Chapter 2

THE COMPLEMENTARY PIVOT
ALGORITHM AND ITS EXTENSION
TO FIXED POINT COMPUTING

LCPs of order 2 can be solved by drawing all the complementary cones in the ¢, q2-
plane as discussed in Chapter 1.

Example 2.1

-1 1 -2
complementary cones corresponding to this problem is shown in Figure 1.5.

Let ¢ = [ 4] , M = [_2 1] and consider the LCP (¢, M). The class of
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q lies in two complementary cones Pos (—M.1, I.5) and Pos (—M.;, —M.5). This implies
that the sets of usable variables (z1,w2) and (21, 22) lead to solutions of the LCP.
Putting w; = z; = 0 and solving the remaining system for the values of the
usable variables (z1,ws) lead to the solution (z1,ws) = (2,1). Here (wy,ws, 21, 22) =
(0,1,2,0) is a solution of this LCP. Similarly putting w; = ws = 0 and solving it for
the value of the usable variables (21, z2) leads to the second solution (wy, we, 21, 22) =

(0,0, Z,2) of this LCP.
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Example 2.2

Let ¢ = [ :i ] and M = [ _? _; ] and consider the LCP (¢, M). The class of

complementary cones corresponding to this problem is in Figure 1.5. Verify that ¢ is
not contained in any complementary cone. Hence this LCP has no solution.

This graphic method can be conveniently used only for LCPs of order 2. In
LCPs of higher order, in contrast to the graphic method where all the complementary
cones were generated, we seek only one complementary cone in which ¢ lies. In this
chapter we discuss the complementary pivot algorithm (which is also called the
complementary pivot method) for solving the LCP. In the LCP (1.1) if ¢ > 0,
(w,z) = (q,0) is a solution and we are done. So we assume g Z 0. First we will briefly
review some concepts from linear programming. See [2.26] for complete details.

2.1 BASES AND BASIC FEASIBLE SOLUTIONS

Consider the following system of linear equality constraints in nonnegative variables

Az =b
x>0

(2.1)

where A is a given matrix of order m x n. Without any loss of generality we assume
that the rank of A is m (otherwise either (2.1) is inconsistent, or redundant equality
constraints in (2.1) can be eliminated one by one until the remaining system satisfies
this property. See [2.26]). In this system, the variable z; is associated with the column
A, j =1ton. A basis B for (2.1) is a square matrix consisting of m columns of
A which is nonsingular; and the column vector of variables xp associated with the
columns in B, arranged in the same order, is the basic vector corresponding to it.
Let D be the matrix consisting of the n — m columns of A not in B, and let zp be
the vector of variables associated with these columns. When considering the basis B
for (2.1), columns in B, D, are called the basic, nonbasic columns respectively;
and the variables in xp, xp are called the basic, nonbasic variables respectively.
Rearranging the variables, (2.1) can be written in partitioned form as

Bxg + Dxp = b
.27320, $D§0-

The basic solution of (2.1) corresponding to the basis B is obtained by setting zp = 0
and then solving the remaining system for the values of the basic variables. Clearly it
is (xp = B~'b, zp = 0). This solution is feasible to (2.1) iff B~'b > 0, and in this
case B is said to be a feasible basis for (2.1) and the solution (zp = B~!b, zp = 0)
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is called the basic feasible solution (abbreviated as BFS) of (2.1) corresponding to
it. A basis B which is not feasible (i. e., if at least one component of B~!b is strictly
negative) is said to be an infeasible basis for (2.1). Thus each feasible basis B for
(2.1) determines a unique BFS for it.

When referring to systems of type (2.1), the word solution refers to a vector z
satisfying the equality constraints ‘Ax = b’, that may or may not satisfy the nonneg-
ativity restrictions ‘¢ > 0’. A solution z of (2.1) is a feasible solution if it satisfies
x> 0.

Definition: Degeneracy, Nondegeneracy of Basic Solutions for (2.1); of (2.1)
itself: and of the b-Vector in (2.1) The basic solution associated with a given
basis B for (2.1), whether it is feasible or not, is said to be degenerate if at least one
component in the vector B~1b is zero, nondegenerate otherwise.

A system of constraints of the form (2.1) is said to be nondegenerate if it has no
degenerate basic solutions (i. e., iff in every solution of (2.1), at least m variables are
nonzero, when the rank of A is m), degenerate otherwise. When A has full row rank,
the system (2.1) is therefore degenerate iff the column vector b can be expressed as a
linear combination of r columns of A, where r < m, nondegenerate otherwise. Thus
whether the system of constraints (2.1) is degenerate or nondegenerate depends on the
position of the right hand side constants vector b in R™ in relation to the columns of
A; and if the system is degenerate, it can be made into a nondegenerate system by just
perturbing the b-vector alone.

The right hand side constants vector b in the system of constraints (2.1) is said to
be degenerate or nondegenerate in (2.1) depending on whether (2.1) is degenerate or
nondegenerate. See Chapter 10 in [2.26].

The definitions given here are standard definitions of degeneracy, nondegeneracy
that apply to either a system of constraints of the form (2.1) or the right hand con-
stants vector b in such a system, or a particular basic solution of such a system. This
should not be confused with the concepts of (principal) degeneracy or (principal) non-
degeneracy of square matrices defined later on in Section 2.3, or the degeneracy of
complementary cones defined in Chapter 1.

As an example, consider the system of constraints given in Example 2.4 in Section
2.2.2. The BFS of this system associated with the basic vector (x1,x2, x3,24) is T =
(3,0,6,5,0,0,0,0)T and it is degenerate since the basic variable xo is zero in this
solution. The BFS of this system associated with the basic vector (zg,xs,x3,24) can
be verified to be = = (0,1,2,3,0,0,0,1)7 which is a nondegenerate BFS. Since the
system has a degenerate basic solution, this system itself is degenerate, also the b-
vector is degenerate in this system.

Definition: Lexico Positive A vector a = (ai,...,a,) € R, is said to be lexico
positive, denoted by a > 0, if a # 0 and the first nonzero component in a is strictly
positive. A vector a is lexico negative, denoted by a < 0, if —a > 0. Given two
vectors x,y € R", v =y iff z —y = 0; x < y iff x —y < 0. Given a set of vectors
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{a',...,a®} C R", alexico minimum in this set is a vector o’ satisfying the property
that a’ = a’ for each i = 1 to k. To find the lexico minimum in a given set of
vectors from R, compare the first component in each vector and discard all vectors
not corresponding to the minimum first component, from the set. Compare the second
component in each remaining vector and again discard all vectors not corresponding to
the minimum in this position. Repeat in the same manner with the third component,
and so on. At any stage if there is a single vector left, it is the lexico minimum. This
procedure terminates after at most r steps. At the end, if two or more vectors are left,

they are all equal to each other, and each of them is a lexico minimum in the set.

Example 2.3

The vector (0,0,0.001,—1000) is lexico positive. The vector (0,—1,20000,5000) is
lexico negative. In the set of vectors { (-2,0,—1,0),(-2,0,-1,1),(-2,1,—20,—30),
(0,—10,—40,—50) }, the vector (—2,0,—1,0) is the lexico minimum.

Perturbation of the Right Hand Side Constants Vector
in (2.1) to make it Nondegenerate.

If (2.1) is degenerate, it is possible to perturb the right hand side constants vector b
slightly, to make it nondegenerate. For example, let € be a parameter, positive and
sufficiently small. Let b(e) = b+ (g,e2,...,e™)T. It can be shown that if b in (2.1) is
replaced by b(g), it becomes nondegenerate, for all € positive and sufficiently small
(this really means that there exists a positive number ¢; > 0 such that whenever
0 < € < &1, the stated property holds). This leads to the perturbed problem

Az = b(e)
x>0

(2.2)

which is nondegenerate for all ¢ positive and sufficiently small. See Chapter 10 in
[2.26] for a proof of this fact. A basis B and the associated basic vector xzp for (2.1)
are said to be lexico feasible if they are feasible to (2.2) whenever ¢ is positive and
sufficiently small, which can be verified to hold iff each row vector of the m x (m + 1)

matrix (B~1b : B~!) is lexico positive. Thus lexico feasibility of a given basis for (2.1)

can be determined by just checking the lexico positivity of each row of (B~'b : B™1)
without giving a specific value to €. For example, if b > 0, and A has the unit matrix
of order m as a submatrix, that unit matrix forms a lexico feasible basis for (2.1).

Canonical Tableaus

Given a basis B, the canonical tableau of (2.1) with respect to it is obtained by mul-
tiplying the system of equality constraints in (2.1) on the left by B=1. Tt is
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Tableau 2.1 :  Canonical Tableau of (2.1) with
Respect to the Basis B

basic variables T

rB B 1A B~ 1b

Let D be the matrix consisting of the n — m columns of A not in B, and let zp be
the vector of variables associated with these columns. When the basic and nonbasic
columns are rearranged in proper order, the canonical Tableau 2.1 becomes

Tableau 2.2
basic variables TB D
B I B'D B b =10

b is known as the updated right hand side constants vector in the canonical
tableau. The column of x; in the canonical tableau, B71A.; = A.; is called the
update column of z; in the canonical tableau. The inverse tableau corresponding
to the basis B is

Tableau 2.3 : Inverse Tableau
basic variables Inverse basic values
rB B! B~

It just provides the basis inverse and the updated right-hand-side constants column.
From the information available in the inverse tableau, the update column corresponding
to any nonbasic variable in the canonical tableau can be computed using the formulas
given above.

2.2 THE COMPLEMENTARY PIVOT
ALGORITHM

We will now discuss a pivotal algorithm for the LCP introduced by C. E. Lemke,
known as the Complementary Pivot Algorithm (because it chooses the entering
variable by a complementary pivot rule, the entering variable in a step is always
the complement of the dropping variable in the previous step), and also referred to as
Lemke’s Algorithm in the literature.
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2.2.1 The Original Tableau

An artificial variable zp associated with the column vector —e,, (e, is the column
vector of all 1’s in R™) is introduced into (1.6) to get a feasible basis for starting the
algorithm. In detached coefficient tableau form, (1.6) then becomes

w z 20

(2.3)

—M —en, q

2.2.2 Pivot Steps

The complementary pivot algorithm moves among feasible basic vectors for (2.3). The
primary computational step used in this algorithm is the pivot step (or the Gauss-
Jordan pivot step, or the Gauss-Jordan elimination pivot step), which is also the
main step in the simplex algorithm for linear programs. In each stage of the algorithm,
the basis is changed by bringing into the basic vector exactly one nonbasic variable
known as the entering variable. Its updated column vector is the pivot column
for this basis change. The dropping variable has to be determined according to the
minimum ratio test to guarantee that the new basis obtained after the pivot step
will also be a feasible basis.

For example, assume that the present feasible basic vector is (y1, ..., yn) with y,
as the 7 basic variable, and let the entering variable be x5. (The variables in (2.3) are
Wi,y . vvy Wy 21, -+ -4 2Zn, 20- Exactly n of these variables are present basic variables. For
convenience in reference, we assume that these basic variables are called yy,...,y,).
After we rearrange the variables in (2.3), if necessary, the canonical form of (2.3), with
respect to the present basis is of the form :

Basic YlyensYn Ts Other Right-hand
variable variables constant vector
Y1 1...0 a1s e q1
Yn 0...1 (ns e dn

Keeping all the nonbasic variables other than z, equal to zero, and giving the
value A to the entering variable, x4, leads to the new solutions :

Ts = A
Yi = @ — Mg, 1=1,...,m (2.4)
All other variables = 0
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There are two possibilities here.

1. The pivot column may be nonpositive, that is, a;; < 0 forall 1 <7 <mn. In
this case, the solution in (2.4) remains nonnegative for all A > 0. As X varies
from 0 to oo, this solution traces an extreme half-line (or an unbounded
edge) of the set of feasible solutions of (2.3). In this case the minimum ratio,
f, in this pivot step is +00. See Example 2.4.

2. There is at least one positive entry in the pivot column. In this case, if the

solution in (2.4) should remain nonnegative, the maximum value that A can

take is 0 = gr = mmu’num{ i . i such that a;5 > 0} This @ is known as
the minimum ratio in this plvot step. For any ¢ that attains the minimum
here, the present i** basic variable y; is eligible to be the dropping variable
from the basic vector in this pivot step. The dropping basic variable can be
chosen arbitrarily among those eligible, suppose it is y,.. y,- drops from the
basic vector and z; becomes the 7*" basic variable in its place. The r** row
is the pivot row for this pivot step. The pivot step leads to the canonical
tableau with respect to the new basis.

If the pivot column (@y,...,ams)? is placed by the side of the present inverse
tableau and a pivot step performed with the element a,¢ in it in the pivot row as the
pivot element, the inverse tableau of the present basis gets transformed into the inverse
tableau for the new basis.

The purpose of choosing the pivot row, or the dropping variable, by the minimum
ratio test, is to guarantee that the basic vector obtained after this pivot step remains
feasible.

In this case (when there is at least one positive entry in the pivot column) the
pivot step is said to be a nondegenerate pivot step if the minimum ratio computed
above is > 0, degenerate pivot step if it is 0. See Examples 2.5, 2.6.

Let B be the basis for (2.3) corresponding to the basic vector (y1,...,yn). As
discussed above, the basic vector (y1,...,y,) is lexico feasible for (2.3) if each row

vector of (7 : B7!) is lexico positive. If the initial basic vector (yi,...,¥y,) is lexico
feasible, lexico feasibility can be maintained by choosing the pivot row according to the
lexico minimum ratio test. Here the pivot row is chosen as the r** row where r is
o wBin) . i such that ais > 0 }, where
B = (Bij) = . The lexico minimum ratio test identifies the pivot row (and hence

the ¢ that attalns the lexico minimum in { (@:,5i1

the dropping basic variable) unambiguously, and guarantees that lexico feasibility is
maintained after this pivot step. In the simplex algorithm for linear programming,
the lexico minimum ratio test is used to guarantee that cycling will not occur under
degeneracy (see Chapter 10 of [2.26]). The lexico minimum ratio test is one of the rules
that can be used to resolve degeneracy in the simplex algorithm, and thus guarantee
that it terminates in a finite number of pivot steps.
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Example 2.4 Extreme Half-line

Consider the following canonical tableau with respect to the basic vector (x1,xs,x3,

.1'4).

basic r1 T2 T3 T4 Ty Tg Ty Ty b
variables

x1 1 0 0 0 1 -1 2 3 3

T2 0 1 0 0 1 -2 1 -1 0

xs3 0 0 1 0o -1 0 5 4 6

T4 0 0 0 1 -1 -3 8 2 5

x; > 0 for all j.

Suppose g is the entering variable. The present BFS is 2 = (3,0,6,5,0,0,0,0)T.
The pivot column (—1,—2,0,—3)T has no positive entry. Make the entering variable
equal to A, retain all other nonbasic variables equal to 0, this leads to the solution
z(A) = (3+X,2X,6,54+3X,0,1,0,0)7 = 2+ A\z", where 2" = (1,2,0,3,0,1,0,0)T. 2",
the coefficient vector of A in z(A), is obtained by making the entering variable equal
to 1, all other nonbasic variables equal to zero, and each basic variable equal to the
negative of the entry in the pivot column in its basic row. Since the pivot column is
nonpositive here, " > 0. it can be verified that x" satisfies the homogeneous system
obtained by replacing the right hand side constants vector by 0. Hence 2" is known as
a homogeneous solution corresponding to the original system. Since z" > 0 here,
z(X) remains > 0 for all A > 0. The half-line {Z + Az" : A > 0} is known as an
extreme half-line of the set of feasible solutions of the original system.

A half-line is said to be a feasible half-line to a system of linear constraints, if
every point on the half-line is feasible to the system.

Example 2.5 Nondegenerate Pivot Step

See Tableau 2.4 in Example 2.8 of Section 2.2.6 a few pages ahead. This is the canonical
tableau with respect to the basic vector (wy, ws, zp, w4) and z3 is the entering variable.
The minimum ratio occurs uniquely in row 4, which is the pivot row in this step, and wy
is the dropping variable. Performing the pivot step leads to the canonical tableau with
respect to the new basic vector (wq, ws, 2g, 2z3) in Tableau 2.5. This is a nondegenerate
pivot step since the minimum ratio in it was (%) > 0. As a result of this pivot step
the BFS has changed from (wq,ws, ws, wy; 21, 22, 23, 24; 20) = (12,14,0,4;0,0,0,0;9)
to (6,8,0,0;0,0,2,0;5).
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Example 2.6

Degenerate Pivot Step

CHAPTER 2. THE COMPLEMENTARY PIVOT ALGORITHM

Consider the following canonical tableau :

Basic T TI9 I3 T4 Iy Te Ratio
variable
T 1 0 0 1 2 -3 3 s
s 0 1 0 2 1 |0 | %
3 0 0 1 -1 12 0

x; > 0 for all j.

Here the BFS is # = (3,0,0,0,0,0)T. Tt is degenerate. If x4 is chosen as the entering
variable, it can be verified that the minimum ratio of 0 occurs in row 2. Hence row 2
is the pivot row for this step, and xs is the dropping variable. Performing the pivot
step leads to the canonical tableau with respect to the new basic vector (z1, x4, x3).

basic T1 Ty T3 T4 Ty  Tg
variable
1 1 -1 0 0 4 —4 3
Ty 0 1 0 1 -2 1 0
xs3 0 1 1 0 -1 3 0

Eventhough the basic vector has changed, the BF'S has remained unchanged through
this pivot step. A pivot step like this is called a degenerate pivot step.

A pivot step is degenerate, if the minimum ratio  in it is 0, nondegenerate
if the minimum ratio is positive and finite. In every pivot step the basic vector changes
by one variable. In a degenerate pivot step there is no change in the correponding
BFS (the entering variable replaces a zero valued basic variable in the solution). In a
nondegenerate pivot step the BFS changes.

Example 2.7 Ties for Minimum Ratio lead to Degenerate Solution

Consider the following canonical tableau.

basic 1 To T3 T4 Ts Tg b Ratio
variable
1 1 0o o0 1 -2 1 3 3
T2 o 1 0 2 11 6 s
T3 0o 0 1 2 1 -2 16 oy
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The present BFSis z = (3,6, 16,0,0,0)T. Suppose x4 is chosen as the entering variable.
There is a tie for the minimum ratio. Both x1, x5 are eligible to be dropping variables.
Irrespective of which of them is chosen as the dropping variable, it can be verified
that the other remains a basic variable with a value of 0 in the next BFS. So the BFS
obtained after this pivot step is degenerate.

In the same way it can be verified that the BFS obtained after a pivot step is
always degenerate, if there is a tie for the minimum ratio in that step. Thus, if we
know that the right hand side constants vector ¢ is nondegenerate in (2.3), in every
pivot step performed on (2.3), the minimum ratio test identifies the dropping variable
uniquely and unambiguously.

2.2.3 Initialization

The artificial variable zo has been introduced into (2.3) for the sole purpose of obtaining
a feasible basis to start the algorithm.

Identify row ¢ such that ¢; = minimum {¢; : 1 < ¢ < n}. Break ties for ¢ in
this equation arbitrarily. Since we assumed ¢ 2 0, ¢; < 0. When a pivot is made in
(2.3) with the column vector of 2y as the pivot column and the t** row as the pivot
row, the right-hand side constants vector becomes a nonnegative vector. The result is
the canonical tableau with respect to the basic vector (w1, ..., w1, 20, Wity .-, Wy).

This is the initial basic vector for starting the algorithm.

2.2.4 Almost Complementary Feasible Basic Vectors

The initial basic vector satisfies the following properties :

(i) There is at most one basic variable from each complementary pair of variables
(w5, 2)-

(ii) It constains exactly one basic variable from each of (n — 1) complementary
pairs of variables, and both the variables in the remaining complementary
pair are nonbasic.

(iii) zp is a basic variable in it.

A feasible basic vector for (2.3) in which there is exactly one basic variable from
each complementary pair (wj,z;) is known as a complementary feasible basic
vector. A feasible basic vector for (2.3) satisfying properties (i), (ii), and (iii) above
is known as an almost complementary feasible basic vector. Given an almost
complementary feasible basic vector for (2.3), the complementary pair both of whose
variables are nonbasic, is known as the left-out complementary pair of variables
in it. All the basic vectors obtained in the algorithm with the possible exception of the
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final basic vector are almost complementary feasible basic vectors. If at some stage
of the algorithm, a complementary feasible basic vector is obtained, it is a final basic
vector and the algorithm terminates.

Adjacent Almost Complementary Feasible Basic Vectors

Let (y1,-.-,¥j—1,20,Yj+1,---,Yn) be an almost complementary feasible basic vector
for (2.3), where y; € {w;, 2;} for each i # j. Both the variables in the complementary
pair (wj, z;) are not in this basic vector. Adjacent almost complementary feasible basic
vectors can only be obtained by picking as the entering variable either w; or z;. Thus
from each almost complementary feasible basic vector there are exactly two possible
ways of generating adjcent almost complementary feasible basic vectors.

In the initial almost complementary feasible basic vector, both w; and z; are
nonbasic variables. In the canonical tableau with respect to the initial basis, the
updated column vector of w; can be verified to be —e,,, which is negative. Hence, if
wy is picked as the entering variable into the initial basic vector, an extreme half-line
is generated. Hence, the initial almost complementary BFS is at the end of an almost
complementary ray.

So there is a unique way of obtaining an adjacent almost complementary feasible
basic vector from the initial basic vector, and that is to pick z; as the entering variable.

2.2.5 Complementary Pivot Rule

In the subsequent stages of the algorithm there is a unique way to continue the algo-
rithm, which is to pick as the entering variable, the complement of the variable that
just dropped from the basic vector. This is known as the complementary pivot
rule.

The main property of the path generated by the algorithm is the following. Each
BF'S obtained in the algorithm has two almost complementary edges containing it. We
arrive at this solution along one of these edges. And we leave it by the other edge. So
the algorithm continues in a unique manner. It is also clear that a basic vector that
was obtained in some stage of the algorithm can never reappear.

The path taken by the complementary pivot algorithm is illustrated in Figure 2.1.
The initial BFS is that corresponding to the basic vector (w1, ..., wi—1, 20, W41, - - -,
wy,) for (2.3). In Figure 2.1, each BFS obtained during the algorithm is indicated by
a point, with the basic vector corresponding to it entered by its side; and consecutive
BFSs are joined by an edge. If w; is choosen as the entering variable into the initial
basic vector we get an extreme half-line (discussed above) and the initial BFS is at end
of this extreme half-line. When z; is choosen as the entering variable into the initial
basic vector, suppose w; is the dropping variable. Then its complement z; will be the
entering variable into the next basic vector (this is the complementary pivot rule).
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(Wes -« e o W, Z,
Wty - o 1V\4\)

~ Complementary
feasible
basic
vector

(Vv_l.a'--avvi-llzt ,VVi+1,...
Vvt-1120’VVt+l,...,V\4-|)

Figure 2.1 Path taken by the complementary pivot method. The 1 in-
dicates entering variable, | indicates dropping variable. The basic vector
corresponding to each point (BFS) is entered by its side. Finally if zy drops
from the basic vector, we get a complementary feasible basic vector.

