in Example ���� can be generalized

to a triangulation of the unit cube in Rn which we call triangulation K�� discussed

by Freudenthal in ����� The vertices of the simplexes in this triangulation are the

same as the vertices of the unit cube� There are n' n�dimensional simplexes in this

triangulation� Let v� � � � Rn� Let p � 	p�� � � � � pn
 be any permutation of f�� � � � � ng�
Each of the n' permutations p leads to an n�dimensional simplex in this triangulation�

The n�dimensional simplex associated with the permutation p� denoted by 	v�� p
� is

hv�� v�� � � � � vni where
vi � vi�� � I�pi � i � � to n � 	����


In 	����
� I is the unit matrix of order n� For example� for n � �� p � 	�� �
� we get

the simplex hv� � 	�� �
T � v� � 	�� �
T � v� � 	�� �
T i� See Figure ����� See reference
������ for a proof that this does provide a triangulation of the unit cube of Rn�

In this representation 	v�� p
 for the simplex discussed above� v� is known as the

initial or the �th vertex of this simplex� The other vertices of this simplex are obtained

recursively as in 	����
� The vertex vi is called the i
th vertex of this simplex for i � �

to n�

This triangulation can be extended to provide a triangulation for the whole space

Rn itself� which we call triangulation K� 	it has been called by other symbols like K�

I� etc�� in other references
 by �rst partitioning Rn into unit cubes using the integer

points in Rn� and then triangulating each unit cube as above� The vertices in this

triangulation are all the points with integer coordinates in Rn� Let �v be any such

vertex� and let p � 	p�� � � � � pn
 be any permutation of f�� � � � � ng� De�ne v� � �v�

and obtain vi for i � � to n as in 	����
� Let 	�v� p
 denote the simplex hv�� v�� � � � �
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vni� The set of all such simplexes as �v ranges over all points with integer coordinates
in Rn� and p ranges over all the permutations of f�� � � � � ng is the collection of all the
n�dimensional simplexes in this triangulation K�� Again see reference ������ for a proof

that this is indeed a triangulation of Rn� See Figure �����

(0,0)

(1,1)

(0,1)

Figure ���� A partition of the unit cube in R� into simplexes which is not

a triangulation�

The mesh of a triangulation is de�ned to be the maximum Euclidean distance

between any two points in a simplex in the triangulation� Clearly the mesh of trian�

gulation K� of R
n is

p
n�

We can get versions of triangulation K� with smaller mesh by scaling the variables

appropriately� Also the origin can be translated to any speci�ed point� Let x� � Rn

be any speci�ed point and � a positive number� Let J � fx � x � 	xj
 � Rn� xj � x�j
is an integer multiple of � for all j � � to n g� For any v� � J� and p � 	p�� � � � � pn
� a

permutation of f�� � � � � ng� de�ne

vi � vi�� � �I�pi � i � � to n � 	����


Let 	v�� p
 denote the simplex hv�� v�� � � � � vni� The set J are the vertices� and the set
of all simplexes 	v�� p
 as v� ranges over J and p ranges over all the permutations of

f�� �� � � � � ng are the n�dimensional simplexes� in the triangulation of Rn� We denote

this triangulation by the symbol �K�	x
�
� Its mesh is �

p
n�
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How is the Triangulation used by the Algorithm �

The algorithm traces a path� Each step in the path walks from one 	n��
�dimensional
face of an n�dimensional simplex in the triangulation� to another 	n� �
�dimensional
face of the same simplex� and continues this way� See Figure ����� The path traced

is unambiguous once it is started� and is similar to the one in the ghost story men�

tioned earlier� or the path traced by the complementary pivot method for the LCP�

Computationally� the algorithm associates a column vector in Rn to each vertex in the

triangulation� At each stage� the columns associated with the vertices of the current

	n��
�dimensional simplex form a basis� and the inverse of this basis is maintained� A

step in the algorithm corresponds to the pivot step of entering the column associated

with a new entering vertex into the basis� The path never returns to a simplex it has

visited earlier�

To execute the path� one may consider it convenient to store all the simplexes in

the triangulation explicitly� If this is necessary� the algorithm will not be practically

useful� For practical e�ciency the algorithm stores the simplexes using the mathe�

matical formulae given above� which are easily programmed for the computer� The

current simplex is always maintained by storing its �th vertex and the permutation

corresponding to it� To proceed along the path e�ciently� the algorithm provides very

simple rules for termination once a desirable 	n� �
�dimensional simplex in the trian�
gulation is reached 	this is clearly spelled out later on
� If the termination condition is

not satis�ed� a mathematical formula provides the entering vertex� A minimum ratio

procedure is then carried out to determine the dropping vertex� and another mathe�

matical formula then provides the �th vertex and the permutation corresponding to the

new simplex� All these procedures make it very convenient to implement this algorithm

for the computer�
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V1

V

V

V3

V5

V6

V4

V7

0

2

Figure ���� A path traced by the algorithm through the simplexes in the

triangulation�

Special Triangulations of Rn � ��� ��

For computing a Kakutani �xed point of F	x
 de�ned on Rn� Merrill�s algorithm uses

a triangulation of Rn � ��� ��� which is a restriction of triangulation K� for R
n
� to

this region� known as the special triangulation eK��

We will use the symbolX �

��� x
xn
�

��� with x � Rn� to denote points inRn���� ���
The set of vertices J in the special triangulationK� of R

n���� �� are all the points X ���� x
xn
�

��� � Rn
� with x an integer vector in Rn and xn
� � � or �� The set of these

vertices of the form

��� v
�

��� is denoted by J�� and the set of vertices of the form

��� v
�

���
is denoted by J�� J � J��J�� The boundary of Rn� ��� �� corresponding to xn
� � �

is known as the top layer� and the boundary corresponding to xn
� � � is called the

bottom layer� So J�� J� are respectively the points with integer coordinates in the top

and bottom layers� The 	n� �
�dimensional simplexes in the special triangulation eK�

of Rn � ��� �� are those of the form 	V�� P 
 where P � 	p�� � � � � pn
�
 is a permutation

of f�� � � � � n� �g and V� � J�� and 	V�� P 
 � hV�� V�� � � � � Vn
�i where
Vi � Vi�� � I�pi � i � � to n� � � 	����


In 	����
� I is the unit matrix of order n � �� It can be veri�ed that the set of all

simplexes of the form 	V�� P 
 as V� ranges over J�� and P ranges over all permutations
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of f�� �� � � � � n � �g forms a triangulation of Rn � ��� ��� V� is the �
th vertex and

for i � � to n � �� the vertex Vi determined as in 	����
 in the i
th vertex of the

	n � �
�dimensional simplex denoted by 	V�� P 
� The following properties should be

noted�

Property � 
 In the representation 	V� P 
 for an 	n��
�dimensional simplex in the

special triangulation eK� of R
n � ��� ��� the �th vertex V is always an integer point in

the bottom layer� that is� belongs to J��

Property � 
 In the representation 	V� P 
 for an 	n��
�dimensional simplex in the

special triangulation eK� of R
n � ��� ��� there exists a positive integer r such that for

all i �� r � �� the ith vertex of 	V� P 
 belongs to the bottom layer� and for all i �� r�

the ith vertex of 	V� P 
 belongs to the top layer� The i here is the index satisfying the

property that if the permutation P � 	p�� � � � � pn
�
� then pi � n � �� This property

follows from the fact that the vertices of the simplex 	V� P 
 are obtained by letting

V� � V � and using 	����
 recursively�

Two 	n � �
�dimensional simplexes in the special triangulation eK� are said to

be adjacent� if they have a common n�dimensional simplex as a face 	i� e�� if 	n � �


of their vertices are the same
� Merrill�s algorithm generates a sequence of 	n � �
�

dimensional simplexes ��� ��� ��� � � � of eK� in which every pair of consecutive simplexes

are adjacent� So� given �j � �j
� is obtained by dropping a selected vertex V � of �j
and adding a new vertex V 
 in its place� The rules for obtaining �j
� given �j and

V � are called the entering vertex choice rules of the algorithm� These rules are

very simple� they permit the generation of vertices as they are needed� We provide

these rules here�

Let �j � 	V� P 
� where P � 	p�� � � � � pn
�
 is a permutation of f�� � � � � n � �g�
The vertices of �j are V� � V� V�� � � � � Vn
�� as determined by 	����
� Let V

� be the

dropping vertex� So V � is Vi for some i � � to n� �� There are several cases possible

which we consider separately�

Case � 
 fV�� V�� � � � � Vn
�g n fV �g � J�� By property �� this can only happen if

V � � V� and V� � J�� that is� p� � n � �� The face of �j obtained by dropping the

vertex V �� is the n�dimensional simplex hV�� � � � � Vn
�i in the top layer� and hence is
a boundary face� hV�� � � � � Vn
�i is the face of exactly one 	n� �
 dimensional simplex
in the triangulation eK�� �j � and the algorithm terminates when this happens�

Case � 
 fV�� V�� � � � � Vn
�gnfV �g � J�� By property �� this implies that V
� � Vn
�

and Vn � J�� that is pn
� � n � �� We will show that this case cannot occur in the

algorithm� So whenever V � � Vn
�� we will have pn
� �� n� � in the algorithm�

Case � 
 fV�� V�� � � � � Vn
�g n fV �g contains vertices on both the top and bottom
layers� So the convex hull of fV�� V�� � � � � Vn
�g n fV �g is an n�dimensional simplex

in the triangulation eK� which is an interior face� and hence is a face of exactly two

	n � �
 dimensional simplexes in the triangulation� one is the present �j� The other

�j
� is 	bV � bP 
 as given below 	V 
 given below is the new vertex in �j
� not in �j � it

is the entering vertex that replaces the dropping vertex V �
�
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V � V 
 	entering vertex
 bV bP
V � � V�

p� �� n� � Vn
� � I�p� V� � I�p� 	p�� � � � � pn
�� p�


	see Case �
y
V � � Vi Vi�� � I�pi�� V� 	p�� � � � � pi��� pi
��

� � i � n� � pi� pi
�� � � � � pn
�


V � � Vn
�

pn
� �� n� � V� � I�pn�� V� � I�pn�� 	pn
�� p�� � � � � pn


	see Case �
)

It can be veri�ed that if 	bV � bP 
 is de�ned as above� then bV � J� 	since V � J�
where V is the �th vertex of �j
 and so 	bV � bP 
 is an 	n � �
�dimensional simplex in

the special triangulation� and that 	bV � bP 
 and 	V� P 
 share 	n � �
 common vertices�
so they are adjacent 	n � �
 dimensional simplexes in this triangulation� See Figure

���� for an illlustration of the special triangulation eK� of R
� � ��� ���

The restriction of the special triangulation eK� of R
n � ��� �� to either the top

layer 	given by xn
� � �
 or the bottom layer 	given by xn
� � �
 in the same as

the triangulation K� of R
n� The mesh of the special triangulation eK� of R

n� ��� �� is
de�ned to be the mesh of the triangulation of Rn on either the top and bottom layer�

and hence it is
p
n�

We can get special triangulation of Rn � ��� �� of smaller mesh by scaling the

variables in Rn appropriately� Also� the origin in the Rn part can be translated to

any speci�ed point in Rn� Let x� � Rn be a speci�ed point and � a positive number�

Let J	x�� �
 �

���� x
xn
�

��� � x � 	xj
 � Rn� xj � x�j is an integer multiple of � for

each j � � to n� xn
� � � or �

�
� Then the points is J	x�� �
 are the vertices of the

special triangulation of Rn� ��� �� denoted by � eK�	x
�
� J�	x

�� �
 �

�
X �

��� x
xn
�

��� �

X � J	x�� �
� xn
� � �

�
� J�	x

�� �
 �

���� x
xn
�

��� � x � J	x�� �
� xn
� � �

�
� For any

V � J�	x
�� �
� and P � 	p�� � � � � pn
�
 a permutation of f�� � � � � n� �g de�ne

V� � V

Vi � Vi�� � �I�pi � i � � to n� �
	����


and let 	V� P 
 � hV�� V�� � � � � Vn
�i� The set of all 	n � �
 dimensional simplexes

	V� P 
 given by 	����
 with V � J�	x
�� �
 and P ranging over all the permutation of

y In this case� if p� � n��� as discussed in Case � above� the algorithm terminates�

So the algorithm continues only if p� �� n� � when this case occurs�
) In this case� we cannot have pn
� � n � �� as discussed in Case � above� So�

whenever this case occurs in the algorithm� we will have pn
� �� n� ��



��� Chapter �� The Complementary Pivot Algorithm

f�� � � � � n��g are the 	n��
�dimensional simplexes in the special triangulation � eK�	x
�


of Rn � ��� ��� Its mesh in �
p
n� In this triangulation� the vertex

���x�

�

��� plays the

same role as the origin

��� �
�

��� in the triangulation eK��

The Piecewise Linear Approximation and

a Linear Approximate �xed Point of F 	x


Consider the special triangulation eK� of R� ��� �� de�ned above� and let J�� J� be the
vertices in this triangulation on the bottom and top layers respectively� On the top

layer� we de�ne a a piecewise linear map f	X
 known as a piecewise linear approxi�

mation of F	x
 relative to the present triangulation� For each V �

��� v
�

��� � J� de�ne

f	V 
 �

��� f	v

�

���� where f	v
 � F	v
� The point f	v
 can be selected from the set

F	v
 arbitrarily� in fact it can be determined using the subroutine for �nding a point

from the set F	v
� which was pointed out as a required input for this algorithm� Any

nonvertex point X �

���x
�

��� on the top layer must lie in an n�dimensional simplex in

the triangulation on this layer� Suppose the vertices of this simplex are Vi �

��� vi
�

����
i � � to n � �� Then x can be expressed as a convex combinations of v�� � � � � vn
� in

a unique manner� Suppose this expression is ��v� � � � �� �n
�vn
� where �� � � � ��

�n
� � �� ��� � � � � �n
� �� �� Then de�ne f	x
 � ��f	v�
 � � � �� �n
�f	vn
�
� f	x


is the piecewise linear approximation of F	x
 de�ned on the top layer relative to the

present triangulation� For X �

���x
�

��� de�ne f	X
 �

��� f	x

�

���� In each n�dimensional
simplex in the top layer in this triangulation f	x
 is linear� So f	x
 is a well de�ned

piecewise linear continuous function de�ned on the top layer� Remember that the

de�nition of f	x
 depends on the choice of f	v
 from F	v
 for V �

��� v
�

��� � J��

The point x � Rn is said to be a linear approximate �xed point of F	x
 relative

to the present piecewise linear approximation if

x � f	x
 � 	����


The n�dimensional simplex

�
Vi �

��� vi
�

��� � i � � to n� �

�
on the top layer contains a

�xed point of the piecewise linear map f	x
 i� the system

�� � � � �n
�

� � � � � �

f	v�
� v� � � � f	vn
�
� vn
� �
�i �� �� i � � to n� �

	����
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has a feasible solution� Thus the problem of �nding a �xed point of the piecewise linear

approximation f	x
 boils down to the problem of �nding an n�dimensional simplex on

the top layer whose vertices are such that 	����
 is feasible�

For each vertex V �

��� v
�

��� in the top layer associate the column vector��� �
f	v
� v

��� � Rn
�� which we denote by A�V and call the label of the vertex V �

The coe�cient matrix in 	����
 whose columns are the labels of the vertices of the sim�

plex is called the label matrix corresponding to the simplex� Because of the nature

of the labels used on the vertices� this is called a vector labelling method�

An n�dimensional simplex on the top layer is said to be a completely labelled

simplex if the system 	����
 corresponding to it has a nonnegative solution� that is�

if it contains a �xed point of the current piecewise linear approximation�

Let V� �

��� v�
�

��� �

��� �
�

���� P � 	�� � � � � n��
 and let 	V�� P 
 � hV�� V�� � � � � Vn
�i�

where Vi �

��� vi
�

���� i � � to n� Then hV�� V�� � � � � Vni is the n�dimensional face of 	V��

P 
 in the bottom layer� Let W �

���w
o

��� be an arbitrary point in the interior of this

n�dimensional simplex hV�� � � � � Vni� for example� w � 	v�
���
vn

	n
�
 � For every vertex

V �

��� v
�

��� � J� in the bottom layer� de�ne f	V 
 �

��� f	v

�

��� �

���w
�

���� For any
nonvertex X in Rn � ��� ��� X must lie in some 	n � �
�dimensional simplex in the

present triangulation� say hV �
� � V

�
� � � � � � V

�
n
�i� So there exist unique numbers ��� � � � �

�n
� �� � such that �� � �� � � � �� �n
� � �� X � ��V
�
� � ��V

�
� � � � �� �n
�V

�
n
��

Then de�ne f	X
 � ��f	V
�
� 
� � � ���n
�f	V

�
n
�
� The map f	X
 is thus a continuous

piecewise linear map de�ned on Rn� ��� ��� In each 	n��
 dimensional simplex in the
present triangulation� f	X
 is linear� Also� under this map� every point in the bottom

layer maps into the point W � De�ne the label of any vertex V �

��� v
�

��� � J� to be the

column vector A�V �

��� �
w � v

��� � Rn
��

Let hV�� V�� � � � � Vni be the n�dimensional simplex in the bottom layer� from the

interior of which we selected the point W � Since W is in the interior of this simplex�

B�� the 	n��
� 	n��
 label matrix corresponding to this simplex is nonsingular� Let
b � 	�� �� �� � � � � �
T � Rn
�� Then the system corresponding to 	����
 for this simplex

is

�

B� b
� �

� �

	����


This system has the unique positive solution � � �b � B��
� b � �� since W is in the

interior of this simplex� Incidentally� this hV�� V�� � � � � Vni is the only n�dimensional

simplex in the bottom layer whose label matrix leads to a nonnegative solution to the

system like 	����
� The reason for it is that since W is in the interior of hV�� V�� � � � �
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Vni� W is not contained in any other simplex in the triangulation in the bottom layer�

Also� since �b � �� the n � 	n� �
 matrix 	�b ��� B��
�



has all rows lexicopositive� The

inverse tableau corresponding to the initial system 	����
 is

basic vector basis inverse

� B��
�

�b
	����


The initial simplex hV�� V�� � � � � Vni in the bottom layer is an n�dimensional face of the

unique 	n� �
�dimensional simplex hV�� V�� � � � � Vn� Vn
�i in the present triangulationeK�� Introduce a new variable� say �n
�� in 	����
 with its column vector equal to the

label of this new vertex Vn
�� and bring this variable into the present basic vector� The

pivot column for this pivot operation is B��
� A�Vn�� � If this pivot column is nonpositive�

it would imply that the set of feasible solutions of this augmented system 	����
 with

this new variable is unbounded� which is impossible since the �rst constraint in the

system says that the sum of all the variables is �� and all the variables are nonnegative�

So� the pivot column contains at least one positive entry� and it is possible to bring

the new variable into the present basic vector� The dropping variable is determined

by the usual lexico minimum ratio test of the primal simplex algorithm� this always

determines the dropping variable uniquely and unambiguously and maintains the sys�

tem lexico feasible� If the label of Vi is the dropping column� the next basis is the

label matrix of the n�dimensional simplex hV�� � � � � Vi��� Vi
�� � � � � Vn
�i� The inverse
tableau corresponding to this new basis is obtained by entering the pivot column by

the side of the present inverse tableau in 	����
 and performing a pivot step in it� with

the row in which the dropping variable �i is basic� as the pivot row�

By the properties of the triangulation� the new n�dimensional simplex hV�� � � � �
Vi��� Vi
�� � � � � Vn
�i is the face of exactly one or two 	n � �
 dimensional simplexes
in the triangulation� One is the simplex hV�� � � � Vn
�i� If there is another� it must be
a simplex of the form hY� V�� � � � � Vi��� Vi
�� � � � � Vn
�i� Then bring the column A�Y
into the basis next� Continuing in this manner� we generate a unique path of the form

Sn� � S
n
�
� � Sn� � S

n
�
� � � � �� Here Snk � S

n
�
k represent the kth n�dimensional simplex and

	n � �
�dimensional simplex respectively in this path� Termination can only occur

if at some stage the basis corresponds to an n�dimensional simplex Snr all of whose

vertices are on the top layer� Each n�dimensional simplex in this path is the face

of at most two 	n � �
�dimensional simplexes� we arrive at this face through one of

these 	n � �
�dimensional simplexes� and leave it through the other� The initial n�

dimensional simplex in the bottom layer is a boundary face� and hence is the face of

a unique 	n� �
�dimensional simplex in the triangulation� So the path continues in a

unique manner and it cannot return to the initial n�dimensional simplex again� Also�

since the initial n�dimensional simplex is the only n�dimensional simplex in the bottom

layer for which the system corresponding to 	����
 is feasible� the path will never pass

through any other n�dimensional simplex in the bottom layer after the �rst step� Any

n�dimensional simplex obtained on the path whose vertices belong to both the bottom

and top layers is an interior face� so it is incident to two 	n��
�dimensional simplexes�
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we arrive at this n�face through one of these 	n� �
�dimensional simplexes and leave

it through the other� and the algorithm continues� The reader can verify that the

properties of the path generated are very similar to the almost complementary basic

vector path traced by the complementary pivot algorithm for the LCP� Thus we see

that the path continues uniquely and unambiguously and it can only terminate when

the columns of the current basis are the labels of vertices all of whom belong to the

top layer� When it terminates� from the �nal BFS we get a �xed point of the current

piecewise linear approximation�

Example ����

Consider n � �� We consider a single�valued map fromR� toR�� F	x
 � fx���x��g�
x � R�� The special triangulation of R� � ��� �� is given in Figure �����

V0 V1 4V

V5V3V2

1
4

1
1

1
0

-3/2
11

-1/2
1

1/2

0 0 1 2 3

Figure ���� The column vector by the side of a vertex is its vector label�

The vertices for the triangulation are all the points with integer coordinates in

R� � ��� ��� For each V �

��� v
�

��� on the top layer with v integer� we de�ne f	v
 �

v� � �v � �� We take the initial ��dimensional simplex on the bottom layer to be

hV�� V�i and the point W to be the interior point 	w� �
T �
	
�
� � �

T
in it� For each V ���� v

�

��� in the bottom layer� de�ne f	V 
 � W �
	
�
� � �

T
� The label of the vetex V ���� v

xn
�

��� is

��� �
f	v
� v

��� if xn
� � �� or

��� �
w � v

��� if xn
� � �� The labels of some

of the vertices are entered in Figure ����� The initial system corresponding to 	����


here is
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�� ��

� � �

�
� ��

� �
��� �� �

� �

The feasible solution of this system and the basis inverse are given below�

Basic Basis �b Pivot Column Ratios

variable Inverse �A�V�

��
�
�

� �
�

�
�

�
�
� �
�

Min�

��
�
� � � �

� ��
�

The initial simplex hV�� V�i is the face of the unique ��dimensional simplex hV�� V�� V�i
in the triangulation� So we associate the label of V� with a variable �� and bring it

into the basic vector� The pivot column is���� �
� �
�
� ��

���� ��� �
�

��� �

���� �
�

��
�

���� � �A�V�

and this is entered on the inverse tableau� The dropping variable is �� and the pivot

element is inside a box� Pivoting leads to the next inverse tableau� For ease in un�

derstanding� the vertices are numbered as Vi� i � �� �� � � � in Figure ���� and we will

denote the variable in the system associated with the label of the vertex Vi by �i�

Basic Basis �b Pivot Column Ratios

variable Inverse �A�V�

��
�
�

�
�

�
�

�
�

�
� Min�

��
�
� ��

�
�
�

�
�

�
�

The current ��simplex hV�� V�i is the face of hV�� V�� V�i and hV�� V�� V�i� We came
to the present basic vector through hV�� V�� V�i� so we have to leave hV�� V�i through
the ��simplex hV�� V�� V�i� Hence the updated column of the label of V�� �A�V� � is the
entering column� It is already entered on the inverse tableau� The dropping variable

is ��� Continuing� we get the following
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Basic Basis �b pivot Column Ratios

variable Inverse �A�V�

��
�
�

�
�

�
�

��
�

��
�
� ��

�
�
�

�
�

�
� Min�

�A�V�

��
�
�

�
�

�
�

�
�

�

��
�
�

��
�

�
�

�
� �

�� � � �

�� � �� �

In the basic vector ��� ��� there is a tie for the dropping variable by the usual primal

simplex minimum ratio test� and hence the lexico minimum ratio test was used in

determining the dropping variable� The algorithm terminates with the basic vector

	��� ��
 since the corresponding vertices V�� V� are both in the top layer� The �xed

point of the piecewise linear approximation is �� v���� v� � �� ���� � � �� from

the terminal BFS� It can be veri�ed that x � � is indeed a �xed point of F	x
� since

F	�
 � f�g�

Su
cient Conditions for Finite Termination with a

Linear Approximate Fixed Point

Once the triangulation of Rn� ��� �� and the piecewise linear approximation are given�
the path generated by this algorithm either terminates with an n�dimensional simplex

on the top layer 	leading to a �xed point of the present piecewise linear approximation


after a �nite number of pivot steps� or continues inde�nitely� Su�cient conditions to

guarantee that the path terminates after a �nite number of steps are discussed in �������

where the following theorem is proved�

Theorem ���� Given "x � Rn and � � � let B	"x� �
 � fx � x � Rn satisfying

kx� "xk �� � g� Suppose there are �xed positive numbers � and � and a point �x � Rn

satisfying� for each x � B	�x� �
	 y � B	x� �
nB	�x� �
 and u � F	x
	 	u�x
T 	y��x
 � ��

Let x� by an arbitrary point inRn� If the above algorithm is executed using the starting

point x � fx�g �B	�x� � � �
 and a special triangulation eK� with its mesh �
� �	 then	

the algorithm terminates in a �nite number of steps with a linear approximate �xed

point of F	x
� Also	 every linear approximate �xed point lies in B	�x� � � �
�

We refer the reader to O� H� Merril�s Ph� D� thesis ������ for a proof of this theorem�

But it is very hard to verify whether these conditions hold in practical applications�

In practical applications we apply the algorithm and let the path continue until some
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prescribed upper bound on computer time is used up� If termination does not occur

by then� one usually stops with the conclusion that the method has failed on that

problem�

One strange feature of the su�cient conditions to guarantee �nite termination of

the above algorithm is the following� Let f	x
 � 	f�	x
� � � � � fn	x


T be a continuously

di�erentiable function from Rn into Rn� and suppose we are applying the algorithm

discussed above� on the �xed point formulation for the problem of solving the system

of equations �f	x
 � ��� Solving the system �f	x
 � �� is equivalent to �nding

the Kakutani �xed point of either F�	x
 � ff	x
 � xg or F�	x
 � f�f	x
 � xg�
Mathematically� the problem of �nding a �xed point of F�	x
 or F�	x
 are equivalent�

However� if F�	x
 satis�es the su�ciency condition for �nite termination� F�	x
 will

not� Thus� if the algorithm is applied to �nd the �xed points of F�	x
� and F�	x
� the

behavior of the algorithm on the two problems could be very di�erent� On one of them

the algorithm may have �nite termination� and on the other it may never terminate�

This point should be carefully noted in using this algorithm in practical applications�

Algorithm to generate an Approximate Fixed Point of F	x


Select a sequence of positive numbers �� � �� ��� ��� � � � converging to zero� Let x
� � ��

Set t � � and go to Step ��

Step � 
 De�ne the piecewise linear approximation for F	x
 relative to the special

triangulation �t eK�	x
t
 choosing the point W from the interior of the translate of the

n�dimensonal face of the initial simplex h�� I��� � � � � I�ni on the bottom layer in this tri�

angulation� Find a �xed point of this piecewise linear approximation using this special

triangulation by the algorithm discussed above� Suppose the �xed point obtained is

xt
�� xt
� is a linear approximate �xed point of F	x
 relative to this special triangu�

lation �t eK�	x
t
� If xt
� � F	xt
�
� terminate� xt
� is a �xed point of F	x
� Otherwise

go to Step ��

Step � 
 Replace t by t� � and do Step ��

So this method generates the sequence fx�� x�� x�� � � �g of linear approximate �xed
points for F	x
� If at any stage xt � F	xt
� it is a �xed point of F	x
 and we terminate�

Otherwise� any limit point of the sequence fxt � t � �� �� � � �g can be shown to be a
�xed point of F	x
� In practice� if �nite termination does not occur� we continue until

�t becomes su�ciently small and take the �nal x
t as an approximate �xed point of

F	x
�

To �nd Fixed Points of USC Maps De�ned on a

Compact Convex Subset $$$ � Rn

Without any loss of generality we can assume that $$$ has a nonempty interior 	if the

interior of $$$ in Rn is �� the problem is not altered by replacing Rn by the a�ne hull

of $$$� in which $$$ has a nonempty interior
� Let F	x
 be the given USC map� So F	x
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is de�ned for all x � $$$� and for all such x� F	x
 is a compact convex subset of $$$� Since
this map is only de�ned on $$$� and not on the whole of Rn� the algorithm discussed

above does not apply to this problem directly� However� as pointed out by B� C� Eaves

������� we can extend the de�nition of F	x
 to the whole of Rn as below� Let c be any

point from the interior of $$$�

F�	x
 �

�
� fcg� if x �� $$$
convex hull of fc�F	x
g� if x � boundary of $$$
F	x
� if x � interior of $$$�

It can be veri�ed that F�	x
 is now a USC map de�ned on Rn� and that every �xed

point of F�	x
 is in $$$ and is also a �xed point of F	x
 and vice versa� Since F�	x
 is

de�ned over all of Rn� the method discussed above can be applied to �nd a �xed point

of it�

Homotopy Interpretation

In the algorithm discussed above for computing a �xed point of the piecewise linear

approximation� there are two layers� the bottom layer and the top layer� We have

the same triangulation of Rn in both the bottom and top layers� The labels for the

vertices on the bottom layer are arti�cial labels corresponding to a very simple map

for which we know the �xed point� The labels for the vertices on the top layer are

natural labels corresponding to the piecewise linear map whose �xed point we want to

�nd� The algorithm starts at the known �xed point of the arti�cial map of the bottom

layer and walks its way through the triangulation until it reaches a �xed point of the

piecewise linear map on the top layer� This makes it possible to interpret the above

algorithm as a homotopy algorithm� Other homotopy algorithms for computing �xed

points with continuous re�nement of the grid size have been developed by B� C� Eaves

������ and B� C� Eaves and R� Saigal ������ and several others ����� to ������

Comments ��� H� Scarf ������ �rst pointed out that the basic properties of the

path followed by the complementary pivot algorithm in the LCP can be used to com�

pute approximate Brouwer�s �xed points using partitions of the space into sets called

primitive sets� and T� Hansen and H� Scarf ������ extended this into a method for

approximating Kakutani �xed points� The earliest algorithms for computing approx�

imate �xed points using triangulations are those by B� C� Eaves ������� H� W� Kuhn

������� These early algorithms su�ered from computational ine�ciency because they

start from outside the region of interest� The �rst method to circumvent this di�culty

is due to O� H� Merrill ������ ����� discussed above� The applications of �xed point

methods in nonlinear programming discussed in Sections ������ ������ ������ ����� and

����� are due to O� H� Merrill ������� Besides the triangulation K� discussed above�

Merrill�s algorithm can be implemented using other triangulations� see M� J� Todds

book ������ and the papers ����� to ������
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��
 COMPUTATIONAL COMPLEXITY OF THE

COMPLEMENTARY PIVOT ALGORITHM

The computational complexity of an algorithm measures the growth of the com�

putational e�ort involved in executing the algorithm as a function of the size of the

problem� In the complementary pivot algorithm� we will assess the computational ef�

fort by the number of pivot steps carried out before the algorithm terminates� There

are three commonly used measures for studying the computational complexity of an

algorithm� These are discussed below�

Worst Case Computational Complexity

This measure is a tight mathematical upper bound on the number of pivot steps re�

quired before termination� as a function of the size of the problem� In studying the

worst case computational complexity we will assume that the data is integer� or more

generally� rational� that is� each mij � qi in the matrices q� M is a ratio of two inte�

gers� In this case by multiplying all the data by a suitable positive integer� we can

transform the problem into an LCP in which all the data is integer� Hence without

any loss of generality we assume that all the data is integer� and de�ne the size of

the problem to be the total number of bits of storage needed to store all the data in

the problem in binary form� See Chapter � where a mathematical de�nition of this

size is given� The worst case computational complexity of an algorithm provides a

guaranteed upper limit on the computational e�ort needed to solve any instance of

the problem by the algorithm� as a function of the size of the instance� The algorithm

is said to be polynomially bounded if this worst case computational complexity is

bounded above by a polynomial of �xed degree in the size of the problem� that is� if

there exist constants �� r independent of the size� such that the computational e�ort

needed is always �� �sr when the algorithm is applied on problems of size s� Even

though the worst case computational complexity is measured in terms of the number

of pivot steps� each pivot step needs O	n�
 basic arithmetical operations 	addition�
multiplication� division� comparison
 on data each of which has at most s digits� where

s is the size and n the order of the instance� so if the algorithm is polynomially bounded

in terms of the number of pivot steps� it is polynomially bounded in terms of the basic

arithmetical operations� In Chapter � we conclusively establish that the complemen�

tary pivot algorithm is not a polynomially bounded algorithm in this worst case sense�

Using our examples discussed in Chapter �� in ������ M� J� Todd constructed examples

of square nonsingular systems of linear equations �Ax� b � ��� with integer data� for

solving which the computational e�ort required by Merrill�s algorithm of Section ������

grows exponentially with the size of the problem�

An algorithm may have a worst case computational complexity which is an ex�

ponentially growing function of the size of the problem� just because it performs very

poorly on problem instances with a very rare pathological structure� Such an algorithm
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might be extremely e�cient on instances of the problem not having the rare patholog�

ical structure� which may never show up in practical applications� For this reason� the

worst case measure is usually very poor in judging the computational e�ciency of an

algorithm� or its practical utility�

The Probabilistic Average Computational Complexity

Here we assume that the data in the problem is randomly generated according to

some assumed probability distribution� The average computational complexity of the

algorithm under this model is then de�ned to be the statistical expectation of the

number of steps needed by the algorithm before termination� on problem instances

with this data� Since the expectation is a multiple integral� this average analysis

requires techniques for bounding the values of multiple integrals� If the probability

distributions are continuous distributions� the data generated will in general be real

numbers 	not rational
� and so in this case we de�ne the size of the LCP to be its

order n� We assume that each pivot step in the algorithm is carried out on the real

data using exact arithmetic� but assess the computational complexity by the average

number of pivot steps carried out by the algorithm before termination�

M� J� Todd performed the average analysis in ������ under the folowing assump�

tions on the distribution of the data 	q�M
�

i
 With probability one� every square submatrix of M whose sets of row indices

and column indices di�er in at most one element� is nonsingular�

ii
 q is nondegenerate in the LCP 	q�M
�

iii
 The distributions of 	q�M
 are sign�invariant� that is� 	q�M
 and 	Sq� SMS


have identical distributions for all sign matrices S 	i� e�� diagonal matrices

with diagonal entries of �� or ��
�
Under these assumptions he showed that the expected number of pivot steps taken

by the lexicographic Lemke algorithm 	see Section �����
 before termination when

applied on the LCP 	q�M
 is at most n	n
�

� �

M� J� Todd ������ also analysed the average computational complexity of the lex�

icographic Lemke algorithm applied on the LCP corresponding to the LP

minimize cx

subject to Ax �� b

x �� �

under the following assumptions� A is a matrix of order m � N � The probability

distribution generating the data 	A� b� c
 and hence the data 	q�M
 in the corresponding

LCP satis�es the following assumptions �

i
 with probability one� the LP and its dual are nondegenerate 	every solution of

Ax� u � b has at least m nonzero variables� and every solution of yA� v �

c has at least N nonzero variables
� and every square submatrix of A is

nonsingular�
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ii
 the distributions of 	A� b� c
 and of 	S�AS�� S�b� S�c
 are identical for all sign

matrices S�� S� of appropriate dimension
� This is the sign invariance re�

quirement�

Under these assumptions he showed that the expected number of pivot steps taken

by the lexicographic Lemke algorithm when applied on the LCP corresponding to this

LP is at most� minimum
�
m�
�m
��

�
� �N

�
�N
�
�

�
� See also ������ for similar results

under slightly di�erent probabilistic models�

In a recent paper� ������ R� Saigal showed that the expected number of pivot steps

taken by the lexicographic Lemke algorithm when applied on the LCP corresponding

to the above LP is actually bounded above by m and asymptotically approaches m
�
���

where m is the number of rows in A�

Unfortunately� these nice quadratic or linear bound expected complexity results

seem very dependent on the exact manner in which the algorithm is implemented� and

on the problabilistic model of the data� For example� it has not been possible so far to

obtain comparable results for the complementary pivot algorithm of Section ��� which

uses the column vector e of all ��s as the original column vector of the arti�cial variable

z��

Empirical Average Computation Complexity

This measure of computational complexity is used more in the spirit of simulation�

Here� a computational experiment is usually performed by applying the algorithm on

a large number of problem instances of various sizes� and summary statistics are then

prepared on how the algorithm performed on them� The data is usually generated

according to some distribution 	typically we may assume that each data element is a

uniformly distributed random variable from an interval such as ���� to ����� etc�
� In
the LCP� we may also want to test how the complementary pivot algorithm performs

under varying degrees of sparsity of q andM � For this� a certain percentage of randomly

chosen entries in q andM can be �xed as zero� and the remaining obtained randomly as

described above� It may also be possible to generateM so that it has special properties�

As an example� if we want to experiment on LCPs associated with PSD symmetric

matrices� we can generate a random square matrix A as above and takeM to be ATA�

Such computational experiments can be very useful in practice� The experiments

conducted on the complementary pivot algorithm� suggest that the empirical average

number of pivot steps before termination grows linearly with n� the order of the LCP�

We know that Merrill�s simplicial method for computing the �xed point of a piece�

wise linear map discussed in Section ����� may not terminate on some problems� Com�

putational experiments indicate that on problems on which it did terminate� the av�

erage number of simplices that the algorithm walked through before termination� is

O	n�
� as a function of the dimension of the problem� See ����� to ������



��
� The General Quadratic Programming Problem ���

��� THE GENERAL QUADRATIC

PROGRAMMING PROBLEM

From the results in Section ��� we know that the complementary pivot method pro�

cesses convex quadratic programs with a �nite computational e�ort� Here we discuss

the general� possibly nonconvex� quadratic programming problem� This is a problem

in which a general quadratic objective function is to be minimized subject to linear

constraints�

The Reduction Process

If there is an equality constraint on the variables� using it� obtain an expression for

one of the variables as an a�ne function of the others� and eliminate this variable and

this constraint from the optimization portion of the problem� A step like this is called

a reduction step� it reduces the number of variables in the optimization problem

by one� and the number of constraints by one� In the resulting problem� if there is

another equality constraint� do a reduction step using it� and continue in the same

manner� When this work is completed� only inequality constraints remain� and the

system of constraints assumes the form FX �
� f � which includes any sign restrictions

and lower or upper bound constraints on the variables� We assume that this system is

feasible� An inequality constraint in this system is said to be a binding inequality

constraint if it holds as an equation at all feasible solutions� A binding inequality

constraint can therefore be treated as an equality constraint without a�ecting the set

of feasible solutions� Binding inequality constraints can be identi�ed using a linear

programming formulation� Introduce the vector of slack variables v and transform the

system of constraints into FX � v � f � v �
� �� The ith constraint in the system�

Fi�X �
� fi� is a binding constraint i� the maximum value of vi subject to FX � v � f �

v �� �� is zero� Using this procedure identify all the binding constraints� change each

of them into an equality constraint in the system� Carry out further reduction steps

using these equality constraints� At the end� the optimization portion of the problem

reduces to one of the following form

Minimize �	x
 � cx� �
�x

TDx

Subject to Ax �� b
	����


satisfying the property that Ax � b is feasible� Let A be of order m� n� Without any

loss of generality we assume that D is symmetric 	because xTDx � xT D
DT

� x and
D
DT

� is a symmetric matrix
� Let K � fx � Ax �� bg� By our assumptions here K �� �
and in fact K has a nonempty interior� Every interior point of K satis�es Ax � b and

vice versa� We also assume that K is bounded� The solution of the problem when K

is unbounded can be accomplished by imposing additional constraints �� �
� xj �� �

for each j� where � is a large positive valued parameter� The parameter � is not given
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any speci�c value� but treated as being larger than any number with which it may be

compared� The set of feasible solution of the augmented problem is bounded� and so

the augmented problem can be solved by the method discussed below� If the optimum

solution of the augmented problem is independent of � when � is positive and large�

it is the optimum solution of the original problem 	����
� On the other hand if the

optimum solution of the augmented problem depends on � however large � may be�

and the optimum objective value diverges to �	 as � tends to �	� the objective
function is unbounded below in the original problem� In the sequel we assume that K

is bounded� Under these assumptions� 	����
 will have an optimum solution� If D is

not PSD� we have the following theorem�

Theorem ���� If D is not PSD	 the optimum solution of �
���� cannot be an interior

point of K�

Proof� Proof is by contradiction� Suppose �x� an interior point of K� is an optimum

solution of 	����
� Since �x is an interior point of K� we have A�x � b� and a necessary

condition for it to be optimum for 	����
 	or even for it to be a local minimum for

	����

 is that the gradient vector of �	x
 at �x� which is r�	�x
 � c� �xTD � �� Since

D is not PSD� there exists a vector y �� � satisfying yTDy � �� Using c� �xTD � �� it

can be veri�ed that �	�x� �y
 � �	�x
 � 
�

� y
TDy� Since �x satis�es A�x � b� we can �nd

� � � and su�ciently small so that �x��y is feasible to 	����
� and �	�x��y
 � �	�x
�

�

� y
TDy � �	�x
� contradiction to the hypothesis that �x is optimal to 	����
� So if D

is not PSD� every optimum solution must be a boundary point of K� that is� it must

satisfy at least one of the constraints in 	����
 as an equation�

The Method

Express the problem in the form 	����
� using the reduction steps discussed above as

needed� so that the system Ax � b is feasible� Suppose A is of order m � n� Then

we will refer to the problem 	����
 as being of order 	m�n
� where n is the number of

decision variables in the problem� and m the number of inequality constraints on these

variables�

Check whether D is PSD� This can be carried out by the e�cient algorithm dis�

cussed in Section ����� with a computational e�ort of O	n�
� If D is PSD� 	����
 is

a convex quadratic program� the optimum solution for it can be computed using the

complementary pivot algorithm discussed in earlier sections� with a �nite amount of

computational e�ort� If D is not PSD� generate m candidate problems as discussed

below� This operation is called the branching operation�

For i � � to m� the ith candidate problem is the following �

Minimize cx� �
�x

TDx

Subject to Ap�x �� bp� p � � to m� p �� i

Ai�x � bi �

	����
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If D is not PSD� by Theorem ����� every optimum solution for 	����
 must be an

optimum solution of at least one of the m candidate problems�

Each of the candidate problems is now processed independently� The set of fea�

sible solutions of each candidate problem is a subset 	a face
 of K� the set of feasible

solutions of the original problem 	����
� Using the equality constraint� a reduction step

can be carried out in the candidate problem 	����
� In the resulting reduced problem

identify any binding inequality constraints by a linear programming formulation dis�

cussed earlier� Treat binding constraints as equality constraints and carry out further

reduction steps� The �nal reduced problem is one of the same form 	����
� but of order
�
� 	m � �� n � �
� Test whether it is a convex quadratic programming problem 	this

could happen even if the original problem 	����
 is not a convex quadratic program


and if it is so� �nd the optimum solution for it using the complementary pivot algo�

rithm and store its solution in a solution list� If it is not a convex quadratic program

carry out the branching operation on it and generate additional candidate problems

from it� and process each of them independently in the same way�

The total number of candidate problems to be processed is �� �m� When there are

no more candidate problems left to be procesed� �nd out the best solution 	i� e�� the

one with the smallest objective value
 among those in the solution list at that stage�

That solution is an optimum solution of the original problem�

This provides a �nite method for solving the general quadratic programming prob�

lem� It may be of practical use only if m and n are small numbers� or if the candidate

problems turn out to be convex quadratic programs fairly early in the branching pro�

cess� On some problems the method may require a lot of computation� For example�

if D in the original problem 	����
 is negative de�nite� every candidate problem with

one or more inequality constraints will be nonconvex� and so the method will only

terminate when all the extreme points of K are enumerated in the solution list� In

such cases� this method� eventhough �nite� is impractical� and one has to resort to

heuristics or some approximate solution methods�

����� Testing Copositiveness

Let M be a given square matrix of order n� Suppose it is required to check whether

M is copositive� From the de�nition� it is clear that M is copositive i� the optimum

objective value in the following quadratic program is zero�

Minimize xTMx

Subject to x �� �

eTx �� � �
	����


where e is the column vector of all ��s in Rn� We can check whether M is PSD

with a computational e�ort of O	n�
 by the e�cient pivotal methods discussed in
Section ������ If M is PSD� it is also copositive� If M is not PSD� to check whether
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it is copositive� we can solve the quadratic program 	����
 by the method discussed

above� If the optimum objective value in it is zero� M is copositive� not otherwise�

This provides a �nite method for testing copositiveness� However� this method is not

practilly useful when n is large� Other methods for testing copositiveness are discussed

in ������ ������ See also Section ������

Exercise

��� Using the results from Section ���� prove that the general quadratic programming

problem 	����
 with integer data is an NP�hard problem�

Comments ���� Theorem ���� is from R� K� Mueller ������� The method for the

general quadratic programming problem discussed here is from ������ of K� G� Murty�

����� Computing a KKT point for a

General Quadratic Programming Problem

Consider the QP 	quadratic program


minimize Q	x
 � cx� �
�x

TDx

subject to Ax �� b

x �� �
	����


where D is a symmetric matrix of order n� and A� b� c are given matrices of orders

m � n� m � �� and � � n respectively� We let K denote the set of feasible solutions

of this problem� If D is PSD� this is a convex quadratic program� and if K �� �� the
application of the complementary pivot algorithm discussed in Sections ���� ��� on the

LCP corresponding to this QP will either terminate with the global minimum for this

problem� or provide a feasible half�line along which Q	x
 diverges to �	�
Here� we do not assume that D is PSD� so 	����
 is the general QP� In this case

there can be local minima which are not global minima 	see Section ���� for de�nitions

of a global minimum� local minimum
� the problem may have KKT points which are

not even local minima 	for example� for 	����
 verify that x � � is a KKT point�

and that this is not even a local minimum for that problem if D is not copositive
�

The method discussed at the beginning of Section ��� is a total enumeration method

	enumerating over all the faces of K
 applicable when K is bounded� In this section we

do not make any boundedness assumption on K� We prove that if Q	x
 is unbounded

below on K� there exists a half�line in K along which Q	x
 diverges to �	� We also
prove that if Q	x
 is bounded below on K� then 	����
 has a �nite global minimum

point� This result was �rst proved by M� Frank and P� Wolfe ������� but our proofs

are based on the results of B� C� Eaves ������ We also show that the complementary
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pivot method applied on an LCP associated with 	����
 will terminate with one of

three possible ways

	i
 establish that K � �� or
	ii
 �nd a feasible half�line in K along which Q	x
 diverges to �	� or
	iii
 �nd a KKT point for 	����
�

From the results in Chapter �� we know that �x � K is a KKT point for 	����
 i�

there exist vectors �y� �v � Rm and �u � Rn which together satisfy��� �u
�v

����
���D �AT

A �

������ �x
�y

��� �

��� cT

�b
���

	����
��� �u
�v

��� �
� ��

��� �x
�y

��� �
� ��

��� �u
�v

���T ��� �x
�y

��� � �

which is an LCP� We will call 	�x� �y� �u� �v
 a KKT solution corresponding to the KKT

point �x� For the sake of simplicity� we denote���u
v

��� by w� and

���x
y

��� by z

���D �AT

A �

��� by M� and

��� cT

�b
��� by q

n�m by N �

So� if 	 �w� �z
 is complementary solution of the LCP 	����
� then 	�z�� � � � � �zn
 � �x is a

KKT point for 	����
�

A KKT point �x for 	����
 is said to be a reduced KKT point for 	����
 if the set

of column vectors

�
M�j �

���D�j
A�j

��� � j such that �xj � �

�
is linearly independent�

Lemma ���� Let �x be a KKT point for �
����� From �x	 we can derive either a

reduced KKT point %x such that Q	%x
 �� Q	�x
	 or a feasible half�line in K along which

Q	x
 diverges to �	�

Proof� Let
	
�w � 	�u� �v
� �z � 	�x� �y




be a KKT solution associated with �x� Let J� �

fj � �wj � �g� J� � fj � �zj � �g� By complementarity J� � J� � f�� � � � � Ng� From
the fact that 	 �w� �z
 is a KKT solution 	i�e�� it satis�es 	����

 it can be veri�ed that

Q	�x
 � �
� 	c�x� �yT b
 � �

�	c� b
T 
�z� Consider the following LP

minimize �
� 	c� b

T 
�z

subject to w �Mz � q

wj � � for j � J�
zj � � for j � J�
wj �� � for j �� J�
zj �� � for j �� J�

	����
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If 	w� z
 is any feasible solution to this LP� from the constraints in 	����
 it is clear

that the corresponding x � 	z�� � � � � zn
 is in K� and that w
T z � � 	complementarity
�

by this complementarity we have Q	x
 � �
� 	c� b

T 
z�

There are only two possibilities for the LP 	����
� Either the objective function is

unbounded below in it� in which case there exists a feasible half�line� say f	w�� z�
 �

�	wh� zh
 � � �� �g along which the objective value diverges to �	 	this implies that

the corresponding half�line fx� � �xh � � �
� �g is in K and Q	x
 diverges to �	 on

it
� or that it has an optimum solution� in which case it has an optimum BFS� If 	 %w� %z


is an optimum BFS of 	����
� the corresponding %x is a reduced KKT point for 	����


and Q	%x
 � �
�	c� b

T 
%z ��
�
� 	c� b

T 
�z � Q	�x
�

Lemma ���� If the QP has a global optimum solution	 it has a global optimum solu�

tion �x satisfying the property that the set of vectors

����D�j
A�j

��� � j such that �xj � �

�
is linearly independent�

Proof� Follows from Lemma �����

Lemma ���� For given D	 A� there exists a �nite set of matrices L�� � � � � Ll	 each

of order n � N 	 such that for any c	 b if x is a reduced KKT point of �
����	 then

x � Lt

��� cT

�b
��� for some t�

Proof� Let x be a reduced KKT point for 	����
� Let
	
w � 	u� v
� z � 	x� y




be the

corresponding KKT solution� Then 	w� z
 is a BFS of an LP of the form 	����
� Since

it is a BFS� there exists a basic vector and associated basis B for 	����
 such that this

	w� z
 is de�ned by

nonbasic variables � �

basic vector � B��q

The matrix Lt can have its j
th row to be � if xj is a nonbasic variable� or the r

th row

of B��if xj is the r
th basic variable in this basic vector� By complementarity� there

are only �N systems of the form 	����
� and each system has a �nite number of basic

vectors� so the collection of matrices of the form Lt constructed as above is �nite and

depends only on D� A� So� for any q� any reduced KKT point must be of the form Ltq

for some Lt in this �nite collection�

Theorem ���� Assume that K �� �� Either the QP �
���� has a global minimum	

or there exists a feasible half�line in K along which Q	x
 diverges to �	�

Proof� Let f�p � p � �� �� � � �g be an increasing sequence of positive numbers diverging
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to �	� such that K � fx � ex �� ��g �� �� Consider the QP

minimize cx� �
�x

TDx

subject to Ax �� b

x �� �

ex �� �p

	����


For every p in this sequence� 	����
 has a non�empty bounded solution set� and hence

has a global nimimum� By Lemma ����� it has a global minimum which is a reduced

KKT point for 	����
� Applying Lemma ���� to the QP 	����
� we know that there

exists a �nite collection of matrices fL�� � � � � Llg independent of the data in the right
hand side constants vector in 	����
� such that every reduced KKT point for 	����
 is

of the form

Lt

������� cT

�b
�p

������� � Lt

������� cT

�b
�

�������� �pLt

������� ��
�

������� 	����


for some t� So� for each p � �� �� � � �� there exists a t between � to l such that the global

minimum of 	����
 for that p is of the form given in 	����
� Since there are only a �nite

number l� of these t�s� there must exist a t� say t�� which gives the global minimum for

an in�nite number of p�s� Let the subsequence corresponding to these p�s in increasing

order be P � fp�� p�� � � �g� Let

%x � Lt�

������� cT

�b
�

������� � �y � Lt�

������� ��
�

�������
Then the global minimum for 	����
 is x	pr
 � %x� �pr �y when p � pr� for r � �� �� � � ��

So� the optimum objective value in this problem is Q
	
x	pr




� Q

	
%x� �pr �y



� and this

is of the form a� � a��pr � a��
�
pr
� The quantity �pr is monotonic increasing with r�

so the set of feasible solutions of 	����
 for p � pr becomes larger as r increases� so

Q
	
x	pr




is monotonic decreasing with r� These facts imply that either a� � � or

a� � � and a� �
� �� If a� � � or a� � � and a� � �� Q

	
x	pr




diverges to �	 as

r tends to �	� in this case f%x � ��y � � �
� �p�g is a half�line in K along which Q	x


diverges to �	� On the other hand� if a� � a� � �� Q	x
 is bounded below by a� on

K� and in this case %x� �pr �y is a global minimum for 	����
 for any r�

The Algorithm

To compute a KKT point for 	����
� apply the complementary pivot method on the

LCP 	�� F 
 of order n�m� �� where

� �

������� cT

�b
qn
m
�

������� � F �

������� D �AT e
A � �
�eT � �

�������
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where qn
m
� is treated as a large positive valued parameter without giving any speci�c

value for it 	i�e�� qn
m
� is treated as being larger than any numer with which it is

compared
� with the original column vector of the arti�cial variable z� taken to be

	������ � � � ���� �
 � Rn
m
�� By Lemma ���� it can be veri�ed that the matrix M

de�ned above is an L��matrix� If the complementary pivot method terminates in a

secondary ray� by Theorem ���� we conclude that

�Ax �
� �b

ex �
� qn
m
�

x �
� �

is infeasible for qn
m
� arbitrarily large� that is

Ax �
� b

x �
� �

is infeasible� So 	����
 is infeasible� if ray termination occurs in the complementary

pivot algorithm when applied on the LCP 	�� F 
�

Suppose the complementary pivot method terminates with a complementary so�

lution
	
�w � 	 �wj
� �z � 	�zj




where �w� �z � Rn
m
�� If �wn
m
� � �� �zn
m
� � ��

it can be veri�ed that
	
	 �w�� � � � � �wn
m
� 	�z�� � � � � �zn
m




is a complementary solution

for the LCP

���� cT

�b
��� �

���D �AT

A �

����� that is� it is a KKT solution for 	����
 and

�x � 	�z�� � � � � �zn

T is a KKT point for 	����
�

On the other hand� if �wn
m
� � � and �zn
m
� � � in the terminal complementary

BFS� the basic variables are a�ne functions of the large positive parameter qn
m
��

Let �x � 	�z�� � � � � �zn

T � �y � 	�zn
�� � � � � �zn
m
� It can be veri�ed that Q	�x
 �

�
� 	c�x �

bT y
� �
�qn
m
��zn
m
� and as qn
m
� tends to �	� this diverges to �	� Hence in

this case� Q	x
 is unbounded below on K� and a feasible half�line along which Q	x


diverges to �	 can be obtained by letting the parameter qn
m
� tend to �	 in the

solution �x�

When D is not PSD� it is possible for 	����
 to have some KKT points� even when

Q	x
 is unbounded below on K� Thus in this case the fact that this algorithm has

terminated with a KKT point of 	����
 is no guarantee that Q	x
 is bounded below

on K�

����� Computing a Global Minimum�

or Even a Local Minimum in

Nonconvex Programming Problems May be Hard

Consider the smooth nonlinear program 	NLP
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minimize �	x


subject to gi	x
 �� �� i � � to m
	����


where each of the functions is a real valued function de�ned on Rn with high degrees

of di�erentiability� 	����
 is convex NLP if �	x
 is convex and gi	x
 are concave for all

i� nonconvex NLP� otherwise�

A global minimum for 	����
 is a feasible solution �x for it satisfying �	x
 �� �	�x


for all feasible solutions x of the problem� See Section ����� For a convex NLP� under

some constraint quali�cations 	see Appendix �
 necessary and su�cient optimality

conditions are known� Given a feasible solution satisfying the constraint quali�cation�

using these optimality conditions� it is possible to check e�ciently whether that point

is a 	global
 optimum slution of the problem or not�

For a smooth nonconvex nonlinear program� the problem of computing a global

minimum� or checking whether a given feasible solution is a global minimum� are hard

problems in general� To establish these facts mathematically� consider the subset sum

problem� a hard problem in discrete optimization� which is known to be NP�complete
	see reference ������ for a complete discussion of NP�completeness
� given postive

integers d�� d�� � � � � dn� is there a solution to

nP
j��

djyj � d�

yj � � or � for all j

Now consider the quadratic programming problem 	QP


minimize

�
nP

j��
djyj � d�

��
�

nP
j��

yj	�� yj


subject to � �� yj �� �� j � � to n �

Because of the second term in the objective function� QP is a nonconvex quadratic

programming problem� Clearly� the subset�sum problem given above has a feasible

solution i� the global minimum objective value in QP is zero� Since the problem of

checking whether the subset�sum problem is NP�complete� computing the global mini�
mum for QP� a very special and simple case of a smooth nonconvex NLP� is an NP�hard
problem 	see reference ������ for a complete discussion of NP�hardness
� This shows
that in general� the problem of computing a global minimum in a smooth nonconvex