The path continues in this unique manner. It can never return to a basic vector
visited earlier, since each BF'S obtained in the algorithm has exactly two edges of the
path incident at it, through one of which we arrive at that BFS and through the other
we leave (if the path returns to a basic vector visited earlier, the BFS corresponding
to it has three edges in the path incident at it, a contradiction). So the path must
terminate after a finite number of steps either by going off along another extreme half-
line at the end (ray termination, this happens when in some step, the pivot column,
the updated column of the entering variable, has no positive entries in it), or by reaching
a complementary feasible basic vector of the LCP (which happens when zy becomes
the dropping variable). If ray termination occurs the extreme half-line obtained at the
end, cannot be the same as the initial extreme half-line at the beginning of the path
(this follows from the properties of the path discussed above, namely, that it never
returns to a basic vector visited earlier).



74 CHAPTER 2. THE COMPLEMENTARY PIVOT ALGORITHM
2.2.6 Termination

There are exactly two possible ways in which the algorithm can terminate.

1. At some stage of the algorithm, zp may drop out of the basic vector, or become
equal to zero in the BFS of (2.3). If (w, 2z, Zp = 0) is the BFS of (2.3) at that
stage, then (w, z) is a solution of the LCP (1.6) to (1.8).

2. At some stage of the algorithm, zp may be strictly positive in the BFS of (2.3),
and the pivot column in that stage may turn out to be nonpositive, and in this
case the algorithm terminates with another almost complementary extreme
half-line, referred to in some publications as the secondary ray (distinct
from the initial almost complementary extreme half-line or initial ray at the
beginning of the algorithm). This is called ray termination.

When ray termination occurs, the algorithm is unable to solve the LCP. It is
possible that the LCP (1.6) to (1.8) may not have a solution, but if it does have a
solution, the algorithm is unable to find it. If ray termination occurs the algorithm
is also unable to determine whether a solution to the LCP exists in the general case.
However, when M satisfies some conditions, it can be proved that ray termination in
the algorithm will only occur, when the LCP has no solution. See Section 2.3.

Problems Posed by Degeneracy of (2.3).

Definition: Nondegeneracy, or Degeneracy of ¢ in the LCP (g, M) As defined
earlier, the LCP (¢, M) is the problem of finding w, z satisfying

w z

I -M q

w,z 20, wlz =0

This LCP is said to be nondegenerate (in this case ¢ is said to be nondegenrate in
the LCP (g, M)) if in every solution (w, z) of the system of linear equations “w—Mz =
q”, at least n variables are non-zero. This condition holds iff ¢ cannot be expressed as

a linear combination of (n — 1) or less column vectors of (I : —M).
The LCP (g, M) is said to be degenerate (in this case ¢ is said to be degenerate
in the LCP (¢, M)) if ¢ can be expressed as a linear combination of a set consisting of

(n — 1) or less column vectors of (I : —M).

Definition: Nondegeneracy, Degeneracy of ¢ in the Complementary Pivot
Algorithm The system of contraints on which pivot operations are performed in the
complementary pivot algorithm is (2.3). This system is said to be degenerate (and ¢
is said to be degenerate in it) if ¢ can be expressed as a linear combination of a set

of (n — 1) or less column vectors of (I * —M : —e); nondegenerate otherwise. If



2.2. THE COMPLEMENTARY PIVOT ALGORITHM 75

(2.3) is nondegenerate, in every BFS of (2.3) obtained during the complementary pivot
algorithm, all basic variables are strictly positive, and the minimum ratio test identifies
the dropping basic variable in each pivot step uniquely and unambiguously.

The argument that each almost complementary feasible basis has at most two
adjacent almost complementary feasible bases is used in developing the algorithm. This
guarantees that the path taken by the algorithm continues unambiguously in a unique
manner till termination occurs in one of the two possibilities. This property that each
almost complementary feasible basis has at most two adjacent almost complementary
feasible bases holds when (2.3) is nondegenerate. If (2.3) is degenerate, the dropping
variable during some pivots may not be uniquely determined. In such a pivot step, by
picking different dropping variables, different adjacent almost complementary feasible
bases may be generated. If this happens, the almost complementary feasible basis
in this step may have more than two adjacent almost complementary feasible bases.
The algorithm can still be continued unambiguously according to the complementary
pivot rule, but the path taken by the algorithm may depend on the dropping variables
selected during the pivots in which these variables are not uniquely identified by the
minimum ratio test. All the arguments mentioned in earlier sections are still valid, but
in this case termination may not occur in a finite number of steps if the algorithm keeps
cycling along a finite sequence of degenerate pivot steps. This can be avoided by using
the concept of lexico feasibility of the solution. In this case the algorithm deals with
almost complementary lexico feasible bases throughout. In each pivot step the
lexico minimum ratio test determines the dropping variable unambiguously and, hence,
each almost complementary lexico feasible basis can have at most two adjacent almost
complementary lexico feasible bases. With this, the path taken by the algorithm is
again unique and unambiguous, no cycling can occur and termination occurs after a
finite number of pivot steps. See Section 2.2.8.

Interpretation of the Path Taken by the Complementary
Pivot Algorithm

B. C. Eaves has given a simple haunted house interpretation of the path taken by the
complementary pivot algorithm. A man who is afraid of ghosts has entered a haunted
house from the outside through a door in one of its rooms. The house has the following
properties :
(i) It has a finite number of rooms.
(ii) Each door is on a boundary wall between two rooms or on a boundary wall
of a room on the outside.
(iii) Each room may have a ghost in it or may not. However, every room which
has a ghost has exactly two doors.
All the doors in the house are open initially. The man’s walk proceeds according to
the following property.
(iv) When the man walks through a door, it is instantly sealed permanently and
he can never walk back through it.
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The man finds a ghost in the room he has entered initially, by properties (iii) and
(iv) this room has exactly one open door when the man is inside it. In great fear he
runs out of the room through that door. If the next room that he has entered has a
ghost again, it also satisfies the property that it has exactly one open door when the
man is inside it, and he runs out through that as fast as he can. In his walk, every
room with a ghost satisfies the same property. He enters that room through one of
its doors and leaves through the other. A sanctuary is defined to be either a room
that has no ghost, or the outside of the house. The man keeps running until he finds
a sanctuary. Property (i) guarantees that the man finds a sanctuary after running
through at most a finite number of rooms. The sanctuary that he finds may be either
a room without a ghost or the outside of the house.

We leave it to the reader to construct parallels between the ghost story and the
complementary pivot algorithm and to find the walk of the man through the haunted
house in Figure 2.2. The man walks into the house initially from the outside through
the door marked with an arrow.

e

S

A ii
i i

Figure 2.2 Haunted house

Geometric Interpretation of a Pivot Step in the
Complementary Pivot Method

In a pivot step of the complementary pivot method, the current point moves between
two facets of a complementary cone in the direction of —e. This geometric interpreta-



2.2. THE COMPLEMENTARY PIVOT ALGORITHM 77

tion of a pivot step in the complementary pivot method as a walk between two facets
of a complementary cone is given in Section 6.2.

Example 2.8

Consider the following LCP. (This is not an LCP corresponding to an LP.)

Wy Wy w3 Wg 2 22 23 24 q
1 0 0 0o -1 1 1 1 3
0 1 0 0 1 -1 1 1 )
0 0 1 o -1 -1 =2 0 -9
0 0 0 1 -1 -1 0 -2 -5

w; > 0, z > 0, wiz; = 0 for all ¢

Wy w2 w3 Wi =1 22 3 24 <0 q
1 0o o0 o0 -1 1 1 1 -1 3
o 1 o o0 1 -1 1 1 -1 5
o 0 1 0 -1 -1 -2 0 -9
0 0 o0 1 -1 -1 0 -2 -1 -5

The most negative g; is gz. Therefore pivot in the column vector of zy with the third
row as the pivot row. The pivot element is inside a box.

Tableau 2.4
Basic wy] We W3 Wa 21 2o 23 24 2o q Ratios
variables
w1 1 0 -1 0 0 2 3 1 0 |12 |2
Wy o 1 -1 0 2 0 3 1 0 |14 |%
20 o 0 -1 0 1 1 01 |9 |3
w4 0 0 -1 1 0 02 2 0 |4 |4un

By the complementary pivot rule we have to pick z3 as the entering variable. The
column vector of z3 is the pivot column, wy4 drops from the basic vector.
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Tableau 2.5
Basic wy we w3 w4 21 29 Z3 Z4 2o | q | Ratios
variables
ws 1 0 1 -2 90 2 0 0 [6 | & win
wo o 1 4 -3 2 0 0 4 0 |82
20 o 0 o0 -1 1 1 0 2 1 |52
%3 o 0 -1 2 0 0 1 -1 0 |2

Since w4 has dropped from the basic vector, its complement, z4 is the entering variable
for the next step. w; drops from the basic vector.

Basic wy W W3 W4 21 29 23 Z4 2 q Ratios
variables
1 1 3 1 6
ws -1 1 0 0 2 0 0 0 |2 |2un
1 1 1 2
1 3 1 1 14

Since w; has dropped from the basic vector, its complement, z; is the new entering

variable. Now ws drops from the basic vector.

Basic wy Wy W3 W4 21 29 23 24 2o q Ratios
variables
1 1 3 1 6
71 -2 3 0 0 1 -1 0 0 0 |1
20 0 —1 1 _1 g 00 0 1 [ 1 [1wmn
1 3 1 1 14

Since ws has dropped from the basic vector, its complement, 25 is the entering variable.

Now zp drops from the basic vector.
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Basic wy We W3 Wa 21 29 23 24 2o q
variables
1 1 1 1 1
1 1 1
2 0 -4 -y -3 01 0 0 11
1 1 1 1 1

79

Since the present basis is a complementary feasible basis, the algorithm terminates.

The correponding solution of the LCP is w = 0, (21, 22, 23, 24) = (2,1, 3, 1).

Example 2.9

wy; W2 W3 21 Z2 23 q
1 0 0 1 0 3 -3
0 1 0o -1 2 5 -2
0 0 1 2 1 2 -1
w; 20, 220, wiz; = for all ¢
The tableau with the artificial variable z is :
wy w2  wg 21 22 Z3 20 q
1 0 0 1 0 3 -3
0 1 0 -1 2 5 -1 -2
0 0 1 2 1 2 -1 -1
The initial canonical tableau is :
Basic w; Wy W3 21 Za 23 %o q Ratios
variables
20 -1 0 0 -1 0 -3 1
Wa -1 1 0 -2 2 2 0
w3 -1 0 1 [I] 1 -1 o0 2
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The next tableau is :

Basic wy Wo W3 21 X2 23 2 q
variables
20 -2 0 1 0 1 -4 1 5
wa -3 1 2 0 4 0 O 5
Z1 -1 0 1 1 1 -1 0 2

The entering variable here is z3. The pivot column is nonpositive. Hence, the algorithm
stops here with ray termination. The algorithm has been unable to solve this LCP.

2.2.7 IMPLEMENTATION OF THE
COMPLEMENTARY PIVOT METHOD
USING THE INVERSE OF THE BASIS

Let (2.3) be the original tableau for the LCP being solved by the complementary pivot
method. Let ¢ be determined as in Section 2.2.3. After performing the pivot with
row t as the pivot row and the column vector of 2y as the pivot column, we get the
initial tableau for this algorithm. Let Py be the pivot matrix of order n obtained by
replacing the ' column in I (the unit matrix of order n) by —e,, (the column vector
in R™ all of whose entires are —1). Let M’ = PoyM, ¢’ = Pypq. Then the initial tableau
in this algorithm is

Tableau 2.6 : Initial Tableau

w z 20

P, -M I, | ¢

The initial basic vector is (wy, ..., wi—1, 20, Wet1, - - ., Wy, ) and the basis corresponding

to it in Tableau 2.6 is I. By choice of t, ¢ > 0. So each row of (¢’ * I) is lexico-
positive, and hence the initial basic vector in this algorithm is lexico-feasible for the
problem in Tableau 2.6.

At some stage of the algorithm, let B be the basis from Tableau 2.6, corresponding
to the present basic vector. Let 8 = (3;;) = B~! and § = B~'¢’. Then the inverse
tableau at this stage is

Basic vector Inverse

B=B"1 q
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If the entering variable in this step, determined by the complementary pivot
rule, is ys € {ws,zs }, then the pivot column, the updated column of y,, is SPyl.s
if y, = w,, or BPy(—M.,) if y, = z,. Suppose this pivot column is (a@ys,...,a0ns)L. If
(G1gy .-y éns)T < 0, we have ray termination and the method has been unable to solve
this LCP. If (@15, ..., ans)T £ 0, the minimum ratio in this step is # = minimum dq—; :
¢ such that a;s > 0 } If the 7 that attains this minimum is unique, it determines the
pivot row uniquely. The present basic variable in the pivot row is the dropping vari-
able. If the minimum ratio does not identify the dropping variable uniquely, check
whether 2z, is eligible to drop, and if so choose it as the dropping variable. If zj is not
eligible to drop, one of those eligible to drop can be choosen as the dropping variable
arbitrarily, but this can lead to cycling under degeneracy. To avoid cycling, we can
use the lexico-minimum ratio rule, which chooses the dropping basic Var(iabﬁle soﬁth)at

qi;Pi1,--Pin)
¢ such that a;s > 0 } This lexico minimum ratio rule determines the {dropp(ilrlfg vari-

the pivot row is the row corresponding to the lexico-minimum among

able uniquely and unambiguously. If the lexico-minimum ratio rule is used in all steps
beginning with the initial step, the dropping variable is identified uniquely in every
step, each of the updated vectors (g;; Bi1,---,Bin), ¢ = 1 to n, remain lexico-positive
throught, and cycling cannot occur by the properties of the almost complementary
path generated by this method, discussed above (see Section 2.2.8). Once the drop-
ping variable is identified, performing the pivot leads to the next basis inverse, and the
entering variable in the next step is the complement of the dropping variable, and the
method is continued in the same way.

Clearly it is not necessary to maintain the basis inverse explicitly. The comple-
mentary pivot algorithm can also be implemented with the basis inverse maintained
in product form (PFI) or in elimination form (EFI) just as the simplex algorithm for
linear programming (see Chapters 5, 7 of [2.26]).

Example 2.10

Consider the LCP (¢, M) where

1 0 0 -8
M=1|2 10 g= | —-12
2 2 1 —14

To solve this LCP by the complementary pivot algorithm, we introduce the artificial
variable zg and construct the original tableau as in (2.3). When z, replaces w3 in the
basic vector (wq,wy,ws), we get a feasible basic vector for the original tableau. So the
initial tableau for this problem is :
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Initial
Basic wy We W3 21 2o 23 2o q
Vector
wy 1 0 -1 1 2 1 0 6
Wa 0 1 -1 0 1 1 0 2
20 0 0 -1 2 2 1 1 14

pivot algorithm are given below.

Basic Inverse q Pivot Ratios
Vector Column
Z3
wi 1 0 6 1 6
W 0 1 2 2 Min.
20 0 0 14 1 14
Z2
w1 1 -1 4 1 4
23 0 1 2 2 Min.
20 0 -1 12 1 12
w3
w, 1 -2 2 2 Min.
%9 0 1 2 -1
20 0 -2 10 1 10
21
ws 1 -2 2 9 Min.
29 1 -1 4 1 4
20 -1 0 8 1 8
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Basic Inverse q Pivot Ratios
Vector Column
Z3
21 1 -2 0 2 -1
2 0 1 0 | 2 2 Min.
% 2 2 1 6 1 6
W2
21 1 -1 0 4 —1
23 0 1 0 | 2 2 Min.
20 -2 1 1 4 1 4
w3
Z1 1 0 0 6 -1
Wa 0 1 0 2 -1
20 —2 0 1 | 2 1] 2 Min.
21 -1 0 1 8
Wa -2 1 1 4
w3 2 0 1 2

So the solution of this LCP is (wq, wa, ws; 21, 22, 23) = (0,4, 2;8,0,0).

2.2.8 Cycling Under Degeneracy in the
Complementary Pivot Method

Whenever there is a tie for the pivot row in any step of the complementary pivot
method, suppose we adopt the rule that the pivot row will be chosen to be the topmost
among those eligible for it in that step. Under this rule it is possible that cycling occurs

under degeneracy. Here we provide an example of cycling under this rule, constructed
by M. M. Kostreva [2.20]. Let

1 2 0 —1
2 01 -1
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and solve the LCP (¢, M) by the complementary pivot method using the above pivot
row choice rule in each pivot step. It can be verified that we get the following al-
most complementary feasible basic vectors: initial basic vector (zg, we, w3) followed by
(20, 21, w3), (20, 22, w3), (20, 22, w1), (20, 23, W1), (20, 23, W2), (20, 21, w2), (20, 21, W3), in
this order. After the initial basic vector (zp, ws,ws) is obtained, all pivots made are
degenerate pivot steps, and at the end the method has returned to the basic vector
(20,21, w3) and so the method has cycled on this problem. The matrix M is a P-
matrix, it will be proved later on the LCP (g, M) has a unique solution, and that the
complementary pivot method always terminates in a finite number of pivot steps with
that solution, if it is carried out in such a way that cycling does not occur under degen-
eracy. Actually, for the LCP (g, M) considered here, it can be verified that (z1, 22, 23)
is the complementary feasible basic vector.

As discussed above, after obtaining the initial basic vector, if the complementary
pivot method is carried out using the lexico-minimum ratio rule for choosing the pivot
row in each pivot step, cycling cannot occur, and the method must terminate either by
obtaining a complementary feasible vector, or in ray termination, after a finite number
of pivot steps, because of the following arguments. If ¢ is nondegenerate in (2.3),
the dropping basic variable is identified uniquely by the usual minimum ratio test, in
every step of the complementary pivot algorithm applied on it. Using the properties
of the path traced by this algorithm we verify that in this case, the algorithm must
terminate after a finite number of pivot steps either with a complementary feasible
basic vector or in ray termination. Suppose ¢ is degenerate in (2.3). Perturb (2.3) by
replacing ¢ by q(¢) = g+ (e,¢2,...,e®)T, as in (2.2). When ¢ is positive but sufficiently
small, the perturbed problem is nondegenerate. So when the perturbed problem is
solved by the complementary pivot algorithm treating € > 0 to be sufficiently small,
it must terminate in a finite number of pivot steps. If a complementary feasible basic
vector is obtained at the end for the perturbed problem, that basic vector is also a
complementary basic vector for the original LCP (unperturbed original problem, with
e = 0). If ray termination occurs at the end on the perturbed problem, the final almost
complementary feasible basic vector is also feasible to the original LCP and satisfies
the condition for ray termination in it. The sequence of basic vectors obtained when
the complementary pivot algorithm is applied on the original problem (2.3) using the
lexico-minimum ratio rule for chosing the dropping variable in every pivot step, is
exactly the same as the sequence of basic vectors obtained when the complementary
pivot algorithm is applied on the perturbed problem got by replacing ¢ in (2.3) by
q(g) with ¢ > 0 and sufficiently small. These facts show that the complementary pivot
algorithm must terminate in a finite number of pivot steps (i. e., can not cycle) when
operated with the lexico minimum ratio test for chosing the dropping variable in every
pivot step.
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2.3 CONDITIONS UNDER WHICH THE
COMPLEMENTARY PIVOT ALGORITHM
WORKS

We define several classes of matrices that are useful in the study of the LCP. Let
M = (m;j) be a square matrix of order n. It is said to be a

Copositive matrix if y" My > 0 for all y > 0.

Strict copositive matrix if y? My > 0 for all y > 0.

Copositive plus matrix if it is a copositive matrix and whenever y > 0,
and satisfies yT My = 0, we have yT (M + MT) = 0.

P-matrix if all its principal subdeterminantes are positive.

Q-matrix if the LCP (¢, M) has a solution for every ¢ € R".

Negative definite matrix if y” My < 0 for all y # 0.

Negative semidefinite matrix if y" My <0 for all y € R™.

Z-matrix if m;; <0 foralli#j

Principally nondegenerate matrix if all its principal subdeterminants
are non-zero.

Principally degenerate matrix if at least one of its principal subdeter-
minants is zero.

Li-matrix if for every y > 0, y € R", there is an 7 such that y; > 0 and
M;.y > 0. If M is an L;-matrix, an ¢ like it is called a defining index for
M and y. These matrices are also called semimonotone matrices.
Ly-matrix if for every y > 0, y € R", such that My > 0 and y" My =
0, there are diagonal matrices, A > 0, > 0 such that Qy # 0 and (AM +
MTQ)y = 0. An equivalent definition is that for each z > 0, satisfying w
Mz > 0 and w?z = 0; there exists a 2 > 0 satisfying v = —(2TM)T, w
W>0,2>2>0.

L-matrix if it is both an Li-matrix and an Ls-matrix.

IAVANI

L,-matrix if for every y > 0, y € R", there is an ¢ such that y; > 0 and
M;.y > 0. If M is an L,-matrix, an ¢ like it is called a defining index for
M and y.

Py-matrix if all its principal subdeterminants are > 0.

Row adequate matrix if it is a Py-matrix and whenever the principal
subdeterminant corresponding to some subset J C {1,...,n} is zero, then
the set of row vectors of M corresponding to J, { M;. : i € J} is linearly
dependent.

Column adequate matrix if it is a Fy-matrix and whenever the principal
subdeterminant corresponding to some subset J C {1,...,n} is zero, then
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the set of column vectors of M corresponding to J, { M.; : j € J } is linearly
dependent.

Adequate matrix if it is both row and column adequate.

In this book the only type of degeneracy, nondegeneracy of square matrices that
we discuss is principal degeneracy or principal nondegeneracy defined above. So, for
notational convenience we omit the term “principally” and refer to these matrices
as being degenerate or nondegenerate matrices. Examples of degenerate matrices

0 4 1 1 . -1 0
are [3 _10] , [ 11 ] . Examples of nondegenerate matrices are [ 0 —1 ] ,

1 . .. i .
[ g 9 ] . The notation Cy-matrix is used to denote copositive matrices, and the
notation C'y-matrix is used to denote copositive plus matrices.

Theorem 1.11 implies that every PSD matrix is also a copositive plus matrix.
Also, the square matrix M is negative definite or negative semi-definite, iff —M is PD

or PSD respectively.

2.3.1 Results on LCPs Associated with

Copositive Plus Matrices

Theorem 2.1 If M is a copositive plus matrix and the system of constraints (1.6)
and (1.7) of Section 1.1.3 has a feasible solution, then the LCP (1.6) — (1.8) has a so-
lution and the complementary pivot algorithm will terminate with the complementary
feasible basis. Conversely, when M is a copositive plus matrix, if the complementary
pivot algorithm applied on (1.6) — (1.8) terminates in ray termination, the system of
constraints (1.6), (1.7) must be infeasible.

Proof. Assume that either (2.3) is nondegenerate, or that the lexico-minimum ratio
rule is used throughout the algorithm to determine the dropping basic variable in
each step of the algorithm. This implies that each almost complementary feasible (or
lexico feasible) basis obtained during the algorithm has exactly two adjacent almost
complementary feasible (or lexico feasible) bases, excepting the initial and terminal
bases, which have exactly one such adjacent basis only. The complementary pivot
algorithm operates on the system (2.3).

The initial basic vector is (wq,...,w—1, 20, Wet1, ..., wy,) (as in Section 2.2.3).
The corresponding BFS is 2 =0, wy =0, 29 = —q¢, and w; = ¢; — q; for all ¢ # ¢. If w,
is taken as the entering variable into this basic vector, it generates the half-line (called
the initial extreme half-line)

w; = q; — qp + A for all 1 # ¢
wy = A

z=0

Zo=—qt + A
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where A > 0. (This can be seen by obtaining the canonical tableau corresponding to
the initial basic vector.) This initial extreme half-line contains the initial BFS of (2.3)
as its end point. Among the basic vectors obtained during the algorithm, the only one
that can be adjacent to the initial basic vector is the one obtained by introducing z;
into it. Once the algorithm moves to this adjacent basic vector, the initial basic vector
will never again appear during the algorithm. Hence, if the algorithm terminates with
ray termination, the extreme half-line obtained at termination cannot be the initial
extreme half-line.

At every point on the initial extreme half-line all the variables w, z, are strictly
positive. It is clear that the only edge of (2.3) that contains a point in which all the
variables w, zo are strictly positive is the initial extreme half-line.

Suppose the algorithm terminates in ray termination without producing a solution
of the LCP. Let By, be the terminal basis. When the complementary pivot algorithm is
continued from this basis By, the updated column vector of the entering variable must
be nonpositive resulting in the generation of an extreme half-line. Let the terminal
extreme half-line be

{ (w,2,20) = (W + Mo", 2" + X" 25 +220) 0 A>0} (2.5)

where (w", zF, 25) is the BFS of (2.3) with respect to the terminal basis By, and

(wh, 2", 1) is a homogeneous solution corresponding to (2.3) that is,

wh — Mz2" —en,zh =0

wh >0, Z">0, >0 (2.6)
(wh, 2", 28) # 0. If 2" = 0, (2.6) and the fact that (w", 2", 2#) # 0 together imply
that w" # 0 and hence 2 > 0, and consequently w" > 0. Hence, if 2" = 0, points on
this terminal extreme half-line have all the variables w, zy strictly positive, which by
earlier arguments would imply that the terminal extreme half-line is the initial extreme
half-line, a contradiction. So z" # 0.

Since every solution obtained under the algorithm satisfies the complementarity
constraint, wlz = 0, we must have (w® + Adw™)T(zF + A2") = 0 for all A > 0. This
implies that (w*)TzF = (wk)T2h = (W")T2F = (W")T2" = 0. From (2.6) (w™)T =
(M2" + e,2!)T. Hence from (w")Tz" = 0, we can conclude that (z*)TMT:h =
(M T MM = —eL b < 0. Since zh > 0, and M is copositive plus by the hypothesis,
(z"M)T M 2" cannot be < 0, and hence, by the above, we conclude that (:")TMz" = 0.
This implies that (2")T(M + M7T) = 0, by the copositive plus property of M. So
(zM)TM = —(2")TMT. Also since —elz"zl = (2M)TM2z" =0, 2} must be zero (since

z" > 0). Since (w”, 2%, 2§) is the BFS of (2.3) with respect to the feasible basis By,
w* = MzF + g+ e, 28. Now
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0= (w*)T2" = (M2* +q+e 28)T2"
= (VT MT 2P 4 qT 2" 4 kel 0

= (") M2* + (") g + z5en 2"

:—(zh)TMTZk+( ) q+Z§eT2h

= — (T M" + (M Tq 4 kel 2l

= —(")Tw" + (z")Tq + 25 eq 2"

= (zh) q+ zlgeTzh

So (2")Tq = 2", Since 2" > 0 and 2§ > 0 [otherwise (w*, z¥) would be a solution
h

—z
of the LCP], zEel 2" > 0. Hence, (2")Tq < 0. Hence, if 7 = (2")T we have, mq < 0,
>0, 7(—-M)=—-0"TM=(")TMT = (w")T >0, that is,

k, T
0€n
GTZ

mq <0
I : —M)=>0
By Farakas lemma (Theorem 3 of Appendix 1), this implies that the system :

w w
(I :-M)|...| =g¢q,

v
o

has no feasible solution. Hence, if the complementary pivot algorithm terminates in
ray termination, the system (1.6) and (1.7) has no feasible solutions in this case and
thus there cannot be any solution to the LCP.

This also implies that whenever (1.6) and (1.7) have a feasible solution, the LCP
(1.6) to (1.8) has a solution in this case and the complementary pivot algorithm finds
it.

[

The following results can be derived as corollaries.

Result 2.1 In the LCPs corresponding to LPs and convex quadratic programs,
the matrix M is PSD and hence copositive plus. Hence, if the complementary pivot
algorithm applied to the LCP corresponding to an LP or a convex quadratic program
terminates in ray termination, that LP or convex quadratic program must either be
infeasible, or if it is feasible, the objective function must be unbounded below on the
set of feasible solutions of that problem.

Hence the complementary pivot algorithm works when used to solve LPs or convex
quadratic programs.

Result 2.2 If M is strict copositive the complementary pivot algorithm applied on
(1.6) to (1.8) terminates with a solution of the LCP.
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Proof. If the complementary pivot algorithm terminates in ray termination, as seen
in the proof of the above theorem there exists a z" > 0 such that (2*)TMz" = 0,
contradicting the hypothesis that M is strict copositive.
[]
Thus all strict copositive matrices are Q-matrices. Also, if M = (m;;) > 0 and
mg; > 0 for all ¢, M is strict copositive and hence a ()-matrix.

FExercise

2.1 Suppose M > 0 and mq; = 0. Prove that if ¢ = (=1,1,...,1)T, the LCP (1.6) to
(1.8) cannot have a solution. Thus prove that a square nonegative matrix is a ()-matrix
iff all its diagonal entries are strictly positive.

Later on we prove that if M is a P-matrix, the complementary pivot algorithm
terminates with a complementary feasible solution when applied on the LCP (g, M).
When the complementary pivot algorithm is applied on a LCP in which the matrix
M is not a copositive plus matrix or a P-matrix, it is still possible that the algorithm
terminates with a complementary feasible basis for the problem. However, in this
general case it is also possible that the algorithm stops with ray termination even if a
solution to the LCP exists.

To Process an LCP (q, M)

An algorithm for solving LCPs is said to process a particular LCP (g, M) for given ¢
and M, if the algorithm is guaranteed to either determine that the LCP (¢, M) has no
solution, or find a solution for it, after a finite amount of computational effort.

Suppose M is a copositive plus matrix, and consider the LCP (¢, M), for given
q. When the complementary pivot algorithm is applied on this LCP (g, M), either it
finds a solution; or ends up in ray termination which implies that this LCP has no
solution by the above theorem. Hence, the complementary pivot algorithm processes
the LCP (¢, M) whenever M is a copositive plus matrix.

2.3.2 Results on LCPs Associated with
L- and L,-Matrices

Here we show that the complementary pivot algorithm will process the LCP (q, M)
whenever M is an L- or L,-matrix. The results in this section are from B. C. Eaves
[2.8, 2.9], they extend the results proved in Section 2.3.1 considerably. Later on, in
Section 2.9.2 we derive some results on the general nonconvex programming problem
using those proved in this section.
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Lemma 2.1 If M is an Ly-matrix, the LCP (q, M) has a unique solution for all
q > 0, and conversely.

Proof. When ¢ > 0, one solution of the LCP (¢, M) is (w = ¢,z = 0). So if (w, z) is
an alternate solution, we must have z > 0. But w — Mz = q. Let M be an Li-matrix
and let 7 be the defining index for M and z. We have

w; = (MZz); +q; >0

So w;z; > 0, contradiction to complementarity.

Now suppose M is not an Lj-matrix. So, there must exist a y = (y;) > 0 such
that for all ¢ such that ¢; > 0, M;.g < 0. Let J = {i: y; > 0}. Select a positive
number « such that o > {|M;.g| : ¢ ¢ J }. Define the vector ¢ = (¢;) € R" by

0 = —M;.y, foralljeld
! , for all j € J.

Then ¢ > 0 and the LCP (g, M) has two distinct solutions namely (w, z) = (¢,0) and
(w = (w;),z =y), where

_ _J0, forall j€J
I \a+ M.y, forallj¢&lJ.

This establishes the converse.

[]

Lemma 2.2 If M is an L,-matrix, the LCP (q, M) has a unique solution for every
q 2 0, and conversely.

Proof. Similar to Lemma 2.1.

[]

Lemma 2.3 If M is an Ls-matrix and the complementary pivot method applied
on the LCP (q, M) terminates with the secondary ray { (w¥, 2%, 28) + X(w", 2", 21) :
A >0} asin (2.5), where (w”, 2%, 2) is the terminal BFS of (2.3) and (w", 2", 2}!) is a
homogeneous solution corresponding to (2.3) satisfying (2.6); and z§ > 0 and 2} = 0;
then the LCP (q, M) is infeasible, that is, the system “w — Mz = q, w > 0, z > 0” has
no feasible solution.

Proof. As in the proof of Theorem 2.1 we assume that either (2.3) is nondegenerate
or that the lexico minimum ratio rule is used throughout the algorithm to determine
the dropping basic variable in each step of the algorithm. Using the hypothesis that
zl =0 in (2.6), we have
wh — Mz" =0
( Zh)T wh -0

Since (w”, 2", z8) # 0, this implies that 2" > 0. Therefore 0 = (2")Tw" = (2")T M 2"

=0, and 2" > 0. So, using the hypothesis that M is an Ly-matrix, we have diagonal
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matrices > 0, A > 0 such that Qz" # 0 and (AM + MTQ)z" = 0. Since AMz" >
0 (since Mz" = wh > 0 and A > 0 is a diagonal matrix) this implies that M7 Qz" =
(zMTOM < 0. Now 0 = (2*)Tw" = (2*)TAw" (since A is a diagonal matrix with
nonnegative entries and wh > 0, z& > 0) = (*)TAMz" = (2F)T(—MTQz"). So
(zM)TQM2F = 0. Now

(zMTQ(w* — M2F — ezf) = ()T Qq

Since 2 is a nonnegative diagonal matrix and (2")Twk = 0 and (z")T > 0, wk
0, we have (2M)TQu* = 0. Also (z")TQMz* = (F)TMTQ = —(ZF)TAM "
—(2")T Aw" = 0 (since zF > 0, w" > 0, A is a diagonal matrix which is > 0, (2*)Tw"

0 implies (z*)TAw” = 0). Using these in the above equation, we get

v

—(2MTQezt = (:M)TQq

since (z2M)T > 0, @ > 0, Q2" # 0, we have Q2" = (2")TQ > 0, this implies that
(z")TQe > 0. Also, by hypothesis z5 > 0. So from the above equation (2*)TQq < 0.
So if 7 = (2")TQ2, we have

>0
—mM = —(Z")TOM = —MTQz" = AM2" = Aw" >0
mq <0

which implies that ¢ & Pos(I, —M) by Farakas’ theorem (Theorem 3 of Appendix 1).
So the system

w—Mz=q

w,z 20

is itself infeasible.

[]

Theorem 2.2 The complementary pivot algorithm processes the LCP (q, M) if M
is an L-matrix.

Proof. When we apply the complementary pivot algorithm on the LCP (g, M), sup-
pose the secondary ray { (w® + Mw™, 28 + X2 2§ + X20) : A > 0} is generated. So we
have

(W + Aw™) — M(2F 4+ 22") = g +e(zb + \2) .

If 28 > 0, and in the above equation if A is a large positive value such that q + e(z§ +
Azl) > 0, then (w4 Aw", 2+ X2") is a complementary solution for the LCP (g+e(z%+
th),M) which by Lemma 2.1 implies that z¥ 4+ Az = 0, which means that z¥ =
2" = 0, a contradiction to the fact that this is the secondary ray. So z} cannot be
> 0, that is 2% = 0, and in this case (¢, M) has no solution by Lemma 2.3. So the

complementary pivot algorithm processes the LCP (¢, M).
[



92 CHAPTER 2. THE COMPLEMENTARY PIVOT ALGORITHM

Theorem 2.3 If M is an L,-matrix, when the complementary pivot algorithm is
applied on the LCP (q, M), it terminates with a complementary feasible solution.

Proof. In this case we show that there can be no secondary ray. Suppose { (w®+ Aw",
2R nh 2+ Azh) : A >0} is asecondary ray. Asin the proof of Theorem 2.1, 2" > 0
(otherwise this ray will be the same as the initial ray, a contradiction). Let ¢ be the
defining index of M, 2". So we have 2 > 0 which implies w? = 0 by complementarity
and

0< (Mz"); = —(exf)i <0

a contradiction. So a secondary ray cannot exist in this case, and the complementary
pivot method must terminate with a complementary feasible solution.
[

Theorem 2.2 and 2.3 make it possible for us to conclude that the complementary
pivot algorithm processes that LCP (g, M) for a much larger class of matrices M than
the copositive plus class proved in Theorem 2.1. We will now prove several results
establishing that a variety of matrices are in fact L- or L,-matrices. By virtue of
Theorem 2.2 and 2.3, this establishes that the complementary pivot method processes
the LCP (¢, M) whenever M is a matrix of one of these types.

All copositive plus matrices are L-matrices. This follows because when M is
copositive plus, y > 0 implies yT My > 0, and if y is such that y > 0, yTMy = 0
then (M + M7T)y = 0, hence M satisfies the definition of being an L-matrix by taking
the diagonal matrices A and €2 to be both I. A strictly copositive matrix is clearly an
L,-matrix. From the definitions, it can be verified that PM PT (obtained by principal
rearrangement of M), AMS) (obtained by positive row and column scaling of M) are L-
matrices if M is, whenever P is a permutation matrix and A, 2 are diagonal matrices
with positive diagonal elements. Copositive plus matrices M satisfy the property
that PMPT is also copositive plus whenever P is a permutation matrix, but if M is

copositive plus, AMS2 may not be copositive when A, 2 are diagonal matrices with
0

M
0 N
Theorem 3.11 of Section 3.3, it follows that all P-matrices are L, matrices.

positive diagonal entries. Also if M, N are L-matrices, so is [ ] . Again, from

Lemma 2.4 M is row adequate iff for any y, (y" M.;)y; < 0 for i = 1 to n implies
that yT M = 0.

Proof. Suppose M is row adequate, and there exists a y > 0 such that (yT' M) y; <0
for i = 1 to n. By a standard reduction technique used in linear programming (see
Section 3.4.2 in [2.26]) we can get a solution z of

eTM =yt M
x>0
such that { M;. : 2; >0} C {M;. : y; > 0} and { M;. : x; > 0} is linearly independent.

So we also have (zTM.;)z; < 0foralli=1ton. LetJ={i:z; >0}. Since M
is a Pp-matrix, so is its principal submatrix Mzy = (m;; : ¢ € J,j € J). By linear
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independence of the set of row vectors { M;. : i € J}, since M is row adequate, we
know that the determinant of Myt # 0 for all T C J, and therefore that Mjy is a
P-matrix. The facts J = {i:2; >0}, 2; = 0if i ¢ J, and (2T M.;)z; < 0 for all
i =1 to n, together imply that Myyzy < 0 where 23 = (x; : j € J), which implies by
Theorem 3.11 of Section 3.3 that x3 = 0 since Mjj is a P-matrix, a contradiction. So
J must be empty and 2z = 0, and hence y“ M = 0. Now if y € R", y not necessarily
> 0, satisfies (yTM.;)y; < 0 for all i =1 to n, let \; = 1if y; >0, or —1 if y; < 0;
and let A be the diagonal matrix with diagonal entries A1,..., A,. Then yTA > 0 and
(yTA(AM).;) X2y, = ((yTA)Y(AMA).;) (Niyi) < 0 for all i. But AMA is row adequate
since M is, and by the above we therefore have yT A(AMA) = 0 or y' M = 0.

Conversely, if M is a square matrix such that for any y, (y"M.;)y; < 0 for all
i = 1 to n implies that y7 M = 0, it follows that M is a Py-matrix by the result in
Exercise 3.5 and that M is row adequate.

[]

Lemma 2.5 Let M be a Py-matrix. If

My =20
y>0

has a solution y, then the system

2TM =0
>0

has a solution.

Proof. Let y satisfy My = 0, y > 0. By the result in Exercise 3.6 we know that
since M is a Py-matrix, there is a x satisfying =7 M >0,z >0. If M # 0, then
(T M)y > 0 but 2T (My) = 0, a contradiction. So this z must satisfy 27 M = 0.

[

Theorem 2.4 If M is row adequate, then M is an L-matrix.

Proof. By the result in Exercise 3.5 M is a Py-matrix iff for all y # 0, there exists an
i such that y; # 0 and y;(M;.y) > 0. This implies that all Py-matrices are Li-matrices.

Suppose y satisfies y > 0, My > 0, y" My = 0. Let J = {i :y; > 0}. These
facts imply Myyyy = 0 where Mjjy is the principal submatrix (m;; : ¢ € J,j € J), and
ys = (y; : j € J) > 0. By Lemma 2.5, there exists an x5 = (z; : j € J) satisfying
ry > 0, a;.:fM,” = 0. From Lemma 2.4, these facts imply that :E?MJ. = 0, where Mj.
is the matrix with rows M;. for i € J. Select the diagonal matrix € so that 3 = (Qy)s
(possible because yy > 0) and 0 = (Qy)5y where J = {1,...,n}\ J. Then yTQM =0
and (AM + MTQ)y = 0 with A = 0. So M is an Lp-matrix too. Thus M is an
L-matrix.

[
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Lemma 2.6 If R, S are L-matrices and P > 0, N < 0 are matrices of appropriate

orders, then
R P S N
A_[N 5] and B_[P R]

are also L-matrices.

Proof. Consider the product A¢ where

;) =

Case 1 : Let x > 0, y > 0. Select a defining index for R and x, suppose it is ¢. Then
z;(Rx + Py); >0, since P >0and y >0 .

This verifies that in this case the same ¢ will serve as a defining index for A to satisfy
the condition for being an Li-matrix with this vector £. Also verify that in this case,
A satisfies the condition for being an Ly-matrix, with this vector £, trivially.

Case 2 : Let x > 0, y = 0. The select 7 as in case 1 and it will serve as a defining index
for A to satisfy the conditions for being an Li-matrix, with this vector £. Also verify
that in this case A satisfies the condition for being an Ls-matrix, with this vector &,
trivially, since A{ > 0 would imply in this case x = 0, a contradiction.

Case 3 : Let x =0, y > 0. Select a defining index for S and y, suppose it is ¢. Verify
that the same ¢ will serve as a defining index for A to satisfy the condition for being
an Li-matrix. If y is such that A¢ > 0 and ¢TA¢ = 0, then Sy > 0, y7'Sy = 0. Since
S is an Ly-matrix, there must exist diagonal matrices Ag, {25 > 0 such that Qpy # 0
and (A2S + STQy)y = 0. Now, it can be verified easily that there is an appropriate
choice of diagonal matrices Ay, € such that (since z = 0 in this case)

[A1P+ NTQ, ]

D5 5 o)) )

So A satisfies the condition for being an Ls-matrix, with this vector &.
These facts establish that A is an L-matrix. The proof that B is an L-matrix is
similar.

[]

Lemma 2.7 If R, S are L,-matrices and P > 0, @ arbitrary, are matrices of
appropriate orders, then

A={g ) ad B=(7 3]

are also L,-matrices.
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= (5)

Consider the product A¢. If © > 0, select ¢ to be a defining index for R and z. Since

Proof. Let

P > 0, the same 7 serves as a defining index for A and £ in the condition for A to be
an L,-matrix with this €. If z = 0, then select ¢ to be a defining index for S and y, the
same ¢ serves as a defining index for A and ¢ in the condition for A to be an L,-matrix,
with this £&. So A is an L,-matrix. The proof that B is an L,-matrix is similar.

[
. . 0 P
Lemma 2.8 IfP > 0is of order n xm and N < 0 is of order m X n, then N 0
is an L-matrix.
Proof. Since 0 is an L-matrix, this results follows from Lemma 2.6.
[

In Exercise 2.24 we ask the reader to prove that one formulation of the bimatrix
game problem as an LCP can be solved directly by the complementary pivot algorithm,
to yield a solution, using this lemma.

Lemma 2.9 LetT (nxn), R (nxm), p(nx1),S (mxmn), o (1xn) be given
matrices with p > 0, o < 0; where n > 0, m > 0. If for each © = (z1,...,2m,)7, § real
satisfying (x1,...,Zm,0) > 0, Rx 4 pd > 0; there exist diagonal matrices A > 0, T > 0
of orders n x n and (m + 1) x (m + 1) respectively such that

r [f;] £0 and (AR, p)+ (ST, 0T)I) [f;] — 0

then the following matrix M is an Ly-matrix

T R p
M=1]S 0 0
c 0 0

Proof. Follows from the definition of Ls-matrices.
[
Notice that in Lemma 2.9, m could be zero, this will correspond to R, S being
vacuous.

Theorem 2.5 Let T (nxn), R (n xm), p(nx1), S (mxn), o (1xn) be
given matrices satisfying p > 0, 0 < 0. Let N =n+m+ 1. Let J; = {1,...,n},
Jo={n+1,....,n+m}, I3 ={n+m+1}. For vectors w,z q € R", let wy, etc.
be defined to be the vectors wy, = (w; : j € J;), etc. Assume that ¢ € RN is a given
column vector satisfying q3, = (Gn+m+1) > 0. Let

T R p
S 0 0
c 0 0

M =
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If M is an Lo-matrix, when the complementary pivot method is applied on the LCP
(q, M) with the original column vector of the artificial variable zo taken to be (—1,...,
-1,007 ¢ RY, either we get a complementary feasible solution of the problem, or the

()= ()

x>0

system

must be infeasible.

Proof. Suppose the complementary pivot algorithm is applied on the LCP (¢, M) with
the original column vector of the artificial variable zy taken to be (—1,...,—1,0)T €
R, and it terminates with the secondary ray {(wh+Xwh, 2P+ X" 2E+ X)) 0 A >
0 } Then

h h
Wy, T R p 2 €n N
h h _
wy, | — S 0 0 25, | —lem | 20=0
h h
wJ3 o 0 0 ZJs 0

So w.’fs = az",‘l and since zf}l >0, w"}g > 0 and o < 0, we have zf}l =0, w"}s = 0.

If 2z > 0, then w_’]‘2 = Sz"]‘1 +emzl = ezl > 0, which by complementarity implies
that 2§, = 2§, = 0. So wf, = Rz}, + pz§, +enzf = pz}f, +enzg > 0 (since p > 0). By

complementarity szl =0, and so wffg = az.’fl + g3, = q3, > 0. So by complementarity,

25“3 = zf}s = 0. Thus 2" = 2¥ = 0, contradiction to the fact that this is a secondary

ray. Therefore 2 must be zero. Since M is an Lo-matrix, by Lemma 2.3, the existence

of this secondary ray with 2% = 0 implies that

w—Mz=q

w,z >0

has no feasible solution, which, by Faraka’s theorem (Theorem 3 of Appendix 1) implies
that there exists a row vector & € RY such that

aM <0
aqg <0
a>0

aM < 0 includes the constraints ay, < 0 and since a3, > 0, p > 0, this implies that
ay, = 0. So the above system of constraints becomes

(s, ;) [i] <0

q3
ag,, o 21 <0
( J J3) [QJs]

(CM_]2, O‘Js) i 0
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By Faraka’s theorem (Theorem 3 of Appendix 1) this implies that the system

(0= ()

x>0

is infeasible.
[
In Section 2.9.2, Lemma 2.9 and Theorem 2.5 are applied to show that KKT
points for general quadratic programs can be computed, when they exist, using the
complementary pivot algorithm.