NLP may be a hard problem� See also Section ���� where some of the outstanding

di�cult problems in mathematics have been formulated as those of �nding global min�

ima in smooth nonconvex NLPs 	for example� there we show that the well known

Fermat�s last Theorem in number theory� unresolved since ���� AD� can be posed

as the problem of checking whether the global minimum objective value in a smooth

nonconvex NLP� 	����
� is zero or greater than zero
�
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Since the problem of computing a global minimum in a nonconvex NLP is a hard

problem� we will now study the question whether it is at least possible to compute a

local minimum for such a problem by an e�cient algorithm�

For nonconvex NLPs� under constraint quali�cations� some necessary conditions

for a local minimum are known 	see Section ���� for the de�nitions of a local minimum�

and Appendix � for a discussion of necessary conditions for a local minimum
 and there

are some su�cient conditions for a point to be a local minimum� But there are no

simple conditions known� which are both necessary and su�cient for a given point to

be a local minimum� The complexity of checking whether a given feasible solution is

a local minimum in a nonconvex NLP� is not usually addressed in the literature� Many

textbooks in NLP� when they discuss algorithms� leave the reader with the impression

that these algorithms converge to a global minimum in convex NLPs� and to a local

minimum in nonconvex NLPs� The documentations distributed for many professional

NLP software packages also create the same impression� This impression could be quite

erroneous� in the general case� In this section we study this problem by examining the

computational complexity of determining whether a given feasible solution is not a local

minimum� and that of determining whether the objective function is not bounded below

on the set of feasible solutions� in smooth continuous variable� nonconvex NLPs� For

this purpose� we use the very special instance of an nonconvex quadratic programming

problem studied in K� G� Murty and S� N� Kabadi ������� with integer data� which

may be considered as the simplest nonconvex NLP� It turns out that the questions of

determining whether a given feasible solution is not a local minimum in this problem�

and to check whether the objective function is not bounded below in this problem� can

both be studied using the discrete techniques of computational complexity theory� and

in fact these questions are NP�complete problems 	see reference ������ for de�nition of
NP�completeness
� This clearly shows that in general� it is a hard problem to check

whether a given feasible solution in a nonconvex NLP is even a local minimum� or to

check whether the objective function is bouned below� This indicates the following�

when a nonlinear programming algorithm is applied on a nonconvex NLP� unless it

is proved that it converges to a point satisfying some known su�cient condition for a

local minimum� claims that it leads to a local minimum are hard to verify in the worst

case� Also� in continuous variable smooth nonconvex minimization� even the down�to�

earth goal of guaranteeing that a local minimum will be obtained by the algorithm 	as

opposed to the lofty goal of �nding the global minimum
 may be hard to attain�

We review the known optimality conditions for a given feasible solution �x to 	����


to be a local minimum� Let J � fi � gi	�x
 � �g� Optimality conditions are derived
under the assumption that some constraint quali�cations 	CQ� see Appendix �
 are

satis�ed at �x� which we assume�
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First Order Necessary Conditions for �x to be a Local Minimum

for ������

There must exist a ��J � 	��i � i � J
 such that

r�	�x
� P
i�J

��irgi	�x
 � �

��i �� �� for all i � J �
	����


Given the feasible solution �x� it is possible to check whether these conditions hold�

e�ciently� using Phase I of the simplex method for linear programming�

Second Order Necessary Conditions for �x to be a Local Minimum

for ������

These conditions include 	����
� Given ��J satisfying 	����
 together with �x� let L	x�

��J
 � �	x
�Pi�J ��igi	x
� In addition to 	����
 these conditions require

yTHy �� �� for all y � fy � rgi	�x
y � � for each i � Jg 	����


where H is the Hessian matrix of L	x� ��J
 with respect to x at x � �x� Condition 	����


requires the solution of a quadratic program involving only equality constraints� which

can be solved e�ciently� It is equivalent to checking the positive semide�niteness of

a matrix which can be carried out e�ciently using Gaussian pivot steps 	see Section

�����
�

Su
cient Conditions for �x to be a Local Minimum for ������

Given the feasible solution �x� and ��J which together satisfy 	����
� the most general

known su�cient optimality condition states that if

yTHy � � for all y � T� 	����


where T� �
�
y � y �� � and rgi	�x
y � � for each i � fi � i � J and ��i � �g� and

rgi	�x
y �� � for each i � fi � i � J and ��i � �g�� then �x is a local minimum for 	����
�

Unfortunately� when H is not positive semide�nite� the problem of checking whether

	����
 holds� leads to a nonconvex QP� which� as we will see later� may be hard to

solve�

Aside from the question of the di�culty of checking whether 	����
 holds� we can

verify that the gap between conditions 	����
 and 	����
 is very wide� particulary when

the set fi � i � J and ��i � �g �� �� In this case� condition 	����
 may hold� and even if
we are able to check 	����
� if it is not satis�ed� we are unable to determine whether �x

is a local minimum for 	����
 with present theory�

Now we will use a simple inde�nite QP� related to the problem of checking whether

the su�cient optimality condition 	����
 holds� to study the following questions �
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i
 Given a smooth nonconvex NLP and a feasible solution for it� can we check

whether it is a local minimum or not e�ciently *

ii
 At least in the simple case when the constraints are linear� can we check

e�ciently whether the objective function is bounded below or not on the set

of feasible solutions *

Let D be an integer square symmetric matrix of order n� The problem of checking

whether D is not PSD involves the question

�is there an x � Rn satisfying xTDx � � *� 	����


This can be answered with an e�ort of at most nGaussian pivot steps� by the techniques

discussed in Section ������ This leads to an O	n�
 algorithm for this problem� At the

termination of this algorithm� it is in fact possible to actually produce a vector x

satisfying xTDx � �� if the answer to 	����
 is in the a�rmative�

All PSD matrices are copositive� but a matrix which is not PSD may be copositive�

Testing whether the given matrix D is not copositive involves the question

�is there an x �� � satisfying xTDx � � *� 	����


If D is not PSD� no e�cient algorithm for this question is known 	the computational

complexity of the enumerative method of Section ����� grows exponentially with n in

the worst case
� In fact we show later that this question is NP�complete� To study
this question� we are naturally lead to the NLP

minimize Q	x
 � xTDx

subject to x �� �
	����


We will show that this problem is an NP�hard problem�
We assume that D is not PSD� So Q	x
 is nonconvex and 	����
 is a nonconvex

NLP� It can be considered the simplest nonconvex NLP� We consider the following

decision problems�

Problem �� Is x � � not a local minimum for 	����
 *

Problem �� Is Q	x
 not bounded below on the set of feasible solu�

tions of 	����
 *

Clearly� the answer to problem � is in the a�rmative i� the answer to problem � is�

We will show that both these problems are NP�complete� To study problem �� we can

replace 	����
 by the NLP

minimize Q	x
 � xTDx

subject to � �� xj �� �� j � � to n
	����


Lemma ���� The decision problem �is there an �x feasible to �
���� which satis�es

Q	�x
 � ��	 is in the class NP �see ����
� for the de�nition of the class NP of decision

problems��
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Proof� Given an x feasible to 	����
� to check whether Q	x
 � �� can be done by

computing Q	x
 which takes O	n�
 time� Also� if the answer to the problem is in

the a�rmative� an optimum solution �x of 	����
 satis�es Q	�x
 � �� There is a linear

complementarity problem 	LCP
 corresponding to 	����
 and an optimum solution for

	����
 must correspond to a BFS for this LCP� Since there are only a �nite number

of BFSs for an LCP� and they are all rational vectors� a nondeterministic algorithm

can �nd one of them satisfying Q	x
 � �� if it exists� in polynomial time� Hence� this

problem is in the class NP�

Lemma ���� The optimum objective value in �
���� is either � or �� ���L where L

is the size of D	 �i�e�	 the total number of binary digits in all the data in D��

Proof� Since the set of feasible solutions of 	����
 is a compact set and Q	x
 is contin�

uous� 	����
 has an optimum solution� The necessary optimality conditions for 	����


lead to the following LCP���u
v

����
��� D I
�I �

������x
y

��� �

��� �
e

��� 	����


���u
v

��� �
� � �

���x
y

��� �
� � � 	����


���u
v

���T ���x
y

��� � � 	����


It can be veri�ed that whenever 	u� v� x� y
 satis�es 	����
� 	����
 and 	����
� xTDx �

�eT y� a linear function� where e is the column vector of all ��s in Rn� There exists

an optimum solution of 	����
 which is a BFS of 	����
� 	����
� By the results under

the ellipsoid algorithm 	see� for example Chapter � in this book� or Chapter �� in

������
� in every BFS of 	����
� 	����
� each yj is either � or �� ��L� If the optimum

objective value in 	����
 is not zero� it must be � �� and this together with the above

facts implies that an optimum solution x or 	����
 corresponds to a BFS 	u� v� x� y


of 	����
� 	����
 in which �eT y � �� All these facts clearly imply that the optimum

objective value in 	����
 is either � or �� ���L�

We now make a list of several decision problems� some of which we have already

seen� and some new ones which we need for establishing our results�

Problem �� Is there an x �� � satisfying Q	x
 � � *

Problem �� For any positive integer a�� is there an x � Rn satisfy�

ing eTx � a�� x �� � and Q	x
 � � *

Now consider a subset sum problem with data d�� d�� � � � � dn� which are all positive

integers� Let � be a positive integer � �
�
d�

�Pn

j�� dj

���
n�� Let l be the size of this
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subset sum problem� that is� the total number of binary digits in all the data for the

problem� Let � be a positive rational number � ��nl
�
� The subset sum problem is �

Problem �� Subset sum problem� Is there a y � 	yj
 � Rn satis�

fying
Pn

j�� djyj � d�� � �� yj �� �� j � � to n� and y

integer vector *

We now de�ne several functions involving nonnegative variables y � 	y�� � � � � yn