2.3.3 A Variant of the Complementary Pivot Algorithm

In the version of complementary pivot algorithm discussed so far, we have choosen the
original column vector associated with the artificial variable zy to be —e,. Given a
column vector d € R" satisfying d > 0, clearly we can choose the original column vector
associated with zp to be —d instead of —e,, in the complementary pivot algorithm. If
this is done, the original tableau turns out to be :

(2.7)

If ¢ >0, (w=gq,z=0) is a solution of the LCP (¢, M) and we are done. So assume
q 2 0. Determine ¢ to satisfy (Z—i) = minimum { (%) ci=1ton } Ties for ¢ can be
broken arbitrarily. It can be verified that if a pivot step is performed in (2.7), with the
t*" row as the pivot row; the right hand
side constants vector becomes nonnegative after this pivot step. So (wq,...,ws_1, 2o,

column vector of zy as the pivot column, and the

Wiy1, - .., Wy) is a feasible basic vector for (2.7). It is an almost complementary feasible
basic vector as defined earlier. Choose z; as the entering variable into this initial almost
complementary feasible basic vector (w1, ..., wi_1, 20, Wt1,-..,Wwy,), and continue by
choosing entering variables using the complementary pivot rule as before.

We will now illustrate this variant of the complementary pivot algorithm using a
numerical example by M. M. Kostreva [4.11].

Example 2.11

Consider the LCP (¢q, M), where

() ()
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Let d = (5,16)T. We will apply the complementary pivot algorithm on this LCP, using
—d as the original column of the artificial variable zj.

Basic w1 Wa 21 29 20 q
variables
1 0 15 -2 —5 t=1
0 1 4 -4 —16 17
%0 -+ 0 -5 2 1 1
ws 2o £ 2 0 33

The entering variable is z;. The updated column vector of z; in the canonical tableau
with respect to the basic vector (zp,wsz) is nonpositive. So the algorithm ends up in
ray termination.

Example 2.12

Consider the LCP (¢, M) discussed in Example 2.11. Let d = ex = (1,1)T. We will
apply the complementary pivot algorithm on this LCP with —ey as the original column
of the artificial variable zg.

Basic wy]  Wa 21 22 20
variables

1 0 15 -2 5 t=1

0 1 4 4 -1 17

20 -1 0o -3 2 1 5

ws 1 1 @ ) 0 929

20 —% % 0 1 9—51

2 2 4 44

21 —5 3 1 -3 0 5

3 5 91

Z9 —2 1 0 1 1 4

2 —2 1 1 0 1 27

Now we have terminated with a complementary feasible basic vector, and the corre-
sponding solution of the LCP is w = 0, z = (21, 22) = (27, %)_

These examples taken from M. M. Kostreva [4.11] illustrate the fact that, given
a general LCP (q, M), the complementary pivot algorithm applied on it with a given
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positive vector d may end up in ray termination; and yet when it is run with a different
positive d vector it may terminate with a solution of the LCP. The question of how
to find a good d vector seems to be a hard problem, for which no answer is known.
There are LCPs which are known to have solutions, and yet when the complementary
pivot algorithm is applied on them with any positive d vector, it always ends up in ray
termination. See Exercise 2.11.

If M is a copositive plus matrix, and if the complementary pivot algorithm with
any positive d vector ends up in ray termination when applied on the LCP (¢, M), then
it can be proved that the LCP (g, M) has no solution (in fact it can be proved that
“w— Mz = ¢” does not even have a nonnegative solution), using arguments exactly
similar to those in the proof of Theorem 2.1. Thus any LCP (q, M) where M is a
copositive plus matrix, will be processed by the complementary pivot algorithm with
any positive d vector.

FExercise

2.2 Prove that when M is an L-matrix or an L,-matrix, the variant of the complemen-
tary pivot algorithm discussed in this section, with any vector d > 0 of appropriate
dimension, will process the LCP (¢, M). (Proofs are similar to those in Section 2.3.2.)

2.3.4 Lexicographic Lemke Algorithm

This variant of the complementary pivot algorithm is known as the Lexicographic
Lemke Algorithm if the original column vector of the artificial variable 2, is taken to
be —d = —(6®,6%7L,...,6)T where § is a sufficiently small positive number. It is not
necessary to give 0 a specific numerical value, but the algorithm can be executed leaving
§ as a small positive parameter and remembering that 6*+1 < 6% for any nonnegative
r, and that ¢ is smaller than any positive constant not involving 6. In this case, if D
is any square matrix of order n, Dd = D(6®,0*1,...,6)T = 6D +6* 1Dy +... +
0D.,. Using this, it is possible to execute this algorithm without giving the small
positive parameter § any specific value, but using the equivalent lexicographic rules,
hence the name.

2.3.5 Another Sufficient Condition for the
Complementary Pivot Method to Process the LCP (q, M)

We will now discuss some results due to J. M. Evers [2.11] on another set of sufficient
conditions under which the complementary pivot algorithm can be guaranteed to pro-
cess the LCP (¢, M). First, we discuss some lemmas. These lemmas are used later
on in Theorem 2.6 to derive some conditions under which the complementary pivot
algorithm can be guaranteed to solve the LCP (¢, M) when M is a matrix of the form
E + N where FE is a symmetric PSD matrix, and N is copositive.
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Lemma 2.10 Let M = E + N where E is a symmetric PSD matrix and N is
copositive. If the system

(E+N)z=>0
cz >0
Z(E+N)z=0 (2:8)
z20
has a solution z, then the system
Ex—NTy> (T
- (2.9)

y=0

has no solution (z,y).

Proof. Let z be a feasible solution for (2.8). Since E is PSD and N is copositive,
ZzT(E + N)z = 0 implies that 2T Ez = 27 Nz = 0. Since E is symmetric, by Theorem
1.11, 2T Ez = 0 implies that Ez = 0. So by (2.8), Nz > 0. Let (z,%) be feasible to
(2.9). So 0 < y'Nz = —-zTEz+ gT' Nz (since Ez =0) = 2/ (-Ez+ NTj) < —cz < 0,
a contradiction.

[

Lemma 2.11 If the variant of the complementary pivot algorithm starting with an
arbitrary positive vector d for the column of the artificial variable zy in the original
tableau ends up in ray termination when applied on the LCP (q, M) in which M is
copositive, there exists a z satisfying

M

qT

' Mz

N
1A%

W
N
o o o <

(2.10)

N
1A%

Proof. Let the terminal extreme half-line obtained in the algorithm be { (w, z, z9) =

(wh + Mwh, 2% + XM 2k + A2h) 0 A >0} where (wF, 2%, 2f) is the BFS of (2.7) and

(wh, 2", 2B is a homogeneous solution corresponding to (2.7), that is

wh — Mz —dzl =0
wh, 2 2l >0 (2.11)
(wh, 2", 20) # 0

and every point on the terminal extreme half-line satisfies the complementarity con-

straint, that is
(wF + A" T(ZF+A2") =0 forallA>0. (2.12)

Clearly 2" # 0 (otherwise the terminal extreme half-line is the intial one, a contradic-
tion), so 2" > 0. By complementarity, we have (w)T 2" = 0, from (2.11) this implies
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that (z")TMz" = —dT2"zly <0, (since d > 0, z" > 0 implies that d”2" > 0) which
implies by the copositivity of M, that (2")TM2z" = 0 and 2 = 0. Using this in (2.11)
we conclude that

M2"=w">0. (2.13)

Since (w®, 2%, 2¥) is a BFS of (2.7) we have w® = M2*+dz§+q. Using this and (2.13) in
(2.12) we get, for all A > 0, (2P 4+ ") Tdzb+ (2P +X2")Tqg = =R+ X" T M (2P +A2") <
0 (since M is copositive and 2* + A\z" > 0). Make A > 0, divide this inequality by A
and take the limit as A tends to +o00. This leads to

(z"MTdzf + (") Tg<0. (2.14)

But z& > 0 (otherwise (w”,z*) will be a solution to the LCP (q, M), contradicting
the hypothesis that the algorithm terminated with ray termination without leading to
a solution of the LCP), d > 0, 2" > 0. Using these facts in (2.14) we conclude that
qT 2" < 0. All these facts imply that 2" = Z satisfies (2.10).

[
Theorem 2.6 Let M = E + N where E is a symmetric PSD matrix and N is
copositive. If the system (2.9) with ¢cI' = —q has a solution (x,y) there exists no

secondary ray, and the complementary pivot algorithm terminates with a solution of
the LCP (q, M).

Proof. Follows from Lemma 2.10 and 2.11.
[]

Corollary 2.1 Putting E = 0 in Theorem 2.6, we conclude that if N is copositive,
for every uw > 0, v > 0 in R"™, there exists w,z € R" satisfying

Nz—w=-NTu—vw

z,w 2 0, ZTw=0.

2.3.6 Unboundedness of the Objective Function

Consider a mathematical program in which an objective function f(x) is required to
be minimized subject to constraints on the decision variables & = (x1,...,2,)T. This
problem is said to be unbounded below if the set of feasible solutions of the problem
is nonempty and f(x) is not bounded below on it, that is, iff there exists an infinite
sequence of feasible solutions {z!,...,z",...} such that f(2") diverges to —oo as r
goes to +o0.

It is well known that if a linear program is unbounded below, there exists a
feasible half-line (in fact an extreme half-line of the set of feasible solutions, see [2.26])
along which the objective function diverges to —oo. This half-line is of the form
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{2+ Azt : X > 0} satisfying the property that 20 + Az is a feasible solution for all
A > 0, and the objective value at z° + Az! diverges to —oo as A goes to +oco. This
property may not hold in general convex programming problems, that is, problems in
which a convex function is required to be minimized over a closed convex set. Consider
the following example due to R. Smith and K. G. Murty.

Minimize — 21
Subject to  m2 — 27 > 0. (2.15)

T1,T9 i 0

The set of feasible solutions of this problem is drawn in Figure 2.3.

X2

(,0%)

Figure 2.3 The feasible region for (2.15) is the area between the xy axis
and the parabola. For every o > 0, the straight line xo — ar; = 0 intersects
the parabola at exactly two points.

The equation o — 12 = 0 represents a parabola in the x;, zo-Cartesian plane. For
every a > 0, the straight line o — ax; = 0 intersects this parabola at the two points
(0,0) and (a, @®). These facts clearly imply that even though —z; is unbounded below
in (2.15), there exists no half-line in the feasible region along which —z; diverges to

—0Q.
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However, for convex quadratic programs (i.e., problems of the form (1.11) in which
the matrix D is PSD) we have the following theorem.

Theorem 2.7  Consider the quadratic program (1.11) in which D is PSD and sym-
metric. Suppose (1.11) is feasible and that Q(x) is unbounded below in it. Then
there exists a feasible half-line for (1.11) along which Q(z) diverges to —oc. Such a
half-line can be constructed from the data in the terminal tableau obtained when the
complementary pivot algorithm is applied to solve the corresponding LCP (1.19).

Proof. For any positive integer r, let e, denote the column vector in R", all of whose
entries are 1. By Theorem 2.1, when the complementary pivot algorithm is applied to
solve (1.19) it must end in ray termination. When this happens, by the results estab-
lished in the proof of Theorem 2.1, we get vectors (u®,v¥, % y¥) and (u®,v", 2", y")

() - (5 )G (m)e=(5)  ew

uF ok 2k gk >0, (W) = ()T =0, 25 >0.

()-8 )G 210
0

satisfying

uh,vh,xh,yh g 07 (U,h)T.Th _ (Uh')Tyh' =0, (xh,yh) >0
(uk)T.’IZh’ _ (Uk)Tyh _ (uh)T.I'k _ (,Uh)Tyk —0. (2.18)
(™7, (y™T) [ i ] <0. (2.19)

So we have v? = Az" and 0 = (y")Tv" = (y")T Az". We also have u" — Dz + ATy
=0, and hence 0 = (z")Tu" = (2")T Dzh — (2™)T ATy = (2")T D2". Since D is PSD
and symmetric by Theorem 1.11, this implies that Dz" = 0. So ATy" = —u? <0,
that is (y")TA < 0. From (2.16), —b = vF — Az — e, 28, 2k > 0. So (—bTyh) =
(WF) Tyt = (aF)TATY" —2feqy™ = —(aF)T ATy — e,y = —(aF)T (—uP) =25 ey =
—z8 (el y") < 0 since z§ > 0 and y" > 0. So bTy" = 2§ (el y") > 0.

If bTy" > 0, (1.11) must be infeasible. To see this, suppose # is a feasible solution
of (1.11). Then A% > b, 2 > 0. So (y")TAZ > (y")Tb. But it has been established
earlier that (y")7A = —(u")T < 0. Using this in the above, we have, (y")Tb <
(y")T Az = —(u")T2 < 0 (since both u” and & are > 0), and this contradicts the fact
that (y™)Tb > 0.

So, under the hypothesis that (1.11) is feasible, we must have bTy" = 0. In
this case, from (2.19) we have cz® < 0. From earlier facts we also have Az" =
v >0, 2" > 0 and Dz" = 0. Let Z be any feasible solution to (1.11). These facts
together imply that & + Az" is also feasible to (1.11) for any A > 0 and Q(Z + Az") =
Q(%) + A(cz™) (this equation follows from the fact that Dz" = 0) diverges to —oo as
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A tends to +o0o. Thus in this case, {Z + Az" : A > 0} is a feasible half-line along
which Q(z) diverges to —oco.
[

Since D is assumed to be PSD, we have T Dx > 0 for all z € R". So, in this
case, if Q(x) is unbounded below in (1.11), the linear function cz must be unbounded
below on the set of feasible solutions of (1.11), and this is exactly what happens on
the half-line constructed above.

If ray termination occurs in the complementary pivot algorithm applied on (1.19)
when D is PSD, we get the vectors satisfying (2.16), (2.17), (2.18) and (2.19) from the
terminal tableau. If bTy" > 0, we have shown above that (1.11) must be infeasible.
On the other hand, if bTy" = 0, Q(z) is unbounded below in (1.11) if (1.11) is feasible.
At this stage, whether (1.11) is feasible or not can be determined by using Phase I of
the Simplex Method or some other algorithm to find a feasible solution of the system
Az > b, 2 > 0.

With a slight modification in the formulation of a convex quadratic program as
an LCP, we can make sure that at termination of the complementary pivot algorithm
applied to this LCP, if ray termination has occurred, then either a proof of infeasibility
or a feasible extreme half-line along which the objective function is unbounded, are
readily available, without having to do any additional work. See Section 2.9.2 for this
version.

2.3.7 Some Results on Complementary BFSs

Theorem 2.8 If the LCP (q, M) has a complementary feasible solution, then it has
a complementary feasible solution which is a BFS of

w—Mz=q

(2.20)
w=>0, z2>0.

Proof. Let (w,Zz) be a complementary feasible solution for the LCP (¢, M). So for
each j =1 ton, we have w;z; = 0. If (w, 2) is a BFS of (2.20), we are done. Otherwise,
using the algorithm discussed in Section 3.5.4 of [2.26], starting with (w, z), we can
obtain a BFS (w, 2) of (2.20) satisfying the property that the set of variables which
have positive values in (w, 2), is a subset of the set of variables which have positive
values in (w, 2). So w;2; =0, for j =1 to n. Hence (w, 2) is a complementary feasible
solution of the LCP (¢, M) and it is also a BFS of (2.20).

[

Note 2.1  The above theorem does not guarantee that whenever the LCP (q, M)
has a complementary feasible solution, there exists a complementary feasible basis for
(2.20). See Exercise 1.10.
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Theorem 2.9 Suppose M is nondegenerate. If (w,z) is a complementary feasible
solution for the LCP (q, M), the set of column vectors {I.; : j such that w; > 0} U
{—M._; : j such that Z; > 0} is linearly independent. Also, in this case, define a vector
of variables y = (y1,...,Yn) by

wj , if wj > 0
Yji =94 % if zZj >0
either w; or z; choosen arbitrarily , if both w; and z; are 0 .

Then y is a complementary feasible basic vector for (2.20).

Proof. From Corollary 3.1 of Chapter 3, when M is nondegenerate, every comple-
mentary vector is basic. Since (w, z) is a complementary feasible solution, this implies
that the set {I.; : j such that w; > 0} U {—M.; : j such that z; > 0} is linearly
independent. Also from this result, y is a complementary basic vector, and the BFS
of (2.20) with y, as the basic vector is (w, z), and hence y is a complementary feasible
basic vector.

[]

Theorem 2.10 If M is PSD or copositive plus, and (2.20) is feasible, then there
exists a complementary feasible basic vector for (2.20).

Proof. When the complementary pivot algorithm is applied to solve the LCP (¢, M),
it terminates with a complementary feasible basic vector when M is copositive plus
and (2.20) is feasible, by Theorem 2.1.

[]

2.4 A METHOD OF CARRYING OUT THE
COMPLEMENTARY PIVOT ALGORITHM
WITHOUT INTRODUCING ANY
ARTIFICIAL VARIABLES,

UNDER CERTAIN CONDITIONS

Consider the LCP (g, M) of order n, suppose the matrix M satisfies the condition :

there exists a column vector of M in which all the entries are (2.21)
strictly positive. '

Then a variant of the complementary pivot algorithm which uses no artificial variable
at all, can be applied on the LCP (g, M). We discuss it here. The original tableau for
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this version of the algorithm is :

w z

(2.22)

w=>0, 220

As before, we assume that ¢ 2 0. Let s be such that M., > 0. So the column vector
associated with z, is strictly negative in (2.22). Hence the variable zs can be made to
play the same role as that of the artificial variable zy in versions of the complementary
pivot algorithm discussed earlier, and thus there is no need to introduce the artificial
variable. Determine ¢ to satisfy (mq—;) = minimum { (mq—ls) 4 =1ton}. Ties for ¢
can be broken arbitrarily. When a pivot step is carried out in (2.22) with the column
of zs as the pivot column and row ¢ as the pivot row, the right hand side constants
vector becomes nonnegative after this pivot step (this follows because —m;s < 0 for
all 7 and by the choice of t). Hence, (w1,...,ws_1, 25, Wsr1,...,wy) is a feasible basic
vector for (2.22), and if s = ¢, it is a complementary feasible basic vector and the
solution corresponding to it is a solution of the LCP (¢, M), terminate. If s # ¢, the
feasible basic vector (wq, ..., wi_1, 25, Wey1, ..., wy,) for (2.22) satisfies the following
properties :
i) It contains exactly one basic variable from the complementary pair (w;, z;)
for n — 2 values of ¢ (namely i # s, t here).
ii) It contains both the variables from a fixed complementary pair (namely
(ws, zs) here), as basic variables.
iii) There exists exactly one complementary pair both the variables in which are
not contained in this basic vector (namely (wy, 2;) here).

The complementary pair of variables identified by property (iii), both of which are
not contained in the basic vector, is known as the left out complementary pair of
variables in the present basic vector.

For carrying out this version of the complementary pivot algorithm, any feasible
basic vector for (2.22) satisfying (i), (ii), (iii) is known as an almost complemen-
tary feasible basic vector. All the basic vectors obtained during this version of the
algorithm, with the possible exception of the terminal one (which may be a comple-
mentary basic vector), will be such almost complementary feasible basic vectors, and
the complementary pair in property (ii) both of whose variables are basic, will be the
same for all of them.

In the canonical tableau of (2.22) with respect to the initial almost complementary
feasible basic vector, the updated column vector of w; can be verified to be strictly
negative (because the pivot column in the original tableau, —M.,, is strictly negative).
Hence if w; is selected as the entering variable into the initial basic vector, an almost
complementary extreme half-line is generated. Hence the initial almost complementary
BFS of (2.22) is at the end of an almost complementary ray.

The algorithm chooses z; as the entering variable into the initial almost comple-
mentary feasible basic vector (w1, ..., wi_1, Zs, Wiy1,. .., Wy, ). In all subsequent steps,
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the entering variable is uniquely determined by the complementary pivot rule, that
is, the entering variable in a step is the complement of the dropping variable in the
previous step. The algorithm can terminate in two possible ways :

1. At some stage one of the variables form the complementary pair (ws, z5) (this
is the pair specified in property (ii) of the almost complementary feasible
basic vectors obtained during the algorithm) drops out of the basic vector, or
becomes equal to zero in the BFS of (2.22). The BFS of (2.22) at that stage
is a solution of the LCP (g, M).

2. At some stage of the algorithm both the variables in the complementary pair
(ws, zs) may be strictly positive in the BFS, and the pivot column in that stage
may turn out to be nonpositive, and in this case the algorithm terminates with
another almost complementary ray. This is ray termination.

When ray termination occurs, the algorithm bas been unable to solve the LCP

(¢, M).

Example 2.13

Consider the LCP (g, M), where

2 1 1 —4
M=|1 2 1 g=| -5
11 2 1

All the column vectors of M are strictly positive here. We will illustrate the algorithm
on this problem using s = 3.

Original Tableau

wy Wy W3 21 22 z3 q
1 0 0o -2 -1 -1 -4
0 1 0 -1 -2 -5
0 0 1 -1 -1 =2 —1

—M.3 < 0. The minimum { =%, =2, =1} = —5, and hence ¢ = 2 here. So the pivot
row is row 2, and the pivot element for the pivot operation to get the initial almost
complementary feasible basic vector is inside a box in the original tableau. Applying

the algorithm we get the following canonical tableaus:
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Basic wy Wy W3 21 29 23 g | Ratios
variables
ws 1 -1 0 -1 0 [1 |1 win
23 o -1 0 1 2 1|53
w3 0o -2 1 1 3 019 ]2
2 1 -1 0 -1 1 0|1
2 -2 1 0 0 1 [3 | 3w
w3 -3 1 1 4 0 0|6 |53
2 s -2 0 o0 1 %2
71 -2 £ 0 1 0o i1
w3 -2 -+ 1 0 0 -3 |2

So the solution of this LCP is w = (wy, w2, w3) = (0,0,2); z = (21, 22, 23) = (1,2,0).

FExercise

2.3 Show that the version of the complementary pivot algorithm discussed in this
section can be used to process all LCPs (¢, M) in which M is copositive plus and at
least one of its columns is strictly positive. In this case, prove that ray termination
cannot occur, and that the algorithm will terminate with a complementary feasible
basic vector for the problem.

2.5 TO FIND AN EQUILIBRIUM PAIR OF
STRATEGIES FOR A BIMATRIX GAME
USING THE COMPLEMENTARY PIVOT
ALGORITHM

The LCP corresponding to the problem of finding an equilibrium pair of strategies in
a bimatrix game is (1.42), where A, BT are positive matrices. The original tableau for
this problem is :
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U v ¢ n
0 IN —BT 0 —€EN

w>0 v>0 €>0 72>0

where for any r, I,. denotes the identity matrix of order . The complementary pairs
of variables in this problem are (u;,&;), ¢ = 1 to m, and (v;,7n;), j =1 to N.

We leave it to the reader to verify that when the complementary pivot algorithm
discussed in Section 2.2 is applied on this problem, it ends up in ray termination right
after obtaining the initial almost complementary feasible basic vector. However, it
turns out that the variant of the complementary pivot algorithm discussed in Section
2.4 can be applied to this problem, and when it is applied it works. We discuss the
application of this version of the algorithm here.

So, here, an almost complementary feasible basic vector for (2.23), is de-
fined to be a feasible basic vector that contains exactly one basic variable from each
complementary pair excepting two pairs. Both variables of one of these pairs are basic
variables, and both variables in the other pair are nonbasic variables. These are the
conditions for almost complementarity (i), (ii), (iii), discussed in Section 2.4.

The column vectors of the variables &;, 1;, in (2.23) are all nonpositive, but none
of them is strictly negative. But, because of their special structure, an almost com-
plementary feasible basic vector for (2.23) can be constructed by the following special
procedure.

Initially make the variable &; a basic variable and the variables &o, . . ., &,, nonbasic
variables. Make &1 equal to £, the smallest positive number such that v° = —ey +
(BT).1€9 > 0. At least one of the components in v°, say, v0 is zero. Make v, a nonbasic
variable too. The complement of v, is n,.. Make the value of 7, to be the smallest
positive value, 1, such that u® = A.,.n° —e,, > 0. At least one of the components in
u®, say u? is 0. If s = 1, the basic vector (us, ..., U, U1y« -, Vp_1,Vpi1s---, UN,EL, Nr)
is a complementary feasible basic vector, and the feasible solution corresponding to it
is a solution of the LCP (1.42), terminate.

If s # 1, the basic vector, (w1, ..., Us 1, Ust1y -+ UmyVlyenryUp_1,Vptly.--s UN,
&1,myr) is a feasible basic vector. Both the variables in the complementary pair (uy,&7)
are basic variables in it. Both variables in the complementary pair (us, &s) are nonbasic
variables. And this basic vector contains exactly one basic variable from every comple-
mentary pair in (2.23), excepting (u1,&1), (us,&s). Hence this initial basic vector is an
almost complementary feasible basic vector. All the basic vectors obtained during the
algorithm (excepting the terminal complementary feasible basic vector) will be almost
complementary feasible basic vectors containing both the variables in the pair (uy,&1)
as basic variables.

When ug is made as the entering variable into the initial basic vector, an almost
complementary extreme half-line is generated. Hence the BFS of (2.23) with respect
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to the initial basic vector is an almost complementary BFS at the end of an almost
complementary extreme half-line.

The algorithm begins by taking & as the entering variable into the initial basic
vector. In all subsequent steps, the entering variable is picked by the complementary
pivot rule. The algorithm terminates when one of the variables in the pair (u,&;)
drops from the basic vector. It can be proved that temination occurs after at most
a finite number of pivots. The terminal basis is a complementary feasible basis. In
this algorithm if degeneracy is encountered, its should be resolved using the lexico
minimum ratio rule (see Section 2.2.8).

Example 2.14

We will solve the LCP (1.43) corresponding to the 2 person game in Example 1.9. In
tableau form it is

Uy up vy vy v3 & & om m2 3 q
1 0 0 0 0 0 0 -2 -2 -1 | -1
0o 1 0 0 0 0 0 -2 -2 | -1
0 0 1 0 0 2 0 0 0 | -1
o 0o 0o 1 0 -3 -1 0 0 0 | -1
0 0 0 o0 1 -2 -3 0 0 0 | -1

u,v,§,m = 0 and w1y = u28a = viN = vane = v3znz = 0

Making & = 0, the smallest value of &; that will yield nonnegative values to the v’s is
1. When &; = 0, &1 = 1 the value of v; is 0. Hence, v; will be made a nonbasic variable.
The complement, of vy is ;. So make 72 and n3 nonbasic variables. The smallest value
of n; that will make the w’s nonnegative is ny = 1. When 71 = 1 with 12 = n3 = 0,
us becomes equal to 0. So make us a nonbasic variable. The canonical tableau with
respect to the initial basic vector is therefore obtained as below by performing pivots
in the columns of £&; and 7;, with the elements inside a box as pivot elements.

Basic wp uz vy ve vy & 2 Mmoo m2 m3 | g | Ratios
variables
Uy 1 -2 0 0 0 0 0 0 2 3|1
m 0O -1 0 0 0 0 0 1 2 2|1
3] o 0 -1 0 0 1 2 0 0 011|431
v 0 0 -3 1 0 0 0 0 0|2 |2un
V3 o 0-2 0 1 0 1 0 0 0]1]1
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The algorithm continues by selecting &5, the complement of u3, as the entering variable.
ve drops from the basic vector.

Basic up uz vy w2 wz3 & S oM M2 M3 | q
variables
w1 1 -2 0 0 0 0 0 0 3 |1
m 0o -1 0 0 0 0 0 1 2 2|1
3! 0 0 £ -2 0 1 0 0 0 0|+
&2 o 0 -2 % 0 0 1 0 0 0|32
v3 o 0o -I -1 1 0 0 0 0 o023

Since vy has dropped from the basic vector, its complement 7y is the next entering
variable. There is a tie in the minimum ratio when 7y is the entering variable, since it
can replace either uy or n; from the basic vector. Such ties should be resolved by the
lexico minimum ratio test, but in this case we will let u; drop from the basic vector,
since that leads to a complementary feasible basis to the problem.

Basic up uz  vr vz wy & & om oMz M3 |9
variables
N2 i -1 0 o000 o0 0 1 3|1
m -1 1 0 0 0 0 0 1 0 -1 |0
& o o ¥ -2 010 0 0 0|1
&2 o 0 -2 % 0 0 1 0 0 0|2
v3 0o 0 - -1 1 0 0 0 0 0|2

The present basic vector is a complementary feasible basic vector. The solution (uy, us;

vy, 02, v3; &1, €25 M1, M2, m3) = (0,0;0,0, %; %, %;O, %,O) is a solution of the LCP. In this

solution &1 + &o = % and 1 + 12 + 13 = % Hence the probability vector z = (Zgg') =

(%, %)T and y = (Zn"‘) = (0,1,0)T constitute an equilibrium pair of strategies for this
J
game.

Theorem 2.11  If the lexicographic minimum ratio rule is used to determine the
dropping variable in each pivot step (this is to prevent cycling under degeneracy) of
the complementary pivot algorithm discussed above for solving (1.42), it terminates in
a finite number of pivot steps with a complementary feasible solution.

Proof. The original tableau for this problem is (2.23), in which A > 0, BT > 0, by
the manner in which the problem is formulated. In the algorithm discussed above
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for this problem, both variables from exactly one complementary pair are nonbasic in
every almost complementary feasible basic vector obtained, and this pair is known as
the left out complementary pair of variables. The left out complementary pair
may be different in the various almost complementary feasible basic vectors obtained
during the algorithm, but the complementary pair both of whose variables are basic,
remains the same in all of them.

Let (U1, .eeyUs 1, Ustly-vey Uy UlyeeesUp_1,Up11,.-.,UN,E1, 1) be the initial al-
most complementary feasible basic vector obtained in the algorithm, by the special
procedure discussed above. Let the initial tableau be the canonical tableau of (2.23)
with respect to the initial almost complementary feasible basic vector. In this, the left
out complementary pair is (us, £s) both of which are nonbasic at present. Let

ulz(uil)a u;:—l%—(zir), for ¢ # s, ui:O.
sr

by s
vl (v;), v}:—1+(ﬁ), forj#r, vl=0.
blr

1
1
=(—,0,...,0
E (b1r7 ) ) )
. 1
n' =), my =0, forjFr m=—.

al = (ul), ﬂh:(%), fori#s, ul'=1.

Qi
" =0, &"=0
no= (ﬁ?)a ﬁ;L =0, forj#r, 777’} = (L) :

aS’l"

The present BFS can be verified to be (u',v!, &1, nt). It can also be verified that (a”,
o™, €", ") is a homogeneous solution corresponding to the initial tableau, and that the
initial almost complementary extreme half-line generated when ug is brought into the
basic vector in the initial tableau is { (ul, v, €L nt) + Xah, ol Eh qh) o A >0 }

The algorithm begins by bringing the nonbasic variable £, into the basic vector in
the initial tableau, and continues by using the complementary pivot rule to choose the
entering variable and the lexico-minimum ratio rule to choose the dropping variable in
each step.

Let B be the basis consisting of the columns of the basic variables in the initial
tableau (not the original tableau), in a step of this procedure and let 8 = (8;;) = B~
Let ¢ be the updated right hand side constants vector in this step. If u; or &, is
eligible to be a dropping variable in this step by the usual minimum ratio test, it
is choosen as the dropping variable, and the pivot step is carried out, leading to a
complementary feasible basic vector for the problem. If both u; and &; are ineligible to
be dropping variables in this step, the lexico minimum ratio rule chooses the dropping
variable so that the pivot row corresponds to the row which is the lexico minimum
{% : ¢ such that p;; > 0} where p = (p1gy- ., Pmant)? is the pivot column
(updated column of the entering variable) in this step. This lexico minimum ratio rule
determines the dropping variable uniquely and unambiguously in each pivot step.
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In each almost complementary feasible basic vector, obtained during the algo-
rithm, there is exactly one left out complementary pair of variables; and hence it can
have at most two adjacent almost complementary feasible basic vectors, that can be
obtained by bringing one variable from the left out complementary pair into it.

The left out complementary pair in the initial almost complementary feasible
basic vector is (us,&s), and when ug is brought into the initial almost complementary
feasible basic vector, we obtain the initial almost complementary extreme half-line. So
the only manner in which the almost complementary path can be continued from the
initial almost complementary BFS is by bringing £, into the basic vector. The updated
column of &, in the initial tableau can be verified to contain at least one positive entry.
Hence when &, is brought into the initial basic vector, we get an adjacent almost
complementary feasible basic vector, and the almost complementary path continues
uniquely and unambiguously from there. Each almost complementary feasible basic
vector has at most two adjacent ones, from one of them we arrive at this basic vector;
we move to the other when we leave this basic vector. These facts, and the perturbation
interpretation of the lexico minimum ratio rule imply that an almost complementary
feasible basic vector obtained in the algorithm can never reappear later on. Since
there are at most a finite number of almost complementary feasible basic vectors, the
algorithm must terminate in a finite number of pivot steps. If it terminates by obtaining
a complementary feasible basic vector, the BFS corresponding to it is a solution of the
LCP (1.42) and we are done. The only other possibility in which the algorithm can
terminate is if the updated column vector of the entering variable in some step has no
positive entries in it, in which case we get a terminal almost complementary extreme
half-line (this is the ray termination discussed earlier). We will now show that this
second possibility (ray termination) cannot occur in this algorithm.

Suppose ray termination occurs in pivot step k. Let the almost complementary
BFS in this step be (u®, v, £ n¥) and let the terminal extreme half-line be: { (u*, v*,
R nF) + Al ol gh n™) X > 0}, From this and from the almost compelementary
property being maintained in the algorithm, we have :

[uk+)\uh]_[0 A] [£k+)\§h]_[—em] (2.24)
v* 4+ Aol BT 0 "+t ) T | —en '
(uf + Aul)(EF+ AP =0 foralli #£1 (2.25)
k h k hy __ .
(vf + X})(nf + Anf) =0 for all j (2.26)
ukavkvé-kankauhvvhvé-hvnh i 0 (227)

for all A > 0. (ul, v, ¢" n) is a homogeneous solution satisfying the nonnegativity

()= (e o) (5) =0
ul = Aph

ot = BT¢h

restrictions and

That is :
(2.28)
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We also have (u, v", " n") # 0, which implies by (2.27) and (2.28) that (¢",7") > 0.
Now suppose £ # 0. So ¢ > 0. Since B > 0, this implies by (2.28) that v = BT¢h >
0. From (2.26) this implies that n¥ 4+ An} = 0 for all j and for all A > 0. From (2.24)
this implies that (u* + Au") = —e,,, < 0, a contradiction.

Suppose we have £" = 0 but " # 0. So n™ > 0 and since A > 0, u" = Ap" > 0.So0
from (2.25), we must have £¥ = 0 for all i # 1. Since ¢" = 0, by (2.28) v» = 0. So
from (2.24)

vP = —en + BT¢F (2.29)

and since £F = 0 for all i # 1, v¥ is obtained by the same procedure as v, the value of
v in the initial BFS (since £¥ must be the smallest value that makes v* nonnegative in
(2.29) in order to get an extreme point solution). So v* is the same as v! in the initial
BFS in (2.23). By our discussion earlier, this implies that v}“ > 0 for all j # r, and
v*® = 0. By (2.26) this implies that 77;-C + )\77;‘ =0 for all A > 0 and j # 7. These facts
clearly imply that (u”, v &% n*) is the same as the initial BFS obtained for (2.23).
This is a contradiction, since a BF'S obtained in a step of the algorithm cannot reappear
later on, along the almost complementary path.

These facts imply that ray termination cannot occur. So the algorithm must
terminate in a finite number of steps by obtaining a complementary feasible basic
vector, and the terminal BFS is therefore a solution of the LCP (1.42).

[]

Comments 2.1 The complementary pivot algorithm for computing equilibrium stra-
tegies in bimatrix games is due to C. E. Lemke and J. T. Howson [1.18]. C. E. Lemke
[2.21] extended this into the complementary pivot algorithm for LCPs discussed in Sec-
tion 2.2. The proof of Theorem 2.1 is from the paper of R. W. Cottle and G. B. Dantzig
[1.3] which also discusses various applications of the LCP and some principal pivoting
methods for solving it. C. E. Lemke was awarded the ORSA /TIMS John Von Neumann
Theory Prize in 1978 for his contributions to this area. The citation of the award says
“Nash’s equilibrium proofs were nonconstrutive, and for many years it seemed that
the nonlinearity of the problem would prevent the actual numerical solution of any
but the simplest noncooperative games. The breakthrough came in 1964 with an inge-
nious algorithm for the bimatrix case devised by Carlton Lemke and L. T. Howson Jr.
It provided both a constructive existence proof and a practical means of calculation.
The underlying logic, involving motions on the edges of an appropriate polyhedron,
was simple and elegant yet conceptually daring in an epoch when such motions were
typically contemplated in the context of linear programming. Lemke took the lead
in exploiting the many ramifications and applications of this procedure, which range
from the very basic linear complementary problem of mathematical programming to
the problem of calculating fixed points of continuous, nonlinear mappings arising in
various contexts. A new chapter in the theory and practice of mathematical program-
ming was thereby opened which quickly became a very active and well-populated area
of research...”.
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The geometric interpretation of the LCP using complementary cones was initiated
in K. G. Murty [3.47, 1.26].

2.6 A VARIABLE DIMENSION ALGORITHM

We consider the LCP (g, M) which is to find w, z € R" satisfying

w—Mz=q (2.30)
w,z >0 (2.31)
and  wlz=0 (2.32)

Definition : Principal Subproblem

Let J C {1,...,n}. Denote wy = (wj :j€J),zy=(2:5€J),q =1(g5 :] €
J), and the principal submatrix of M corresponding to J, Myy = (m;; : 1,5 € J).
The principal subproblem of the LCP (2.30)—(2.32) in the variables wy, zy (or the
principal subproblem of the LCP (2.30)—(2.32) associated with the subset J) is the
LCP (g3, Mj3) of order |J|, the complementary pairs of variables in it are {w;, z;} for
J € J and it is: find wy, zy satisfying

wy — M33z23 = q3
w3, 23 g 0

w?zJ =0.

This principal subproblem is therefore obtained from (2.30)—(2.32) by striking off the
columns of all the variables wj, z; for j ¢ J and the equation in (2.30) corresponding
tojg & J.

Let J = {1,,71,} \ {Z}, w = (wl,...,wi_l,wi+1,...,wn)T, f = (21,...,Zi_1,
Zidly e zn)T. The following results follow by direct verification.
Results 2.2 If (0 = (W1, ...,%,)T;2 = (21,...,2,)7T) is a solution of the LCP (¢, M)
and 21 = 0, then ((I) = (’llA}l, ey u?i_l, 71]1;4_1, ey ’uA}n)T;é- = (21, ey 2?1;_1, 2i+17 RN fn)T)
is a solution of its principal subproblem in the variables w, &.

Results 2.3 Suppose that (@ = (Wy,..., Wi_1, Wit1,---,Wn)T; £ = (Z1, .y Ziz1,
Zit1y..+,2n)T) is a solution of the principal subproblem of the LCP (g, M) in the
variables w, f Define 21, =0and let z = (21, ey 21;_1, 21', 2i+17 ey 2n)T If q; —I—Mzg i
0, define w; = q; + M;.Z, and let @ = (Wy, ..., Wi_1, Wi, Wis1,---,Wn)L, then (w0, 2) is
a solution of the original LCP (¢, M).
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Example 2.15

Consider the following LCP (¢, M)

wy  Wo W3 21 Z9 Z3 q
1 0 0 2 0 -3 4
0 1 0 -1 -4 -3 —14
0 0 1 1 2 =2 13

w; >0, 2z >0, wjz; =0 forall j =1to3

Let w = (wy,w2)T, € = (21, 22)T. Then the principal subproblem of this LCP in the
variable w, £ is

w1 Wo 21 ) Y
1 0 2 0 4
0 1 -1 —4 —14

w; >0, 2; 20, wjz; =0for j =1,2

(w = (0,0,5)T;2 = (2,3,0)T) is a solution of the original LCP and 23 is equal to
zero in this solution. This implies that (@ = (0,0);& = (2,3)) is a solution of this
principal subproblem which can easily be verified. Also, (@ = (4,0)T;¢ = (0, %)T)

is another solution of the principal subproblem. Defining zZ3 = 0, Z = (0, 114, 0)7, we

verify that ¢3 + M3.Z2 = 13 + (—1,-2,2)(0, 17‘4,0)T = 6 > 0. Hence, define w3 = 6,
and w = (4,0,6)T. It can be verified that (v = (4,0,6)T;z = (0,1},0)7) is another

solution of the original LCP.

We now discuss a variable dimension algorithm for the LCP (¢, M) due to L. Van
der Heyden [2.38]. If ¢ > 0, (w = ¢,z = 0) is a readily available solution. So we assume
that ¢ 2 0. The method proceeds by solving a sequence of principal subproblems of
(2.30), (2.31), (2.32) always associated with subsets of the form J = {1,...,k} (this
problem is called the k-problem), for some k satisfying 1 < k < n. When the method is
working on the k-problem, the bottom n—k constraints in (2.30) as well as the columns
of variables wj, z; for j > k can be ignored, hence the reason for the name. All the
intermediate solutions for (2.30) obtained during the method (with the exception of the
terminal solution which is a complementary feasible solution satisfying (2.30), (2.31),
(2.32)) are of two types called position 1 and position 2 solutions defined below.

Position 1 Solution :  This is a solution (w, 2) for (2.30) satisfying the following
properties :
i) there exists an index k such that Z; = 0 and wj < 0.
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ii) z; =0 for j > k.

i) if £ > 1, @*1 = (wy,...,05_1), 2FD = (%1,...,%_1) is a solution for
the principal subproblem of (2.30), (2.31), (2.32) determined by the subset
{1,...,k =1}, that is, ®*=Y >0, 26=1) > 0 and (w*~1)Tz*-1 = 0.

From the definition, a position 1 solution (w, z) always satisfies w?

z =0, it is
complementary (but infeasible) and it will be a complementary basic solution associ-
ated with a complementary (but infeasible in the same sense that the solution violates

(2.31)) basic vector for (2.30).

Position 2 Solution :  This is a solution (w, 2) for (2.30) satisfying the following
properties :
a) there exists an index k such that Z; > 0, W < 0.
b) z; =0 for j > k.
c) there is a u < k such that both 2, and w,, are zero.
d) @Y = (i, ... d-1)T >0, 267D = (31,...,2,1)T >0 and
(k=T 2(=1) —

From the definition, a position 2 solution discussed above is an almost complemen-
tary solution (not feasible, since some of the variables are < 0) of the type discussed
in Section 2.4, it satisfies @™
solution associated with an almost complementary basic vector for (2.30) which has

both wyg, zx as basic variables, and contains exactly one basic variable from the com-

Z = wWgZ. It will be an almost complementary basic

plementary pair (wj, z;) for each j # k or u (both variables w,, z, are out of this
almost complementary basic vector, so the complementary pair (w,, z,,) is the left out
complementary pair in this basic vector). This almost complementary basic vector
has w; as a basic variable for all j > k. All intermediate (i. e., except the initial and
terminal) solutions obtained by the method when it is working on the k-problem wiil
be position 2 solutions of (2.30) as defined above.

Note 2.1 As mentioned above, all the solutions obtained during the algorithm will
be basic solutions of (2.30).The definitions given above for positions 1, 2 solutions are
under the assumption that ¢ is nondegenerate in the LCP (¢, M) (i. e., that every
solution to (2.30) has at least n nonzero variables). In the general case when ¢ may be
degenerate, the algorithm perturbs ¢ by adding the vector (g,¢2,...,e™)7T to it, where
¢ is treated as a sufficiently small positive number without giving any specific value to
it (see Section 2.1, 2.2.2, 2.2.8), and all the inequalities for the signs of the variables
should be understood in the usual lexico sense.

The Algorithm

The algorithm takes a path among basic vectors for (2.30) using pivot steps. All basic
vectors obtained will be almost complementary basic vectors as defined in Section 2.4,
or complementary basic vectors.
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Initial Step: STEP O : The initial basic vector is w = (wi,...,w,). The
initial solution is the Position 1 basic solution of (2.30) corresponding to it, define k =
minimum {3 : ¢; < 0}. Begin with the k-problem, by making a type 1 pivot step to
increase the value of the nonbasic variable z; from 0, as described below.