T

and s � 	s�� � � � � sn

T � related to the subset sum problem�

f�	y� s
 �

�� nX
j��

djyj � d�

�A�

� �

�� nX
j��

	yj � sj � �
�
�A�

nX
j��

yjsj

�

�� nX
j��

djyj

�A�

�

nX
j��

yjsj � �
nX

j��

	yj � sj

�

� �d�
�� nX

j��

djyj

�A� ��
nX

j��

	yj � sj
 � n� � d��

f�	y� s
 � f�	y� s
 � �d�

�� nX
j��

djyj	�� yj


�A
�

�� nX
j��

djyj

�A�

� �
nX

j��

	yj � sj

� �

nX
j��

yjsj

� �d�
�� nX

j��

djy
�
j

�A� ��
nX

j��

	yj � sj
 � n� � d��

f�	y� s
 �

�� nX
j��

djyj

�A�

� �
nX

j��

	yj � sj

� �

nX
j��

yjsj

� �d�
�� nX

j��

djy
�
j

�A� d�� � n�

f�	y� s
 �

�� nX
j��

djyj

�A�

� �
nX

j��

	yj � sj

� �

nX
j��

yjsj

� �d�
nX

j��

djy
�
j �

�
d�� � n�

n�

��� nX
j��

	yj � sj


�A�

f�	y� s
 � f�	y� s
�
� �

n�

��� nX
j��

	yj � sj


�A�
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Let P � f	y� s
 � y �� �� s �� ��
Pn

j��	yj � sj
 � ng� Consider the following additional
decision problems

Problem �� Is there a 	y� s
 � P satisfying f�	y� s
 �� � *

Problem �� Is there a 	y� s
 � P satisfying f�	y� s
 �� � *

Problem �� Is there a 	y� s
 � P satisfying f�	y� s
 �� � *

Problem �� Is there a 	y� s
 � P satisfying f�	y� s
 � � *

Theorem ���� Problem � is an NP�hard problem �see ������ for the de�nitions of

an NP�hard problem��

Proof� Since f�	y� s
 is a sum of nonnegative terms whenever 	y� s
 � P� if 	�y� �s
 � P

satis�es f�	y� s
 �� �� then we must have f�	�y� �s
 � �� this clearly implies from the

de�nition of f�	y� s
� that the following conditions must hold�

nX
j��

dj �yj � d�� �yj�sj � � and �yj � �sj � �� for all j � � to n �

These conditions clearly imply that �y is a solution of the subset sum problem and that

the answer to problem � is in the a�rmative� Conversely if "y � 	"yj
 is a solution to

the subset sum problem� de�ne "s � 	"sj
 where "sj � �� "yj for each j � � to n� and it

can be veri�ed that f�	"y� "s
 � �� This veri�es that problems � and � are equivalent�

Whenever �y is a �(� vector� we have �yj � �y�j for all j� and this implies that

f�	�y� s
 � f�	�y� s
 for any s� So� from the above arguments� we see that if 	�y� �s
 � P

satis�es f�	�y� �s
 �� �� then f�	�y� �s
 � f�	�y� �s
 � �� If � �� yj �� �� we have �d�djyj	��yj

�
� �� If 	y� s
 � P� and yj � �� then �

� 	yj � sj � �
� � �d�djyj	�� yj
 �� �� since � is

large 	from the de�nition of �
� Using this and the de�nitions of f�	y� s
� f�	y� s
� it

can be veri�ed that for 	y� s
 � P� if f�	y� s
 �� � then f�	y� s
 �� � too� These facts

imply that problems � and � are equivalent�

Clearly� problems � and � are equivalent�

From the de�nition of � 	since it is su�ciently small
 and using Lemma ����� one

can verify that problems � and � are equivalent�

Problem � is a special case of problem �� Since problem � is NP�complete� from
the above chain of arguments we conclude that problem � is NP�hard�

Theorem ���� Problem � is NP�complete�

Proof� The answer to problem � is in the a�rmative i� the answer to the decision

problem in the statement of Lemma ���� is in the a�rmative� So� from Lemma ����

we conlcude that problem � is in NP� From Theorem ����� this shows that problem �

is NP�complete�
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Theorem ���� Problem � is NP�complete�

Proof� Problems � and � are clearly equivalent� this result follows from Theorem �����

Theorem ���� Both problems � and 
 are NP�complete�

Proof� Problems � and � are both equivalent to problem �� so this result follows from

Theorem �����

Theorem ���� Given an integer square matrix D	 the decision problem �is D not

copositive �� is NP�complete�

Proof� The decision problem �is D not copositive *� is equivalent to problem �� hence

this result follows from Theorem �����

Can We Check Local Minimality E
ciently

In Unconstrained Minimization Problems �

Let �	x
 be a real valued smooth function de�ned on Rn� Consider the unconstrained

problem

minimize �	x
 � 	����


A necessary condition for a given point �x � Rn to be a local minimum for 	����
 is

	see Appendix �


r�	�x
 � �� H	�	�x

 is PSD 	����


where H	�	�x

 is the Hessian matrix 	the matrix of second order partial derivatives


of �	x
 at �x� A su�cient condition for �x to be a local minimum for 	����
 is

r�	�x
 � �� H	�	�x

 is positive de�nite� 	����


Both conditions 	����
 and 	����
 can be checked very e�ciently� If 	����
 is satis�ed�

but 	����
 is violated� there are no simple conditions known to check whether or not �x

is a local minimum for 	����
� Here� we investigate the complexity of checking whether

or not a given point �x is a local minimum for 	����
� and that of checking whether �	x


is bounded below or not over Rn�

As before� let D � 	dij
 be an integer square symmetric matrix of order n� Con�

sider the unconstrained problem�

minimize h	u
 � 	u�� � � � � � u
�
n
D	u

�
� � � � � � u

�
n


T 	����


Clearly� 	����
 is an instance of the general unconstrained minimization problem 	����
�

Consider the following decision problems�

Problem ��� Is �u � � not a local minimum for 	����
 *

Problem ��� Is h	u
 not bounded below on Rn *
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We have� for i� j � � to n

�h	u


�uj
� �uj

	
	u�� � � � � � u

�
n
D�j



��h	u


�ui�uj
� �uiujdij � i �� j

��h	u


�u�j
� �	u�� � � � � � u

�
n
D�j � �u

�
j djj

where D�j is the j
th column vector of D� So� �u � � satis�es the necessary conditions

for being a local minimum for 	����
� but not the su�cient condition given in 	����
�

Using the transformation xj � u�j � j � � to n� we see that 	����
 is equivalent to

	����
� So problem � and �� are equivalent� Likewise� problems � and �� are equivalent�

By Theorem ����� we conclude that both problems �� and �� are NP�hard� Thus� even
in the unconstrained minimization problem� to check whether the objective function is

not bounded below� and to check whether a given point is not a local minimum� may

be hard problems in general� This also shows that the problem of checking whether a

given smooth nonlinear function 	even a polynomial
 is or is not locally convex at a

given point� may be a hard problem in general�

What Are Suitable Goals for Algorithms in Nonconvex NLP �

Much of nonlinear programming literature stresses that the goal for algorithms in

nonconvex NLPs should be to obtain a local minimum� Our results here show that in

general� this may be hard to guarantee�

Many nonlinear programming algorithms are iterative in nature� that is� beginning

with a initial point x�� they obtain a sequence of points fxr � r � �� �� � � �g� For some of
the algorithms� under certain conditions� it can be shown that the sequence converges

to a KKT point for the original problem� 	a KKT point is a feasible solution at which

the �rst order necessary conditions for a local minimum� 	����
� hold
� Unfortunately�

there is no guarantee that a KKT point will be a local minimum� and our results point

out that in general� checking whether or not it is a local minimum may be a hard

problem�

Some algorithms have the property that the sequence of points obtained is ac�

tually a descent sequence� that is� either the objective function� or a measure of the

infesibility of the current solution to the problem� or some merit function or criterion

function which is a combination of both� strictly decreases along the sequence� Given

xr� these algorithms generate a yr �� � such that the direction xr��yr� � �� �� is a de�

scent direction for the functions discussed above� The next point in the sequence xr
�

is usually taken to be the point which minimizes the objective or criterion function

on the half�line fxr � �yr � � �
� �g� obtained by using a line minimization algorithm�

On general nonconvex problems� these methods su�er from the same di�culties� they

cannot theoretically guarantee that the point obtained at termination is even a local
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minimum� However� it seems reasonable to expect that a solution obtained through a

descent process is more likely to be a local minimum� than a solution obtained purely

based on necessary optimality conditions� Thus a suitable goal for algorithms for non�

convex NLPs seems to be a descent sequence converging to a KKT point� Algorithms�

such as the sequential quadratic programming methods discussed in Section ������ and

those discussed in Chapter ��� reach this goal�

���� Exercises

��� Let �	x
 be a convex function de�ned on Rn� which is known to be unbounded

below on Rn� Does there exist a half�line along which �	x
 diverges to �	 * Either

prove that it does� or construct a counterexample� Does the answer change if �	x
 is

known to be a di�erentiable convex function *

��� Consider the problem
Minimize �	x


Subject to Ax �� b

where A is a matrix of order m�n� and �	x
 is a convex function� Suppose it is known

that �	x
 is unbounded below in this problem� Does there exist a feasible half�line along

which �	x
 diverges to �	 * Either prove that it does� or construct a counterexample�

Does the answer change if �	x
 is a di�erentiabl convex function *

��� If the data in the LCP 	q�M
 satis�es

i
 M �MT �
� �� and

ii
 q �MT z �� �� z �� � is feasible�

prove that the complementary pivot algorithm will terminate with a solution when

applied on the LCP 	q�M
�

	Philip C� Jones ������


��� LetGj be the set
�
	w� z
 � w�Mz � q� w �

� �� z �� �� wizi � � for all i �� j
�
� and

let G �
S
	Gj � j � � to n
� If M is PSD or a P �matrix� prove that G is a connected

subset of Rn� If 	q�M
 is the LCP corresponding to the following quadratic program�

show that G is not connected�

minimize cx� �
�x

TDx

subject to � �� x �� u

where D �

��������� �� ��
�� �� ��
�� �� �

�������� u �
������� ��
��
��

�������� cT �
������� ��
�

��������
	W� P� Hallman and I� Kaneko ������




����� Exercises ���

��� Prove that the complementary pivot algorithm will process the LCP 	q�M
 if M

is a Z�matrix�

	R� Saigal ������


���� Let fA��� � � � � A�n��g be a linearly independent set of column vectors in Rn� Let

x � fy�� � � � � yrg be another �nite set of column vectors in Rn� and let b � Rn be

another given column vector� It is required to choose A�n � x so that the minimum
distance from b to PosfA��� � � � � A�ng is a small as possible� Develop an e�cient algo�
rithm for doing it�

���� Let cM �

����� �
� ��

��� � "q �

�����
��
��� �

Show that the LCP 	"q�cM
 has a solution� However� show that all the variants of the

complementary pivot algorithm discussed in this Chapter are unable to �nd a solution

to this LCP 	"q�cM
�

���� Let 	P 
 be a linear programming problem� and 	Q
 the corresponding linear

complementary problem as obtained in Section ���� It has been suggested that the

sequence of solutions generated when the LCP� 	Q
� is solved by the complementary

pivot method� is the same as the sequence of solutions generated when the LP� 	P 
� is

solved by the self�dual parametric algorithm 	see Section ���� of ������
� Discuss� and

examine the similarities between the self�dual parametric algorithm applied to 	P 
 and

the complementary pivot method applied on 	Q
�

���� Let

M �

����������
� � � �
� � � �

�� � � ��
� �� � �

���������� � q �

����������
��
��
�
�

���������� �

i
 Prove that M is strictly copositive�

ii
 Show that the LCP 	q�M
 has an in�nite number of complementary feasible so�

lutions�

���� Given a square matrix M of order n� let K	M
 denote the union of all the

complementary cones in C	M
� Prove thatK	M
 is convex i�K	M
 � fq � q�Mz �� ��

for some z �� �g�
	B� C� Eaves �����


���� Let a�� � � � � an� b be positive integers satisfying b � maxfa�� � � � � ang� Let
q	n� �
 � 	a�� � � � � an��b� b
T
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M	n� �
 �

���������������
� �

�In ���
���

� �
eTn �� �

�eTn � ��

���������������
where In is the identity matrix of order n� and e

T
n is the row vector in R

n all the entries

in which are ���� Consider the LCP 	q	n��
�M	n��

 of order n��� Are any of the

algorithms discussed in this chapter able to process this LCP * Why * If not� develop

an algorithm for solving this LCP using the special structure of the matrix M �

���� Consider the quadratic program

minimize �x� � �x� � �
� 	�x

�
� � �x�x� � �x

�
�


subject to �x� � �x� � x� � �

�x� � �x� � x� � �

xj �� � for all j �

Formulate this program as an LCP of order � and write down this LCP clearly� Does

a solution of this LCP lead to a solution of this quadratic program * Why *

It is required to solve this LCP using the variant of complementary pivot method

in which the column vector of the arti�cial variable is 	�� �� �� �
T � Obtain the canonical

tableau corresponding to the initial almost complementary basic vector� and then carry

out exactly one more pivot step in this algorithm�

���� Suppose B �
� �� and the linear programs

i
 Maximize cTx� subject to Ax �� b� x �� � and

ii
 Minimize bT y� subject to 	A�B
T y �� c� y �� �

have �nite optimum solutions� Show that the complementary pivot algorithm termi�

nates with a complementary feasible solution for the LCP 	q�M
 with

q �

����c
b

��� � M �

��� � 	A� B
T

�A �

��� �

	G� B� Dantzig and A� S� Manne �����


���� Let $$$ be a nonenmpty closed convex subset of Rn� For each x � Rn let P�	x


denote the nearest point in $$$ to x in terms of the usual Euclidean distance� Prove the

following �
	i
 jjP�	x
� yjj� �� jjx� yjj� for all x � Rn� y � $$$ �

	ii
 jjP�	x
� P�	y
jj� �� jjx� yjj� for all x� y � Rn �

	Y� C� Cheng �����
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���� Let G and H be symmetric PSD matrices of order n and m respectively� Consider

the following quadratic programs �

maximize cx� �
�
xTGx� �

�
yTHy

subject to Ax�Hy �� b

x �
� �

and
minimize bT y � �

�x
TGx� �

�y
THy

subject to Gx� AT y �� cT

y �� �

Prove that if both the problems are feasible� then each has an optimal solution� and

the optimum objective values are equal� moreover� the optimal solutions can be taken

to be the same�

	R� W� Cottle ����� and W� S� Dorn �����


���� Let M be a nondegenerate square matrix of order n� Let d � Rn� d � � be

such that for every J � f�� � � � � ng� if dJ � 	dj � j � J
� MJJ � 	mij � i� j � J
�

then 	MJJ

��dJ �

� �� Then prove that if the LCP 	q�M
 is solved by the variant of

the complementary pivot algorithm discussed in Section ����� with �d as the original
column vector for the arti�cial variable z�� it will terminate with a solution of the LCP

after at most 	n� �
 pivot steps�

	J� S� Pang and R� Chandrasekaran ������


���� Consider the process of solving the LCP 	q�M
 by the complementary pivot

algorithm� Prove that the value of the arti�cial variable z� decreases as the algorithm

progresses� whenever M is either a PSD matrix or a P �matrix or a P��matrix� until

termination occurs�

	R� W� Cottle ����� and B� C� Eaves �����


���� Consider the process of solving the LCP 	q�M
 by the variant of the comple�

mentary pivot algorithm discussed in Section ����� with the column vector d � � as

the initial column vector associated with the arti�cial variable z�� Prove that in this

process� there exists no secondary ray for all d � � � q i� M is an L��matrix� Using

this prove that the variant of the complementary pivot algorithm discussed in Section

����� with the lexico minimum ratio rule for the dropping variable section in each step�

will always terminate with a complementary solution for all q� no matter what d � �

is used� i� M is an L��matrix�

	B� C� Eaves �����
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���� Consider the convex quadratic programming problem

minimize Q	x
 � cx� �
�x

TDx

subject Ax �
� b

x �
� �

where D is a symmetric PSD matrix� If the problem has alternate optimum solution

prove the following �

	i
 the set of optimum solutions is a convex set�

	ii
 	y � x
TD	y � x
 � � and actually 	y � x
TD � � for every pair of optimum

solutions x and y� of the problem�

	iii
 the gradient vector of Q	x
� rQ	x
 is a constant on the set of optimum solutions�

	iv
 the set of optimum solutions is the intersection of the constraint set with some

linear manifold�

	M� Frank and P� Wolfe �������


���� Let A�� B�� two given matrices of orders m � n each� be the loss matrices in

a bimatrix game problem� Prove that the problem of computing a Nash equilibrium

strategy pair of vectors for this bimatrix game� can be posed as the LCP 	q�M
� where

q �

����em
en

��� � M �

��� � A
BT �

���
where A � � and B � �� Prove 	use Lemma ���
 that the complementary pivot

algorithm will terminate with a solution when applied on this LCP�

	B� C� Eaves �����


���� Consider the LCP 	q�M
 of order n� Let C� be the set of feasible solutions of

the system
w �Mz �q

w� z ���

wjzj ��� j � � to n�

If q is nondegenerate in the LCP 	q�M
 	i�e�� if in every solution 	w� z
 of the system

of linear equations �w�Mz � q�� at least n variables are nonzero
 prove that C� is a

disjoint union of edge paths� What happens to this result if q is degenerate *

���� In Merrill�s algorithm for computing a Kakutani �xed point discussed in Section

������ we de�ned the piecewise linear map in the top layer of the special triangulation

of Rn � ��� �� by de�ning for any vertex V �

��� v
�

���� f	V 
 � ��� f	v

�

��� where f	v


is an arbitrary point chosen from the set F	v
� Examine the advantages that could

be gained by de�ning f	v
 to be the nearest point 	in terms of the usual Euclidean

distance
 in the set F	v
 to v�



����� Exercises ���

���� LetM � q be given matrices of orders n�n and n�� respectively� If yTMy�yT q

is bounded below on the set fy � y �
� �g� prove that the LCP 	q�M
 has a comple�

mentary solution� and that a complementary solution can be obtained by applying the

complementary pivot algorithm on the LCP of order 	n� �
 with data

q �

��� q
qn
�

��� � M �

��� M e
�eT �

���
where qn
� � �� with the initial column vector associated with the arti�cial variable

z� to be 	��� � � � ���� �
 � Rn
��

	B� C� Eaves �����


���� Consider the general quadratic program 	����
� If Q	x
 is unbounded below on

the set of feasible solutionsK of this problem� prove that there exists a feasible half�line

through an extreme point of K along which Q	x
 diverges to �	�
	B� C� Eaves �����


���� Let M be a given square matrix of order n� Let fB��� � � � � B�rg be a given set
of column vectors in Rn� It is required to check whether xTMx is �� � for all x �
PosfB��� � � � � B�rg� Transform this into the problem of checking the copositivity of a

matrix�

Can the problem of checking whether xTMx is �� � for all x � fx � Ax �� �g where
A is a given matrix of order m� n� be also transformed into the problem of checking

the copositivity of a matrix * How *

���� 	Research Problem
 Application to pure ��� Integer Programming

Consider the pure ��� integer programming problem

minimize cx

subject to Ax � b

Dx �
� d

xj � � or � for all j

where x � Rn� and c� A� b� D� d are the data in the problem� In the interval � �� xj �� ��

the function xj	��xj
 is non�negative� and is zero i� xj is either � or �� Using this we

can transfom the above discrete problem into a continuous variable optimization by a

penalty transformation as given below

minimize cx� �	
nP

j��

xj	�� xj



subject to Ax � b

Dx �� d

� �� xj �� �� j � � to n
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where � is a large positive penalty parameter� This is now a quadratic programming

problem 	unfortunately� it is a concave minimization problem and may have lots of

local minima� in fact it can be veri�ed that every integer feasible solution is a local

minima for this problem
� Check whether any of the algorithm for LCP discussed here

are useful to approach the integer program through the LCP formulation of the above

quadratic program�

���� Consider the system

w �Mz � q

w� z �� �

where M is a given square matrix of order n� Let C� be the set of feasible solutions of

this problem satisfying the additional conditions

wjzj � �� j � � to n �

Assuming that q is nondegenerate in this system 	i�e�� that in every solution 	w� z
 of

the system of equations �w�Mz � q�� at last n variables are non�zero
� study whether

C� can contain an edge path terminating with extreme half�lines at both ends� when

M is a copositive plus matrix�

���� 	Research Problem
 � Consider the general quadratic programming problem

	����
 of Section ������ and let K be its set of feasible solutions�

Develop necessary and su�cient conditions for Q	x
 to be unbounded below on

K� Develop an e�cient procedure to check whether Q	x
 is unbounded below on K�

In 	����
� the objective function is said to be strongly unbounded below� if it

remains unbounded below whatever the vector c may be� as long as all the other data

in the problem remains unchanged� Develop necessary and su�cient conditions for

and an e�cient procedure to check this strong unboundedness�

Extend the enumeration procedure for solving the general quadratic programming

problem under the assumption of a bounded feasible set discussed in Section ���� to

the case when K is unbounded�

The method discussed in Section ��� for solving this problem� may be viewed as a

total enumeration method 	enumerating over all the faces of K
� Develop an e�cient

method for computing a lower bound for Q	x
 onK� and using it� develop a branch and

bound method for solving this problem 	this will be an e�cient partial enumeration

method
� 	See B� C� Eaves ����� for some useful information on this problem�


���� Let M be a square matrix of order n which is D � E where

D is symmetric and copositive plus

E is copositive�



����� Exercises ���

Let q � Rn� If the system Dx � ET y �
� �q� y �

� � is feasible� prove that the com�

plementary pivot algorithm will terminate with a solution when applied on the LCP

	q�M
�

	P� C� Jones ������


���� Let 	 �w� �z
 be the solution of the LCP 	q�M
�

i
 If M is PSD� prove that �zT q �� ��

ii
 If the LCP 	q�M
 comes from an LP prove that �zT q � ��

���� Prove that if M is a copositive plus matrix of order n� and q � Rn then the

optimum objective value in the following quadratic program is zero� if the problem has

a feasible solution�
minimize Q	x
 � xT 	Mx� q


subject to Mx �q �� �

x �
� �

���� In Section ������ we have seen that if a quadratic function Q	x
 is bounded

below on a convex polyhedron� then Q	x
 has a �nite global minimum point on that

polyhedron� Does this result hold for a general polynomial function *

	Hint� Examine the fourth degree polynomial function f	x
 � x���	x�x���
� de�ned
over R�
�

	L� M� Kelly


���� Apply the Complementary pivot method on the LCP with the following data�

a
 q �

���������
��
��

������� � M �

������� � � �
� � �
� � �

�������
b
 q �

���������
��
��

������� � M �

������� � � �
�� �� �
�� �� ��

�������
c
 q �

���������
��
��

������� � M �

��������� � ��
� �� �

�� � ��

������� �

Verify that 	z�� z�� z�
 is a complementary feasible basic vector for 	c
�

Also� solve 	a
 by the variant of the complementary pivot method discussed in

Section ����
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