STEP 1 : Type 1 Pivot Step, to increase the Value of a Nonbasic Vari-
able from Zero. Let (y1,..., Yk, Wkt1,--.,wy,) be the basic vector in some stage of
working for the k-problem. If this is the initial basic vector, (y1, ..., yx) will be a com-
plementary basic vector for the principal subproblem of (2.30), (2.31), (2.32) defined
by the subset {1,...,k}. Except possibly at termination of work on the k-problem, yy
will always be wy; y1,...,yx—1 will all be w; or z; for j < k — 1. This type of pivot
step occurs when the value of a nonbasic variable, say v, selected by the rules specified
in the algorithm, is to be increased from its present value of zero. The variable v will
be either w; or z; for some j < k. Let the canonical tableau for (2.30) with respect to
the present basic vector be
Tableau 2.7 Canonical Tableau

Y- Y Wg41-.-Wp [P VAP
ay q1
1
an dn

While working on the k-problem, in all the canonical tableaus, we will have ¢, ...,
Gr—1 > 0 and @ < 0 (and y = wy). Let f = B~! be the inverse of the present basis.
The algorithm always maintains (g;, 3;.) = 0 for i = 1 to kK — 1. Let A denote the
nonnegative value given to the nonbasic variable v. The new solution as a function of
Als all nonbasic variables other than v are 0

v=A

Yi=q —Aa;, 1=1tok

wj=¢q —Aaj, j=k+1ton

(2.33)

We will increase the value of A from 0 until one of the variables y; for + = 1 to k,
changes its value from its present to zero in (2.33), and will change sign if A increases
any further. This will not happen if the updated column of the entering variable v
satisfies

a; <0, i=1,...,k—1 and a;p>0 (2.34)

If condition (2.34) is satisfied, the method is unable to proceed further and termination
occurs with the conclusion that the method is unable to process this LCP. If condition
(2.34) is not satisfied, define

0= Max{L . Over 1 <i<k—1suchthata;>0; and 2, if a;, < 0} (2.35)
a; - ag
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Let A be the set of all i between 1 to k& which tie for the maximum in (2.35). If A is
a singleton set, let r be the element in it. Otherwise let r be the element which at-
tains the lexicomaximum in lexicomaximum { (%) i€ A } If r =k, v replaces
yr (= wyg) from the basic vector. After this pivot step we are lead to the basic vector
(Y1, - s Yk—1, U, Wg41,...,wy) which will be a complementary basic vector for (2.30)
(except that the variables y1,...,yx—_1,v may have to be rearranged so that the j**
variable here is from the j!* complementary pair), and (yi,...,yr_1,v) is a comple-
mentary lexico feasible basic vector for the k-problem (except for the rearrangement
of the basic variables as mentioned above). If (y1, ..., Yk+1, v, Wgt1, ..., wy) is feasible
to (2.30) (this happens if the updated right hand side constants vector is > 0 after
the pivot step of replacing y, by v), it is a complementary feasible basic vector for
(2.30), the method terminates with the basic solution corresponding to it as being a
solution for (2.30), (2.31), (2.32). On the other hand, if (y1,..., Yk—1,V, Wgt1,-- -, Wy)
is not a feasible basic vector for (2.30), the k-problem has just been solved and the
method moves to another principal subproblem with index greater than k (this is called
a forward move), go to Step 3.

If r < k, v replaces y, from the basic vector, leading to the new basic vector
(Y1 oo s Ur—1s Uy Yrt1y ey Yky Wkt 1y -+, Wy). Two things can happen now. If y, =
2k, then this new basic vector is a complementary basic vector for (2.30) (except for
rearrangement of the variables as mentioned above), but (y1,...,Yr—1,0, Yrt1,-- -, Yk)
is not lexico feasible for the k-problem. In this case the method moves to make a type
2 pivot step (discussed next) leading to a principal subproblem with index less than &
(this is called a regressive move, moving to a smaller principal subproblem already
solved earlier). The next steps of the algorithm will be concerned with finding yet
another solution for this smaller principal subproblem. Go to Step 2.

The second possibility is that y, # zx. In this case the basic vector (y1,...,yr_1,
Uy Ypraly - s Yk, Wht1s- -+, Wy) 1S another almost complementary basic vector, the basic
solution of (2.30) associated with which is another position 2 solution. In this case,
the method continues the work on the k-problem by making a type 1 pivot step next,
to increase the value of the complement of ¥, from zero.

STEP 2 : Type 2 Pivot Step to Decrease the Value of a Nonbasic Variable
wy from Zero. This pivot step will be made whenever we obtain a complementary
basic vector (yi, ..., Yk, Wkt1,--.,Wy) after doing some work on the k-problem, with
yr = wg. Let Tableau 2.7 be the canonical tableau with respect to this complementary
basic vector. We will have ¢; > 0, i =1 to k — 1 and (g, B.) < 0 at this stage (0. is
the k' row of the present basis inverse). Let g be the maximum 5 such that Yj = Zj.
Now the algorithm decreases the value of the nonbasic variable w, from zero. Letting
v = wyg, and giving this variable a value A (we want to make A < 0), the new solution
obtained is of the same form as in (2.33). We will decrease the value of A from 0 until
one of the variables y; for i = 1 to g, changes its value from its present to zero in (2.33),
and will change sign if A decreases any further. This will not happen if the updated
column of the entering variable v satisfies
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a; >0, i=1tog (2.36)

in which case termination occurs with the conclusion that the method is unable to
process this LCP. If (2.36) is not satisfied, define

§ = Minimum {— (Zl) 1<i<g, isuchthata; <0}. (2.37)
(3
Let A be the set of all i between 1 to g which tie for the minimum in (2.37). If A is a
singleton set let r be the element in it. Otherwise let r be the element which attains
(q“ﬁ g € A} Replace y,- in the present
basic vector by v (= w, here) and move over to the g-problem after this pivot step, by
going to Step 1 to increase the value of the complement of y, from 0.

the lexicominimum in lexico minimum {

STEP 3: We move to this step when we have solved a k-problem after performing a
type 1 pivot step on it in Step 1. Let (y1,..., Yk, Wgt1,-..,wy) be the complementary
basic vector at this stage with y; € {w;, z;} for j =1 to k. Let ¢ = (q1,...,3n)T be the
current updated right hand side constants vector. Since (y1, ..., yx) is a complementary
feasible basic vector for the k-problem, we have q; > 0 for ¢ = 1 to k. If ¢; > 0 for
¢t = k + 1 to n also, this basic vector is complementary feasible to the original problem
(2.30), (2.31), (2.32), and we would have terminated. So ¢; < 0 for at least one i
between k£ + 1 to n. Let u be the smallest ¢ for which ¢; < 0, replace k£ by u and go

back to Step 1 to increase the value of z; from zero.

Numerical Example 2.16

We provide here a numerical example for this algorithm from the paper [2.38] of L. Van
der Heyden. Consider the LCP (g, M) where

~1 111
g=| -2, M=][311
~10 2 2 1

Since ¢; < 0, the algorithm begins with £ = 1, on the 1-problem. Pivot elements are
inside a box.

Basic wy ws w3 21 22 23

Vector
w1y 1 0 0 -1 -1 —1 | k=1. Increase z;. In this
Wo o 1 0 -3 -1 -1 —2 | type 1 pivot step, w;
ws 0 01 -2 —2 —1 |—10 [drops from basic vector.
21 -1 0 0 1 1 1 1 | k=3
W -3 1 0 0 2 1 | Increase z3.
w3 -2 0 1 0 0 1 —8 | wy drops.




2.6. A VARIABLE DIMENSION ALGORITHM 121

Basic wy  wy w3 Z1 2y 23
Vector
21 % —% 0 1 0 0 % k = 3. Increase zo
23 -3 2 0 0 1 3 | (complement of ws).
w3 —% —% 1 0 -1 0 —177 z3 drops.
21 % 0 1 0 0 % Need a type 2 pivot step.
29 —% % 0 0 1 1 % Decrease ws.
ws —2 0 1 0 0 1 —8 | z1 drops.
wo 1 0 -2 0 —1 | k=1. Increase w; (compl.
2 -1 0 0 1 1 1 1 | of z; that just dropped)
w3 -2 0 1 0 0 1 —8 | wy drops.
wi 1 -1 0 2 0 0 1 | k=3.
29 0 -1 3 1 2 | Increase z3.
ws 0o -2 1 4 0 1 —6 | zo drops.
w1 1 -1 0 2 0 0 1 | Increase ws (complement,
23 0 -1 0 3 1 1 2 | of z5 that just dropped).
w3 0 |-1| 1 1 -1 0 —8 | w3 drops.
w1 1 0 -1 1 1 1 9 | Complementary
Z3 0 o -1 2 2 1 10 | feasible
Wa 0 1 -1 -1 1 0 8 | basic vector

Thus (w1, we, ws; 21, 22, 23) = (9,8,0;0,0,10) is a complementary feasible solution of
this problem.

Conditions Under Which the Algorithm is Guaranteed to Work

Theorem 2.12  For every J C {1,...,n}, if the principal submatrix Myz of M
associated with J satisfies the property that there exists no positive vector zy such that
the last component of Myyzy is nonpositive and the other components are zero, the
termination criteria (2.34) or (2.36) will never be satisfied and the algorithm terminates



122 CHAPTER 2. THE COMPLEMENTARY PIVOT ALGORITHM

with a complementary feasible basic vector for the LCP (q, M) after a finite number
of steps.

Proof. When (2.34) or (2.36) is satisfied, we have a solution of the type given in
equation (2.33), which we denote by (w(A), z2(A)) = (w + Aw", z + A\z") satisfying the
property that for A > 0, there exists a k such that wg(A) < 0, z5(X) > 0, z;(A) =0
for j > k, and if k& > 1 the vectors w*"D(X) = (wi(A),...,wr_1(N)), 2F7D(N) =
(21(A), ..., 2k—1())) are nonnegative and complementary. Let J = {1,...,k}, wh =
(wh, ..., wt)T b = (20, .. 2T, Then

w_’f - MJJZ.’]l =0
2520 (2.38)

wp <0

and if k > 1, (wh,...,wl ;) > 0, and w;?z;? =0forj=1tok—1. Let P ={j:
1 <j <k and z;‘ > 0}. Clearly P # 0, otherwise (w%,2z%) = 0. Letting 28 =
(z;l : j € P), all the components of Mppzp are zero except possibly the last one
because of (2.38) and the fact that w;-‘z? =0 for j =1 to k— 1. Also, the last
component of Mppz is < 0 because of (2.38). And since 25 > 0, this contradicts the
hypothesis in the theorem.

The finiteness of the algorithm follows from the path argument used in Sections
2.2, 2.3, the argument says that the algorithm never returns to a previous position
as this situation implies the existence of a position with three adjacent positions, a
contradiction. Since there are only a finite number of positions we must terminate

with a solution for the original LCP.
[

Corollary 2.2 If M has the property that for every J C {1,...,n}, the corresponding
submatrix Mzy of M satisfies the property that the system

M_]_]ZJ é 0
VA | 20

has the unique solution zy = 0, then the variable dimension algorithm discussed above
will terminate with a solution of the LCP (q, M) for any q¢ € R".

Proof. Follows from Theorem 2.12.
[

R. W. Cottle [3.9] has shown that the class of matrices M satisfying the hypothesis
in Theorem 2.12 or Corollary 2.2, is the strictly semi-monotone matrices defined later
on in Section 3.4, which is the same as Q (completely Q-matrices, that is, matrices all
of whose principal submatrices are )-matrices). This class includes all P-matrices and
positive or strictly copositive matrices.

By the results discussed in Chapter 3, the LCP (g, M) has a unique solution when
M is a P-matrix. So if M is s P-matrix and the LCP (g, M) is solved by the variable
dimension algorithm, type 2 pivot steps will never have to be performed.
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M. J. Todd [2.35, 2.36] has shown that when ¢ is nondegenerate in (2.30) and M
is a P-matrix, the variable dimension algorithm discussed above corresponds to the
lexicographic Lemke algorithm discussed in Section 2.3.4.

Now consider the LCP (g, M) of order n. Let e, denote the column vector of all
1’s in R"™. Introduce the artificial variable zy associated with the column vector —e,,,
as in the complementary pivot algorithm (see equation (2.3)). Introduce an additional

artificial variable wq, which is the complement of zy, and the artificial constraint “wg —

T
n

value. This leads to an LCP of order n+ 1, in which the variables are (wg, w1, ..., wy,),
(20,21, - - -, 2n) and the data is

. (O —eg] *_[QO]
M_[en M )T T g

Since qg is considered as a large positive parameter, wg > 0 and zy = 0 in any com-

e,z =qp”, where qq is treated as a large positive number, without giving it any specific

plementary solution of this larger dimensional LCP (¢*, M*), and hence if ((wg,w),
(Zo, 2)) is a solution of this LCP, then (w, z) is a solution of the original LCP (¢, M).

Essentially by combining the arguments in Theorems 2.1 and 2.12, .. Van der Hey-
den [2.39] has shown that if M is a copositive plus matrix and the system “w — Mz =
g, w > 0, z > 0”7 has a feasible solution, when the variable dimension algorithm is
applied on the LCP (¢*, M*), it will terminate with a complementary feasible solution
((wg,w), (Zp,Z)) in a finite number of steps. This shows that the variable dimension
algorithm will process LCP’s associated with copositive plus matrices, by introduc-
ing an artificial dimension and by applying the variable dimension algorithm to the

enlarged LCP.

2.7 EXTENSIONS TO FIXED POINT
COMPUTING, PIECEWISE LINEAR
AND SIMPLICIAL METHODS

It has also been established that the arguments used in the complementary pivot al-
gorithm can be generalized, and these generalizations have led to algorithms that can
compute approximate Brouwer and Kakutani fixed points! Until now, the greatest
single contribuition of the complementarity problem is probably the insight that it has
provided for the development of fixed point computing algorithms. In mathematics,
fixed point theory is very higly developed, but the absence of efficient algorithms for
computing these fixed points has so far frustrated all attempts to apply this rich theory
to real life problems. With the development of these new algorithms, fixed point the-
ory is finding numerous applications in mathematical programming, in mathematical
economics, and in various other areas. We present one of these fixed point computing
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algorithms, and some of its applications, in this section. We show that the problem of
computing a KKT point for an NLP can be posed as a fixed point problem and solved
by these methods.

The algorithms that are discussed later in this section trace a path through the
simplices of a triangulation in R", that is why they are called simplicial methods.
Since they use piecewise linear approximations of maps, these methods are also called
piecewise linear methods. Since the path traced by these methods has exactly the
same features as that of the complementary pivot algorithm (see Sections 2.2.5, 2.2.6)
these methods are also called complementary pivot methods.

2.7.1 Some Definitions

Let g(x) be a real valued function defined over a convex subset I' C R". We assume
that the reader is familiar with the definition of continuity of g(z) at a point z° €

T, and the definition of the vector of partial derivatives of g(x) at z° Vg(z°) =

0] 0
(6%(;1 o, ag(; )), when it exists. The function g(z) is said to be differentiable at z°

if Vg(2°) exists, and for any y € R", L (g(2° + ay) — g(z°) — «(Vg(2°))y) tends in
the limit to zero as « tends to zero. If g(x) is differentiable at 20, for any y € R",

we can approximate g(z° + ay) by g(z°) + a(Vg(z®))y for values of a for which |«

is small. This is the first order Taylor series expansion for g(z + ay) at z = 2°.

If g(z) is differentiable at 2%, the partial derivative vector Vg(z°) is known as the
gradient vector of g(r) at z°.
When the second order partial derivatives of g(z) exist at 2°, we denote the n x n

matrix of second order partial derivatives (%) by the symbol H(g(z")). It is
called the Hessian matrix of g(z) at z°.

Let g1(z), - .., gm(z) be m real valued convex functions defined on the convex sub-
set I' C R". For each z € I, define s(x) = Maximum { g1(x), ..., gm(z) }. The function
s(z) is known as the pointwise supremum or maximum of {g;(z),...,gn(z)}. It
is also convex on I'. See Figure 2.4 where we illustrate the pointwise supremum of

several affine functions defined on the real line.
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Function Vaues

N

I3(X)

VAR

Figure 2.4 [;(z) to I5(z) are five affine functions defined on R'. Function
values are plotted on the vertical axis. Their pointwise maximum is the
function marked with thick lines here.

Subgradients and Subdifferentials of Convex Functions

Let g(x) be a real valued convex function defined on R". Let 2° € R" be a point
where g(z°) is finite. The vector d = (dy,...,d,)T is said to be a subgradient of g(r)
at 20 if

g(z) > g(a°) +d¥(z — 2°), forallz € R". (2.39)

Notice that the right hand side of (2.39) is I(z) = (g(2°) — d*2°) + dTz, is an
affine function in z; and we have g(z°) = [(z°). One can verify that I(x) is the first
order Taylor expansion for g(x) around z°, constructed using the vector d in place of
the gradient vector of g(x) at 2°. So d is a subgradient of g(x) at 20, iff this modified
Taylor approximation is always an underestimate for g(x) at every x.
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Example 2.17

Let = € R', g(z) = 22. g(z) is convex. Consider the point z° = 1, d = 2. It can be
verified that the inequality (2.39) holds in this case. So d = (2) is a subgradient for
g(z) at ° = 1 in this case. The affine function {(x) on the right hand side of (2.39) in
this case is 1 + 2(z — 1) = 2z — 1. See Figures 2.5, 2.6 where the inequality (2.39) is
illustrated.

Function Values

Figure 2.5 A Convex Function, and the Affine Function Below it Con-
structed Using a Subgradient for it at the Point z°.
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6(x)

x|+

Figure 2.6 The subdifferential to 6(z) at z is the set of slope vectors of all
lines in the cone marked by the angle sign.

The set of all subgradients of g(z) at 2% is denoted by the symbol dg(x°), and called
the subdifferential set of g(x) at z°. It can be proved that if g(x) is differentiable
at z°, then its gradient Vg(x°) is the unique subgradient of g(x) at z°. Conversely if
0g(x") contains a single vector, then g(x) is differentiable at z° and dg(x?) = {Vg(x?)}.
See references [2.92-2.94] for these and other related results.

Subgradients of Concave Functions

Let h(xz) be a concave function defined on a convex subset I' C R". In defining a
subgradient vector for h(z) at a point z° € T, the inequality in (2.39) is just reversed;
in other words, d is a subgradient for the concave function h(z) at z° if h(z) < h(z°)+
dT (z — 2°) for all z. With this definition, all the results stated above also hold for
concave functions.
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Computing a Subgradient

Let f(x) be a convex function defined on R". Let z € R", if §(z) is differentiable at
Z, then the gradient vector VO(z) is the only subgradient of §(z) at z. If f(x) is not
differentiable at z, in general, the computation of a subgradient for 0(z) at £ may be
hard. However, if #(z) is the pointwise supremum of a finite set of differentiable convex
functions, say

f(x) = Maximum { g1(z),...,gm(z) }

where each g;(z) is differentiable and convex, then the subdifferential of 0(z) is easily
obtained. Let

J(@) ={i: 0(2)=4(7)}
the the subdifferential of §(z) at z,

00(z) = convex hull of { Vg;(Z) :i € J(Z) } .

See references [2.92-2.94].

2.7.2 A Review of Some Fixed Point Theorems

Let I' C R" be a compact convex subset with a nonempty interior. Let f(z) :T' — I be
a single valued map, that is, for each z = (z1,...,2,)T €T, f(z) = (fi(z),..., fu(z))T
€ I', which is continuous. We have the following celebrated theorem.

Theorem 2.13 : Brouwer’s Fixed Point Theorem If f(z):T' — T is continuous,
it has a fixed point, that is, the system

flz)—2=0 (2.40)

which is a system of n equations in n unknowns, has a solution x € I".

See references [2.48, 2.50, 2.68, 2.69, 2.72] for proofs of this theorem. We now
provide an illustration of this theorem.

Example 2.18

Consider n = 1. Let T'={z: z € R', 0 <2 < 1} denoted by [0,1]. Consider the
continuous function f(z) : [0,1] — [0,1]. We can draw a diagram for f(z) on the two
dimensional Cartesian plane by plotting x on the horizontal axis, and the values of
f(z) along the vertical axis, as in Figure 2.7. Since f(x) is defined on [0, 1] the curve
of f(z) begins somewhere on the thick vertical line z = 0, and goes all the way to the
thick vertical line # = 1, in a continuous manner. Since f(z) € [0, 1], the curve for

f(z) lies between the two thin horizontal lines f(z) = 0 and f(z) = 1. The dashed
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diagonal line is f(x) — 2z = 0. It is intuitively clear that the curve of f(x) must cross
the diagonal of the unit square, giving a fixed point for f(z).

f(x)

Figure 2.7 The curve of f(x) : [0,1] — [0, 1]. Points of intersection of the
curve with the dashed diagonal line are the Brouwer fixed points of f(z).

Example 2.19

This example illustrates the need for convexity in Theorem 2.13. Let n = 2. Let K
denote the dotted ring in Figure 2.8 between two concentric circles. Let f(z) denote
the continuous mapping K — K obtained by rotating the ring through a specified
angle 6 in the anti-clockwise direction. Clearly this f(x) has no fixed points in K.
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Figure 2.8 The need of convexity for the validity of Brouwer’s fixed point
theorem.

The need for the boundedness of the set I' for the validity of Theorem 2.13 follows
from the fact that the mapping f(z) = = + a for each z € R", where a # 0 is a
specified point in R", has no fixed points. The need for the closedness of the set I' for
the validity of Theorem 2.13 follows from the fact that the mapping f(z) = 3(z + 1)
from the set {z : 0 < x < 1} into itself has no fixed point in the set.

The system (2.40) is a system of n equality constraints in n unknowns. An effort
can be made to solve (2.40) using methods for solving nonlinear equations.

A Monk’s Story

The following story of a monk provides a nice intuitive justification for the concept and
the existence of a fixed point. A monk is going on a pilgrimage to worship in a temple
at the top of a mountain. He begins his journey on Saturday morning at 6:00 AM
promptly. The path to the temple is steep and arduous and so narrow that trekkers on
it have to go in a single file. Our monk makes slow progress, he takes several breaks
on the way to rest, and at last reaches the temple by evening. He spends the night
worshipping at the temple. Next morning, he begins his return trip from the temple
exactly at 6:00 AM, by the same path. On the return trip, since the path is downhill,
he makes fast progress and reaches the point from where he started his hjourney on
Saturday morning, well before the evening.
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Suppose we call a point (or spot or location) on the path, a fixed point, if the monk
was exactly at that spot at precisely the same time of the day on both the forward
and return trips.

The existence of a fixed point on the path can be proved using Brouwer’s fixed
point theorem, but there is a much simpler and intuitive proof for its existence (see
A. Koestler, The Act of Creation, Hutchinson, 1976, London). Imagine that on Satur-
day morning exactly at 6:00 AM, a duplicate monk starts from the temple, down the
mountain, proceeding at every point of time at exactly the same rate that the original
monk would on Sunday. So, at any point of time of the day on Saturday, the duplicate
monk will be at the same location on the path as the original monk will be at the time
on Sunday. Since the path is so narrow that both cannot pass without being in each
other’s way, the two monks must meet at some time during the day, and the spot on
the path where they meet is a fixed point.

Successive Substitution Method for Computing a
Brouwer’s Fixed Point

One commonly used method to compute a Brouwer’s fixed point of the single valued
map f(z) : ' — T is an iterative method that begins with an arbitrary point z° € T,
and obtains a sequence of points {z" : r =0, 1,...} in I using the iteration

The sequence so generated, converges to a Brouwer’s fixed point of f(z) if f(x) satisfies
the contraction property, that is, if there exists a constant v satisfying 0 < v <1
such that for every x,y € ', we have

1) = Wl = vz = yll - (2.41)

If the map f(x) satisfies the contraction proprety, this successsive substituitions method
is a very convenient method for computing a Brouwer’s fixed point of f(z). Unfor-
tunately, the contraction property is a strong property and does not usually hold in
many practical applications.

Newton-Raphson Method for Solving a System
of n Equations in n Unknowns

The system (2.40) is a system of n equations in n unknowns, and we can try to solve it
using approaches for solving nonlinear equations of this type, like Newton-Raphson
method, which we now present. The method is also called Newton’s method often in
the literature, or Newton’s method for solving equations. Consider the system

gi(x) =0 i=1ton (2.42)
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where each g¢;(z) is a real valued function defined on R"™. Assume that each function
gi(x) is differentiable. Let Vg;(x) be the row vector of partial derivatives and let the
Jacobian be

Vg (z)

Vy(z) = :

Von(2)

in which the i*" row vector is the partial derivative vector of g;(x) written as a row.
To solve (2.42) the Newton-Raphson method begins with an arbitrary point z°
and generates a sequence of points {z°, z!, 22, ...}. Given 2" in the sequence, the
method approximates (2.42) by its first order Taylor approximation around z" leading
to
9(z") + Vg(2")(z —2") =0

whose solution is 2" —(Vg(2")) tg(z"), which is taken as the next point in the sequence.
This leads to the iteration

g™ =a" — (Vg(a") g(a") .

If the Jacobian is nonsingular, the quantity y = (Vg(z")) tg(z") can be computed
efficiently by solving the system of linear equations

(Vg(z")y = g(z")

If the Jacobian Vg(z") is singular, the inverse (Vg(z"))™! does not exist and the
method is unable to proceed further. Several modifications have been proposed to
remedy this situation, see references [10.9, 10.13, 10.33]. Many of these modifications
are based on the applications of Newton’s method for unconstrained minimization or
a modified version of it (see Sections 10.8.4, 10.8.5) to the least squares formulation of
(2.42) leading to problem of finding the unconstrained minimum of

n

> (gi(x))? .

i=1
As an example, consider the system

gl(x):xij:Ug—l:O
x

g2(w) =aF — 25 =0

[ 25171 2.1'2 ]
25171 —1
Let 2° = (1,0)T be the initial point. So g(z°) = (0,1)T. The Jacobian matrix at

20 is [; _01 ] . This leads to the next point x! = (1,1)T. It can be verified that

The Jacobian matrix is
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T . . .
z? = (%, %) , and so on. The actual solution in this example can be seen from Figure
2.9.
%
o xt
X1

Figure 2.9 The circle here is the set of all points (z1,x) satisfying 22 +
22 — 1 = 0. The parabola is the set of all points satisfying 22 — 2, = 0.
The two intersect in two points (solutions of the system) one of which is Z.

Beginning with z°, the Newton-Raphson method obtains the sequence z?!,

x2,... converging to .

In order to solve (2.40) by Newton-Raphson method or some modified versions
of it, the map f(x) must satisfy strong properties like being differentiable etc., which
do not hold in may many practical applications. Thus, to use Brouwer’s fixed point
theorem in practical applications we should devise methods for solving (2.40) without
requiring the map f(z) to satisfy any conditions besides continuity. In 1967 H. Scarf
in a pioneering paper [2.68] developed a method for finding an approximate solu-
tion of (2.40) using a triangulation of the space, that walks through the simplices of
the triangulation along a path satisfying properties similar to the one traced by the
complementary pivot algorithm for the LCP. This method has the advantage that it
works without requiring any conditions on the map f(z) other than those required by
Brouwer’s theorem for the existence of the fixed point (i. e., continuity). Subsequently
vastly improved versions of these methods have been developed by many researches.
We will discuss one of these methods in detail.
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Approximate Brouwer Fixed Points

Let f(x) : I' — I' be continuous as defined in Theorem 2.13. A true Brouwer fixed point
of f(x) is a solution of (2.40). However, in general, we may not be able to compute
an exact solution of (2.40) using finite precision arithmetic. In practice, we attempt
to compute an approximate Brouwer fixed point. There are two types of approximate
Brouwer fixed points, we define them below.

Type 1: A point £ € T" is said to be an approximate Brouwer fixed point of f(z) of
Type 1 if

1Z2—f(@)] <e

for some user selected tolerance ¢ (a small positive quantity).
Type 2: A point z* € I' is said to be an approximate Brouwer fixed point of Type
2 if there exists an exact solution y of (2.40) such that

|z —yll <e.

In general, a Type 1 approximate Brouwer fixed point £ may not be a Type 2
approximate Brouwer fixed point, that is,  may be far away from any exact solution
of (2.40). If some strong conditions hold (such as: f(z) is continuously differentiable
in the interior of I' and all the derivatives are Lipschitz continuous, or f(x) is twice
continuously differentiable in the interior of I') a Type 1 approximate Brouwer fixed
point can be shown to be also a Type 2 approximate Brouwer fixed point with a
modified tolerance. At any rate, the algorithms discussed in the following sections are
only able to compute approximate Brouwer fixed points of Type 1.

Kakutani Fixed Points

In many applications, the requirement that f(z) be a point-to-point map is itself too
restrictive. In 1941 S. Kakutani generalized Theorem 2.13 to point-to-set maps. As
before, let I' be a compact convex subset of R". Let F(z) be a point-to-set map on T,
that is, for each 2 € T, F(x) is itself a specified subset of I'.

Example 2.20

Let n=1. Let ' ={x € R": 0 <z < 1}. For each # € T, suppose F(z) = {y :
z<y<1}=][z,1]. See Figure 2.10.
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F(x)

Figure 2.10 For each z € ', F(z) is the closed interval [z, 1].

We consider only maps in which F(x) is a compact convex subset of I' for each
x € I'. The point-to-set map F(z) is said to be an USC (Upper Semi-Continuous) map
if it satisfies the following properties. Let { 2% : k =1,2,...} be any sequence of points
in ' converging to a point z* € I". For each k, suppose y* is an arbitrary point selected
from F(z¥), k = 1,2,.... Suppose that the sequence {y* : k=1,2,...} converges to
the point y*. The requirement for the upper semi-continuity of the point-to-set map
F(z) is that these conditions imply that y* € F(z*).

It can be verified that the point-to-set map F(z) given in Figure 2.8 satisfies this
USC property.

Theorem 2.14 Kakutani’s Fixed Point Theorem
If F(z) is a USC point-to-set map defined on the compact convex subset ' C R",
there exists a point x € I' satisfying

v € F(z). (2.43)
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Any point satisfying (2.43) is known as a Kakutani’s fixed point of the point-
to-set map F(z). To prove his theorem, Kakutani used the fundamental notion of
a piecewise linear approximation to the map F(z). The same picewise linear
approximation scheme is used in the method discussed later on for computing fixed
points. See reference [2.50] for the proof of Kakutani’s theorem.

For each x € T, if F(z) is a singleton set (i. e., a set containing only a single ele-
ment) {f(xz)} C I, it can be verified that this F(z) is USC iff f(x) is continuous. Thus
the USC property of point-to-set maps is a generalization of the continuity property of
point-to-point maps. Also, every Brouwer fixed point of the point-to-point map f(x)
can be viewed as a Kakutani fixed point of F(z) = {f(x)}.

Approximate Kakutani Fixed Points

Given the USC point-to-set map F(z) as defined in Theorem 2.14, a Kakutani fixed
point is a point x € I' satisfying (2.43). As under the Brouwer fixed point case, using
finite precision arithmetic, we may not be able to find = € I' satisfying (2.43) exactly.
We therefore attempt to compute an approximate Kakutani fixed point. Again, there
are two types of approximate Kakutani fixed points, we define them below

Type 1: A point Z € T is said to be an approximate Kakutani fixed point of F(z) of
Type 1 if there exists a z € F(Z) satisfying

1z —z|| <e

for some user selected tolerance e (a small positive quantity).
Type 2: A point z* € T is said to be an approximative Kakutani fixed point of F(x)
of Type 2 if there exists a y satisfying (2.43) and

|z —yll <e.

The algorithms discussed in the following sections are only able to compute Type
1 approximate Kakutani fixed points.

Use in Practical Applications

In pratical applications we have to deal with either point-to-point or point-to-set maps
defined over the whole space R", not necessarily on only a compact convex subset
of R™. Also, it is very hard, if not computationally impossible, to check whether
properties like USC etc. hold for our maps. For such maps, the existence of a fixed
point is not guaranteed. Because of this, the algorithms that we discuss for computing
fixed points may not always work on these problems. Also, it is impossible for us to
continue the computation indefinitely, we have to terminate after a finite number of
steps. In practice, from the path traced by the algorithm, it will be clear whether it
seems to be converging, or running away. If it seems to be converging, from the point
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obtained at termination, an approximate solution of the problem can be obtained. If
the algorithm seems to be running away, either we can conclude that the algorithm
has failed to solve the problem, or an effort can be made to run the algorithm again
with different initial conditions. Before discussing the algorithm, we will now discuss
some standard applications of fixed point computing.

2.7.3 Applications in Unconstrained Optimization

Let 6(x) be a real valued function defined on R™ and suppose it is required to solve
the problem
minimize  6(x)

n (2.44)
over z€R

If 6(x) is differentiable, a necessary condition for a point € R" to be a local minimum
for (2.44) is
Vo(x) =0 (2.45)

which is a system of n equations in n unknowns. Define f(z) = x — (V6(z))T. Then
every Brouwer fixed point of f(z) is a solution of (2.45) and vice versa. Hence every
fixed point of f(x) satisfies the first order necessary optimality conditions for (2.44). If
0(z) is convex, every solution of (2.45) is a global minimum for (2.44) and vice versa,
and hence in this case (2.44) can be solved by computing a fixed point for f(x) defined
above. However, if 6(z) is not convex, there is no guarantee that a solution of (2.45),
(i.e., a fixed point of f(x) = = — (VO(z))T) is even a local minimum for (2.44) (it
could in fact be a local maximum). So, after obtaining an approximate fixed point,
Z, of f(x), one has to verify whether it is a local minimum or not. If f(z) is twice
continuously differentiable, a sufficient condition for a solution of (2.45) to be a local
minimum for (2.44) is that the Hessian matrix H(6(z)) be positive definite.

If 8(x) is not differentiable at some points, but is convex, then the subdifferential
set 06(z) exists for all z. In this case define F(z) = {x —y : y € 90(z) }. Then every
Kakutani fixed point of F(x) is a global minimum for (2.44) and vice versa.

One strange feature of the fixed point formulation for solving (2.45) is worth
mentioning. Define G(z) = {z +y :y € 90(z) }. Clearly, every Kakutani fixed point
of G(z) also satisfies the necessary optimality conditions for (2.44). Mathematically,
the problems of finding a Kakutani fixed point of F(z) or G(z) are equivalent, but
the behavior of the fixed point computing algorithm discussed in Section 2.7.8 on the
two problems could be very different. This is discussed later on under the subsection
entitled, “Sufficient Conditions for Finite Termination” in Section 2.7.8. In practical
applications, one might try computing the Kakutani fixed point of F(z) using the
algorithm discussed in Section 2.7.8, and if its performance is not satisfactory switch
over and use the same algorithm on G(z) instead.
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2.7.4 Application to Solve a System of

Nonlinear Inequalities

Consider the system
gi(x) <0, fori=1tom (2.46)

where each g;(x) is a real valued convex function defined on R". Define the pointwise
supremum function s(z) = Maximum { g1(z), ..., gm(z) }. As discussed earlier, s(x)
is itself convex, and 9s(z) O U, ey, 09i(z), where J(z) = {i: gi(z) = s(z) }. If each
gi(x) is differentiable, then 0s(z) = convex hull of { Vg;(x) : i € J(x) }. If (2.46) has a
feasible solution Z, then s(Z) < 0, and conversely every point z satisfying s(z) < 0 is
feasible to (2.46). So the problem of finding a feasible solution of (2.46) can be tackled
by finding the unconstrained minimum of s(x), which is the same as the problem of
finding a Kakutani fixed point of F(z) = {x —y : y € ds(x) } as discussed in Section
2.7.3. If T is a Kakutani fixed point of this map and 5(z) > 0, (2.46) is infeasible. On
the other hand if s(Z) < 0, Z is a feasible solution of (2.46).

2.7.5 Application to Solve a System of

Nonlinear Equations
Consider the system of equations
hi(z) =0, i=1tor (2.47)

where each h;(z) is a real valued function defined on R". Let h(z) = (hi(x),...,
hy(x))T. If r > n, (2.47) is said to be an overdetermined system. In this case there
may be no solution to (2.47), but we may be interested in finding a point x € R"™ that
satisfies (2.47) as closely as possible. The least squares approach for finding this
is to look for the unconstrained minimum of >_, (h;(z))?, which can be posed as a
fixed point problem as in Section 2.7.3.

If r < n, (2.47) is known as an underdetermined system, and it may have
many solutions. It may be possible to develop additional n — r equality constraints
which when combined with (2.47) becomes a system of n equations in n unknowns. Or
the least squares method discussed above can be used here also.

Assume that » = n. In this case define f(z) = x — h(z). Then every Brouwer
fixed point of f(x) solves (2.47) and vice versa. As mentioned in Section 2.7.3, it may
be worthwhile to also consider the equivalent problem of computing the fixed point of
d(x) = x + h(x) in this case.
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2.7.6 Application to Solve the

Nonlinear Programming Problem

Consider the nonlinear program

Minimize 0(x)

. . (2.48)
subject to  gi(z) <0, i=1tom

where 0(x), g;(z) are real valued functions defined over R". We will assume that each
of these functions is convex, and continuously differentiable. We make an additional
assumption that if (2.48) is feasible (i. e., the set {z : g;(x) < 0,i =1 to m } # (), then
there exists an x € R" satisfying g;(z) < 0, for each i = 1 to m. This assumption is
known as a constraint qualification. As before, let s(z) be the pointwise supremum
function, maximum { g1(z), ..., gm(x) }. Then (2.48) is equivalent to

Minimize  6(x) (2.49)

By our assumption, and the results discussed earlier, s(x) is also convex and 0s(z) =
convex hull of { Vg;(z) : i € J(x) }, where J(z) = {i: s(x) = gi(x) }. Consider the
following point-to-set mapping defined on R".

{z—(VO(z)T}, if s(a:) 0,
F(z) =4 {z—y: y € convex hull of {VO(z z)} ), if s(z) = (2.50)
{x_y yeas()} 1fS(£L')>0

Under our assumptions of convexity and differentiability, it can be verified that F(z)
defined in (2.50) is USC. Let & be a Kakutani fixed point of F(x). If () < 0, then 0 =
V0(z), and thus z is a global minimum for #(z) over R™ and is also feasible to (2.48),
and therefore solves (2.48). If s(z) > 0, then 0 € Js(x), thus 0 is a global minimum of
s(x), and since s(z) > 0, (2.48) has no feasible solution. If s(Z) = 0, then 0 € convex
hull of {Vl(Z),0s(Z) } = convex hull of {VO(Z), Vg;(Z) for i € J(Z)}, so there exists
nonnegative numbers Ao, A; for i € J(Z) satisfying

AVO(E) + > AiVgi(z
1€J(Z)

ot Y Ai=1 (2.51)

Ao, Ai =20 forallie J(z)

If Ag = 0, (2.51) implies that 0 € ds(z) and so s(z) is a global minimizer of s(z),
is feasible to (2.48) since s(Z) = 0, and these facts lead to the conclusion that {z :
gi(x) <0, for i =1tom} # () and yet there exists no z satisfying g;(z) < 0 for all
i = 1 to m, violating our constraint qualification assumption. So Ao > 0 in (2.51).



140 CHAPTER 2. THE COMPLEMENTARY PIVOT ALGORITHM

So if we define 7; = i‘—o if i € J(z), = 0 otherwise, then from (2.51) we conclude that
z, ™ together satisfy the Karush-Kuhn-Tucker necessary conditions for optimality for
(2.48), and our convexity assumption imply that Z is the global minimum for (2.48).

Thus solving (2.48) is reduced to the problem of finding a Kakutani fixed point of
the mapping F(z) defined in (2.50).

Example 2.21

Consider the problem :

minimize  0(z) = 2? + 23 — 21 — 31
1

subject to  gi(z) =21+ 22 <1 (2.52)

Clearly VO(z) = (221—2,222—3), Vg1(z) = (1, 1). The mapping F(z) for this problem
is

{—z14+2,—z2+3)T }, ife;+20<1,
F(z) = ¢ Convex hull of {(—zy + 2, —22+3)T, (1 — L,zo — )T}, ifoy+a0=1,
{(l’l—l,l'g—l)T}, fxy+x9>1.

It can be verified that z = (%, %)T is a Kakutani fixed point of this mapping F(z), and

that z is the global optimum solution of the nonlinear program (2.52).

If 0(x), gi(x) are all continuously differentiable, but not necessarily convex, we can
still define the point-to-set mapping F(x) as in (2.50) treating ds(x) = convex hull of
{Vygi(z):ieJ(z)}. In this general case, any Kakutani fixed point Z of F(x) satisfies
the first order necessary optimality conditions for (2.48), but these conditions are not
sufficient to guarantee that z is a global or even a local minimum for (2.48), see Section
10.2 for definitions of a global minimum, local minimum. One can then try to check
whether Z satisfies some sufficient condition for being a local minimum for (2.48) (for
example, if all the functions are twice continuously differentiable, a sufficient condition
for  to be a local minimum for (2.48) is that the Hessian matrix of the Lagrangian
with respect to x is positive definite at Z. See references [10.2, 10.3, 10.13, 10.17, A8,
A12]). If these sufficient optimality conditions are not satisfied, it may be very hard
to verify whether Z is even a local minimum for (2.48). As an example, consider the
problem: minimize 27 Dz, subject to z > 0. The point 0 € R" is a global minimum
for this problem if D is PSD. If D is not PSD, 0 is a local minimum for this problem iff
D is a copositive matrix. Unfortunately, there are as yet no efficient methods known
for checking whether a matrix which is not PSD, is copositive. See Section 2.9.3.

Thus, in the general nonconvex case, the fixed point approach for (2.48) finds a
point satisfying the first order necessary optimality conditions for (2.48), by computing
a Kakutani fixed point of F(z) defined in (2.50). In this general case, many of the other
solution techniques of nonlinear programming for solving (2.48) (see Chapter 10) are
usually based on descent methods. These techniques generate a sequence of points
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{z":r=0,1,...}. Given 2", they generate a y" # 0 such that the direction =" + Ay",
A > 0, is a descent direction, that is, it is either guaranteed to decrease the objective
value or a measure of the infeasibility of the current solution to the problem or some
criterion function which is a combination of both. The next point in the sequence z"t!
is usually taken to be the point which minimizes the criterion function on the half line
{z" + Ay" : X > 0} obtained by using some one dimensional (A is the only variable to
be determined in this problem) line minimization algorithm. And the whole process
is then repeated with the new point. On general problems, these methods suffer from
the same difficulties, they cannot theoretically guarantee that the point obtained at
termination is even a local minimum. However, these descent methods do seem to
have an edge over the fixed point method presented above in the general case. In
the absence of convexity, one has more confidence that a solution obtained through
a descent process is likely to be a local minimum, than a solution obtained through
fixed point computation which is based purely on first order necessary conditions for
optimality.

The approach for solving the nonlinear program (2.48) using the fixed point trans-
formation has been used quite extensively, and seems to perform satisfactorily. See
references [2.40, 2.58, 2.59].

Many practical nonlinear programming models tend to be nonconvex. The fixed
point approach outlined above, provides additional arsenal in the armory for tackling
such general problems.

Now consider the general nonlinear programming problem in which there are both
equality and inequality constraints.

minimize 0(x)
subject to  gi(z) <0, i=1tom (2.53)
hi(x) =0, t=1top

The usual approach for handling (2.53) is the penality function method which
includes a term with a large positive coefficient corresponding to a measure of violation
of the equality constraints in the objective function. One such formulation leads to the
problem

minimize O(x) + « ti(ht (z))? (2.54)

subject to  gi(z) <0, i=1tom
In (2.54), «, a large positive number, is the penalty parameter. If (2.53) has a
feasible solution, every optimum solution of (2.54) would tend to satisfy h(xz) = 0,
t =1 to p as a becomes very large, and thus would also be optimal to (2.53). When
« is fixed to be a large positive number, (2.54) is in the same form as (2.48), and can
be tackled through a fixed point formulation as discussed above.

Advantages and Disadvantages of this Approach

In the NLP (2.48) there may be several constraints (i, e., m may be large) and the
problem difficulty can be expected to increase with the number of constraints. The
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fixed point approach for solving (2.48), first transforms (2.48) into the equivalent (2.49),
which is an NLP in which there is only a single constraint. The fact that (2.49) is a
single constraint problem is definitely advantageous.

The original problem (2.48) is a smooth problem since the objective and constraint
functions are all assumed to be continuously differentiable. Eventhough g;(x) are con-
tinuously differentiable for all i, there may be points = where s(x) is not differentiable.
However, s(z) is differentiable almost everywhere and so (2.49) is a nonsmooth NLP.
That this approach transforms a nice smooth NLP into a nonsmooth NLP is a disad-
vantage. But, because of the special nature of the function s(x), for any x, we are able
to compute a point in the subdifferential set ds(z) efficiently, as discussed above. For
computing a fixed point of the map F(z) defined in (2.50), the algorithms discussed in
the following sections need as inputs only subroutines to compute V6#(z), or a point
from 0s(x) for any given z, which are easy to provide. Thus, eventhough (2.49) is
a nonsmooth NLP, the fixed point approach is able to handle it efficiently. Practical
computational experience with this approach is quite encouraging.

The fixed point approach solves NLPs using only the first order necessary con-
ditions for optimality. The objective value is never computed at any point. This is
a disadvantage in this approach. In nonconvex NLPs, a solution to the first order
necessary conditions for optimality, may not even be a local minimum. Since the ob-
jective value is not used or even computed in this approach, we lack the circumstantial
evidence, or the neighborhood information about the behaviour of objective values, to
conclude that the final solution obtained is at least likely to be a local minimum.

2.7.7 Application to Solve the

Nonlinear Complementarity Problem

As discussed in Section 1.6, the nonlinear complementary problem (NLCP) is the

following. Given g(z) = (g1(%),...,gn(z))T : R} — R", where R} is the nonnegative
orthant of R", find z > 0 satisfying g(z) > 0, z7g(z) = 0.
Define 9(x) = Maximum {—z1,...,—zn}. So 0y (x) = convex hull of {—1.; : j

such that —z; > —x; for all i = 1 to n in x }. Define the point-to-set map on R",

{0y ycob@), it () > 0,
F(z) =< {# —y:y € convex hull of {g(z),0¢(x)}}, if¢(z)=0, (2.55)
{z—g()}, if (z) <0 .

It can be verified that every Kakutani fixed point of F(x) defined here is a solution of
the NLCP and vice versa. Thus the NLCP can be solved by computing a Kakutani
fixed point of F(z).
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2.7.8 Merrill’s Algorithm for Computing
a Kakutani Fixed Point

Let F(x) be a point-to-set map defined on R™. We describe in this section, Merrill’s
method for computing a Kakutani fixed point of F(x).

Data Requirements of the Algorithm

If the algorithm requires the storage of the complete set F(x) for any z, it will not be
practically useful. Fortunately, this algorithm does not require the whole set F(z) for
even one point z € R". It only needs a computational procedure (or a subroutine),
which, for any given z € R"™, outputs one point from the set F(x). The algorithm will
call this subroutine a finite number of times. Thus the data requirements of the algo-
rithm are quite modest, considering the complexity of the problem being attempted,
and it can be implemented for the computer very efficiently. Also, the primary com-
putational step in the algorithm is the pivot step, which is the same as that in the
simplex method for linear programs.

n-Dimensional Simplex

The points vy,...,v, in R™ are the vertices of an (r — 1) dimensional simplex if the

set of column vectors { [ Ul ] e [ 1 ] } in R™*! form a linearly independent set.
1

The simplex itself is the convex hull of its vertices and will be denoted by the symbol

(v1,...,v,). Given the simplex with vertices vy,...,v,, the convex hull of any subset
of its vertices is a face of the simplex. An n-dimensional simplex has (n + 1) vertices.
See Figure 2.11. Clearly a 1-dimensional simplex is a line segment of positive length
joining two distinct points, a 2-dimensional simplex is the triangle enclosed by three
points which are not collinear, etc.
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Figure 2.11 The tetrahedron which is the convex hull of vertices {vy,vs,vs,

vs} is a 3-dimensional simplex. Its vertices vy, va, vg, v4 are its 0-dimensional

faces. Its 6 edges, of which the thick line segment joining vy and vy is one, are

its 1-dimensional faces. The dashed 2-dimensional simplex which is the convex

hull of {vy,vs,v3} is one of the four 2-dimensional faces of the tetrahedron.

Triangulations

Let K be either R"™ or a convex polyhedral subset of R" of dimension n. A triangu-

lation of K is a partition of K into simplexes satisfying the following properties

i)
ii)

iii)

iv)

the simplexes cover K,

if two simplexes meet, their intersection is a common face,

each point z € K has a neighborhood meeting only a finite number of the
simplexes,

each (n — 1) dimensional simplex in the triangulation is the face of either two
n-dimensional simplexes (in which case, the (n — 1) dimensional simplex is
said to be an interior face in the triangulation) or exactly one n-dimensional
simplex (in this case the (n —1) dimensional simplex is said to be a boundary
face in the triangulation),

for every point x € K there exists a unique least dimension simplex, say o, in
the triangulation, containing x. If dimension of ¢ is < n, ¢ may be a face of
several simplexes in the triangulation of dimension > dimension of ¢, and x
is of course contained on the boundary of each of them. There exists a unique
expression for x as a convex combination of vertices of o, and this is the same
expression for x as the convex combination of the vertices of any simplex in
the triangulation containing x.
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Example 2.22

In Figure 2.12 we give a triangulation of the unit cube in R%. The two 2-dimensional
simplexes in this triangulation are the convex hulls of {vg,v1,vs, }, {vo,v3,v2}. The
thick line segments in Figure 2.12 are the 1-dimensional simplexes in this triangulation
which are the faces of exactly one two dimensional simplex. These 1-dimensional
simplexes are the boundary faces in this triangulation. The thin diagonal line segment
joining vertices vy and vs is the face of exactly two 2-dimensional simplexes, and hence
is an interior face in this triangulation.

v, =(01) v, = (1)

Vo = (0,0) v, = (1,0)
Figure 2.12 Triangulation K; of the unit square in R?.

Example 2.23

Consider the partition of the unit square in R? into simplexes in Figure 2.13. It is not
a triangulation since the two simplexes (v1, v2,v3) and (vs, vy, vs5) intersect in (v, vs)
which is a face of (v3,vq,v5) but not a face of (vq,vq,v3) (it is a proper subset of the
face (vg,v3) of (v1,vs,v3)). So the partition of the unit square in R* in Figure 2.13
into simplexes violates property (ii) given above, and is therefore not a triangulation.
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Figure 2.13 A partition of the unit cube in R? into simplexes which is not
a triangulation.

The triangulation for the unit cube in R? given in Example 2.22 can be generalized
to a triangulation of the unit cube in R"™ which we call triangulation K, discussed
by Freudenthal in 1942. The vertices of the simplexes in this triangulation are the
same as the vertices of the unit cube. There are n! n-dimensional simplexes in this
triangulation. Let vg = 0 € R". Let p = (p1,...,pn) be any permutation of {1,...,n}.
Each of the n! permutations p leads to an n-dimensional simplex in this triangulation.
The n-dimensional simplex associated with the permutation p, denoted by (vg,p), is
(v, v1,...,Un) where

V; = Vi1 + I'pi7 t1=1ton. (256)

In (2.56), I is the unit matrix of order n. For example, for n = 2, p = (1,2), we get
the simplex (v = (0,0)T,v; = (1,0)T, vy = (1,1)T). See Figure 2.12. See reference
[2.72] for a proof that this does provide a triangulation of the unit cube of R".

In this representation (vg,p) for the simplex discussed above, vy is known as the
initial or the 0*” vertex of this simplex. The other vertices of this simplex are obtained
recursively as in (2.56). The vertex v; is called the i*" vertex of this simplex for i = 1
to n.

This triangulation can be extended to provide a triangulation for the whole space
R" itself, which we call triangulation K; (it has been called by other symbols like K,
I, etc., in other references) by first partitioning R™ into unit cubes using the integer
points in R", and then triangulating each unit cube as above. The vertices in this
triangulation are all the points with integer coordinates in R"™. Let # be any such
vertex, and let p = (p1,...,p,) be any permutation of {1,...,n}. Define vy = v,

and obtain v; for i = 1 to n as in (2.56). Let (v,p) denote the simplex (vg,v1, ...,
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vn). The set of all such simplexes as v ranges over all points with integer coordinates
in R", and p ranges over all the permutations of {1,...,n} is the collection of all the
n-dimensional simplexes in this triangulation K;. Again see reference [2.72] for a proof
that this is indeed a triangulation of R". See Figure 2.14.

(1.1)

(0,0) (0,1

Figure 2.14 A partition of the unit cube in R? into simplexes which is not
a triangulation.

The mesh of a triangulation is defined to be the maximum Euclidean distance
between any two points in a simplex in the triangulation. Clearly the mesh of trian-
gulation K; of R" is y/n.

We can get versions of triangulation K; with smaller mesh by scaling the variables
appropriately. Also the origin can be translated to any specified point. Let 2° € R"
be any specified point and § a positive number. Let J = {z : z = (z;) € R",z; — :c?
is an integer multiple of § for all j =1 to n}. For any vy € J, and p = (p1,...,pn), a

permutation of {1,...,n}, define
V; = Vi1 + (SI-piv t=1ton. (257)

Let (vg,p) denote the simplex (vg,v1,...,v,). The set J are the vertices, and the set
of all simplexes (vg,p) as vg ranges over J and p ranges over all the permutations of
{1,2,...,n} are the n-dimensional simplexes, in the triangulation of R™. We denote
this triangulation by the symbol 6K (z°). Its mesh is §/n.
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How is the Triangulation used by the Algorithm 7

The algorithm traces a path. Each step in the path walks from one (n —1)-dimensional
face of an n-dimensional simplex in the triangulation, to another (n — 1)-dimensional
face of the same simplex, and continues this way. See Figure 2.15. The path traced
is unambiguous once it is started, and is similar to the one in the ghost story men-
tioned earlier, or the path traced by the complementary pivot method for the LCP.
Computationally, the algorithm associates a column vector in R"™ to each vertex in the
triangulation. At each stage, the columns associated with the vertices of the current
(n—1)-dimensional simplex form a basis, and the inverse of this basis is maintained. A
step in the algorithm corresponds to the pivot step of entering the column associated
with a new entering vertex into the basis. The path never returns to a simplex it has
visited earlier.

To execute the path, one may consider it convenient to store all the simplexes in
the triangulation explicitly. If this is necessary, the algorithm will not be practically
useful. For practical efficiency the algorithm stores the simplexes using the mathe-
matical formulae given above, which are easily programmed for the computer. The
current simplex is always maintained by storing its 0*" vertex and the permutation
corresponding to it. To proceed along the path efficiently, the algorithm provides very
simple rules for termination once a desirable (n — 1)-dimensional simplex in the trian-
gulation is reached (this is clearly spelled out later on). If the termination condition is
not satisfied, a mathematical formula provides the entering vertex. A minimum ratio
procedure is then carried out to determine the dropping vertex, and another mathe-

0! vertex and the permutation corresponding to the

matical formula then provides the
new simplex. All these procedures make it very convenient to implement this algorithm

for the computer.



2.7. EXTENSIONS TO FIXED PoINT COMPUTING 149

Vs, )
~ v
\
Vy AN
I
/ V5

Figure 2.15 A path traced by the algorithm through the simplexes in the
triangulation.

Special Triangulations of R™ x [0, 1]

For computing a Kakutani fixed point of F(z) defined on R"™, Merrill’s algorithm uses
a triangulation of R™ x [0, 1], which is a restriction of triangulation K; for R"*! to
this region, known as the special triangulation K.

We will use the symbol X = [ . ] with z € R", to denote points in R" x [0, 1].
n+1
The set of vertices J in the special triangulation K3 of R" x [0, 1] are all the points X =

[ - a: ] € R""! with z an integer vector in R™ and Tpt1 = 0 or 1. The set of these
n+1

vertices of the form [ 11) ] is denoted by Ji, and the set of vertices of the form [ 8 ]

is denoted by Jg. J = JoUJ;. The boundary of R" x [0, 1] corresponding to z,+1 = 1
is known as the top layer, and the boundary corresponding to z,+1 = 0 is called the
bottom layer. So J;, Jj are respectively the points with integer coordinates in the top
and bottom layers. The (n + 1)-dimensional simplexes in the special triangulation K,
of R" x [0,1] are those of the form (Vp, P) where P = (p1,...,Pp+1) is a permutation
of {1,...,n+ 1} and Vj € Jy, and (Vp, P) = (Vo, V1, ..., V,41) where

Vi=Vi_1+1,, i=lton+1. (2.58)

In (2.58), I is the unit matrix of order n + 1. It can be verified that the set of all
simplexes of the form (1}, P) as V, ranges over Jy, and P ranges over all permutations
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of {1,2,...,n + 1} forms a triangulation of R" x [0,1]. V; is the 0" vertex and
for i = 1 to n + 1, the vertex V; determined as in (2.58) in the i'"* vertex of the
(n + 1)-dimensional simplex denoted by (V, P). The following properties should be
noted.

Property 1 : In the representation (V, P) for an (n + 1)-dimensional simplex in the
special triangulation K; of R™ x [0, 1], the 0** vertex V is always an integer point in
the bottom layer, that is, belongs to Jj.

Property 2 : In the representation (V, P) for an (n + 1)-dimensional simplex in the
special triangulation K; of R" x [0, 1], there exists a positive integer r such that for
all « < r—1, the ith vertex of (V, P) belongs to the bottom layer; and for all 4 >,
the it" vertex of (V, P) belongs to the top layer. The i here is the index satisfying the
property that if the permutation P = (p1,...,pnt1), then p; = n+ 1. This property
follows from the fact that the vertices of the simplex (V| P) are obtained by letting
Vo =V, and using (2.58) recursively.

Two (n + 1)-dimensional simplexes in the special triangulation K, are said to
be adjacent, if they have a common n-dimensional simplex as a face (i. e., if (n 4+ 1)
of their vertices are the same). Merrill’s algorithm generates a sequence of (n + 1)-
dimensional simplexes o1, 02, 03, ... of K, in which every pair of consecutive simplexes
are adjacent. So, given o;, 011 is obtained by dropping a selected vertex V'~ of o;
and adding a new vertex VT in its place. The rules for obtaining 041 given o, and
V'~ are called the entering vertex choice rules of the algorithm. These rules are
very simple, they permit the generation of vertices as they are needed. We provide
these rules here.

Let 0; = (V,P), where P = (p1,...,pn+1) is a permutation of {1,...,n + 1}.
The vertices of o; are Vj = V,Vi,..., V41, as determined by (2.58). Let V'~ be the
dropping vertex. So V™ is V; for some : = 0 to n 4+ 1. There are several cases possible
which we consider separately.

Case 1 : {Vp,Vq,...,Vhr1} \{V~} C J;. By property 2, this can only happen if
V™ =Vp and V; € Jq, that is, pi = n + 1. The face of o; obtained by dropping the
vertex V ~, is the n-dimensional simplex (Vi,...,V,,11) in the top layer, and hence is
a boundary face. (V1,...,V,41) is the face of exactly one (n + 1) dimensional simplex
in the triangulation K 1, 05, and the algorithm terminates when this happens.

Case2: {Vp,Vi,..., Vo1 }\{V~} C Jo. By property 2, this implies that V'~ =V,
and V,, € Jy, that is p,41 = n + 1. We will show that this case cannot occur in the
algorithm. So whenever V— =V, 11, we will have p,+1 # n + 1 in the algorithm.

Case 3 : {Vp,Vi,...,Vis1} \ {V} contains vertices on both the top and bottom
layers. So the convex hull of {Vj, V1,...,Vo41} \ {V ™} is an n-dimensional simplex
in the triangulation K, which is an interior face, and hence is a face of exactly two
(n 4+ 1) dimensional simplexes in the triangulation, one is the present o;. The other
Oj+1 18 (V, P) as given below (V+ given below is the new vertex in 0j4+1 not in o, it
is the entering vertex that replaces the dropping vertex V7).
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% V* (entering vertex) v P
V- =W
pr#Fn+1 Vg1 + 1, Vo+ 1., (P2 -+ Pnt1,D1)
(see Case 1)T
Vo=V Vicir + 1y, Vo (P1s-+ s Pie1s Dit1,
0<i<n+1 Pi> Pit2s - -+ Prtl)
Vo=V,
Pnt1 0+ 1 Vo—1p,., Vo—ILper | (Png1,P15---50n)
(see Case 2)*

It can be verified that if (V, P) is defined as above, then V € Jy (since V € Jg
where V is the 0" vertex of o) and so (V,P) is an (n + 1)-dimensional simplex in
the special triangulation, and that (V, P) and (V, P) share (n + 1) common vertices,
so they are adjacent (n + 1) dimensional simplexes in this triangulation. See Figure
2.16 for an illlustration of the special triangulation K; of R' x 0, 1].

The restriction of the special triangulation K; of R™ x [0,1] to either the top
layer (given by z,+1 = 1) or the bottom layer (given by z,41 = 0) in the same as
the triangulation K of R™. The mesh of the special triangulation K; of R™ x [0,1] is
defined to be the mesh of the triangulation of R" on either the top and bottom layer,
and hence it is \/n.

We can get special triangulation of R™ x [0,1] of smaller mesh by scaling the
variables in R" appropriately. Also, the origin in the R" part can be translated to
any specified point in R"™. Let 2° € R™ be a specified point and § a positive number.

Let J(2,6) = { [xx ] ¢ = (r;) € R",z; — x) is an integer multiple of ¢ for
n+1

each j =1ton, x4 =0orl } Then the points is J(z°,8) are the vertices of the

special triangulation of R™ x [0, 1] denoted by 6K (2°). Jo(2°, ) = { X = [ - v ] :
n+1

X e J(2°0),mp01 = O}, J1(2°,8) = { [a: ] cx € J(2°,9), zpa1 =1 } For any
n+1
V e Jo(2°,8), and P = (p1,...,pns1) a permutation of {1,...,n + 1} define
Vo=V
, (2.59)
Vi=Vioi+6l,, i=1ton+1

and let (V,P) = (Vo,Vi,...,Vyut1). The set of all (n + 1) dimensional simplexes
(V, P) given by (2.59) with V € Jo(2°,6) and P ranging over all the permutation of

1 In this case, if p; = n+1, as discussed in Case 1 above, the algorithm terminates.
So the algorithm continues only if p; # n + 1 when this case occurs.

* In this case, we cannot have p,11 = n + 1, as discussed in Case 2 above. So,
whenever this case occurs in the algorithm, we will have p,+1 #n + 1.
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{1,...,n+1} are the (n+1)-dimensional simplexes in the special triangulation § K1 (2°)
0

of R" x [0,1]. Its mesh in d\/n. In this triangulation, the vertex [36 ] plays the

same role as the origin [ 8 ] in the triangulation K.

The Piecewise Linear Approximation and
a Linear Approximate fixed Point of F(x)

Consider the special triangulation K, of R x [0, 1] defined above, and let Jg, J; be the
vertices in this triangulation on the bottom and top layers respectively. On the top
layer, we define a a piecewise linear map f(X) known as a piecewise linear approxi-

mation of F(x) relative to the present triangulation. For each V = [ 11) ] € J; define
f(v) = [f(lv) ] , where f(v) € F(v). The point f(v) can be selected from the set

F(v) arbitrarily, in fact it can be determined using the subroutine for finding a point
from the set F(v), which was pointed out as a required input for this algorithm. Any

nonvertex point X = [ f ] on the top layer must lie in an n-dimensional simplex in

the triangulation on this layer. Suppose the vertices of this simplex are V; = [ 111 ] )

¢t =1ton+ 1. Then x can be expressed as a convex combinations of vy,...,v,41 in
a unique manner. Suppose this expression is ajv; + ...+ Qpy1Up+1 Where g + ... +
Ont1 =1, a1,...,0p41 > 0. Then define f(z) = oy f(v1) + ... + ant1f(vng1). f(2)
is the piecewise linear approximation of F(z) defined on the top layer relative to the

present triangulation. For X = [ T ] define f(X) = [ f(lx) ] . In each n-dimensional

simplex in the top layer in this triangulation f(x) is linear. So f(z) is a well defined

piecewise linear continuous function defined on the top layer. Remember that the

definition of f(z) depends on the choice of f(v) from F(v) for V = [ 11} ] €Ji.

The point z € R" is said to be a linear approximate fixed point of F(z) relative
to the present piecewise linear approximation if

z = f(x). (2.60)

U5
1
fixed point of the piecewise linear map f(x) iff the system

The n-dimensional simplex < i = [ ] 1 =1ton+ 1> on the top layer contains a

N Aot
1 1 1 (2.61)
f)) —v1 ... flopg1) —vng1 | O

X>0, i=lton+1
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has a feasible solution. Thus the problem of finding a fixed point of the piecewise linear
approximation f(z) boils down to the problem of finding an n-dimensional simplex on
the top layer whose vertices are such that (2.61) is feasible.

For each vertex V = [11]] in the top layer associate the column vector

[f(,u)l_ v] € R™', which we denote by A.y and call the label of the vertex V.

The coefficient matrix in (2.61) whose columns are the labels of the vertices of the sim-
plex is called the label matrix corresponding to the simplex. Because of the nature
of the labels used on the vertices, this is called a vector labelling method.

An n-dimensional simplex on the top layer is said to be a completely labelled
simplex if the system (2.61) corresponding to it has a nonnegative solution, that is,
if it contains a fixed point of the current piecewise linear approximation.

Let Vp = [%0] = [8],P:(1,...,n+1) and let (Vo, P) = (Vo, Vi, ..., Viy1),

vi ] , i =1ton. Then (Vy, V1,...,V,) is the n-dimensional face of (Vj,

0
P) in the bottom layer. Let W = [ 1;) ] be an arbitrary point in the interior of this

where V; =

n-dimensional simplex (Vp,...,V,), for example, w = W For every vertex
V = [8] € Jo in the bottom layer, define f(V) = [f%v)] = [%}] . For any

nonvertex X in R™ x [0,1], X must lie in some (n + 1)-dimensional simplex in the
present triangulation, say (V! Vi, ..., V1 +1)- So there exist unique numbers ay, ...,
Opy1 > 0 such that ap + a1 +... + a1 =1, X = aOVOI +aVEi+ ...+ an+1an+1.
Then define f(X) = aof(Vy)+. .. +ant1f(V,iy1). The map f(X) is thus a continuous

piecewise linear map defined on R" x [0, 1]. In each (n+ 1) dimensional simplex in the
present triangulation, f(X) is linear. Also, under this map, every point in the bottom

”] € Jy to be the

layer maps into the point W. Define the label of any vertex V = [ 0

e R
w — v

Let (Vp, Vi,...,V,) be the n-dimensional simplex in the bottom layer, from the

column vector A.yy = [

interior of which we selected the point W. Since W is in the interior of this simplex,
By, the (n+1) x (n+1) label matrix corresponding to this simplex is nonsingular. Let
b=(1,0,0,...,0)7 € R". Then the system corresponding to (2.61) for this simplex
is

A

B | b (2.62)
) 0

v

This system has the unique positive solution A = b = Bl_lb > 0, since W is in the
interior of this simplex. Incidentally, this (Vp, Vi,...,V,) is the only n-dimensional
simplex in the bottom layer whose label matrix leads to a nonnegative solution to the
system like (2.61). The reason for it is that since W is in the interior of (Vg, V1,. ..,
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Vi), W is not contained in any other simplex in the triangulation in the bottom layer.

Also, since b > 0, the n x (n + 1) matrix (13 : Bl_l) has all rows lexicopositive. The
inverse tableau corresponding to the initial system (2.62) is

basic vector basis inverse

(2.63)

A B! b

The initial simplex (Vp, V1,...,V,) in the bottom layer is an n-dimensional face of the
unique (n + 1)-dimensional simplex (Vp, Vi,...,V,, Vp1) in the present triangulation
K 1. Introduce a new variable, say A,y1, in (2.62) with its column vector equal to the
label of this new vertex V,,41, and bring this variable into the present basic vector. The
pivot column for this pivot operation is B lA.Vn ..+ 1f this pivot column is nonpositive,
it would imply that the set of feasible solutions of this augmented system (2.62) with
this new variable is unbounded, which is impossible since the first constraint in the
system says that the sum of all the variables is 1, and all the variables are nonnegative.
So, the pivot column contains at least one positive entry, and it is possible to bring
the new variable into the present basic vector. The dropping variable is determined
by the usual lexico minimum ratio test of the primal simplex algorithm, this always
determines the dropping variable uniquely and unambiguously and maintains the sys-
tem lexico feasible. If the label of V; is the dropping column, the next basis is the
label matrix of the n-dimensional simplex (Vp,...,Vi_1,Vis1, ..., Vur1). The inverse
tableau corresponding to this new basis is obtained by entering the pivot column by
the side of the present inverse tableau in (2.63) and performing a pivot step in it, with
the row in which the dropping variable )\; is basic, as the pivot row.

By the properties of the triangulation, the new n-dimensional simplex (Vp,...,
Vie1, Vi1, -, Vig1) is the face of exactly one or two (n 4+ 1) dimensional simplexes
in the triangulation. One is the simplex (Vp,...V,41). If there is another, it must be
a simplex of the form (Y, Vy,...,Vi_1,Viqt1,...,Vihg1). Then bring the column A.y
into the basis next. Continuing in this manner, we generate a unique path of the form

H S’f"’l, Sy, S’g"’l, .... Here S, S’Z"’l represent the k** n-dimensional simplex and
(n + 1)-dimensional simplex respectively in this path. Termination can only occur
if at some stage the basis corresponds to an n-dimensional simplex S;* all of whose
vertices are on the top layer. Each n-dimensional simplex in this path is the face
of at most two (n + 1)-dimensional simplexes, we arrive at this face through one of
these (n + 1)-dimensional simplexes, and leave it through the other. The initial n-
dimensional simplex in the bottom layer is a boundary face, and hence is the face of
a unique (n + 1)-dimensional simplex in the triangulation. So the path continues in a
unique manner and it cannot return to the initial n-dimensional simplex again. Also,
since the initial n-dimensional simplex is the only n-dimensional simplex in the bottom
layer for which the system corresponding to (2.61) is feasible, the path will never pass
through any other n-dimensional simplex in the bottom layer after the first step. Any
n-dimensional simplex obtained on the path whose vertices belong to both the bottom
and top layers is an interior face, so it is incident to two (n + 1)-dimensional simplexes,
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we arrive at this n-face through one of these (n + 1)-dimensional simplexes and leave
it through the other, and the algorithm continues. The reader can verify that the
properties of the path generated are very similar to the almost complementary basic
vector path traced by the complementary pivot algorithm for the LCP. Thus we see
that the path continues uniquely and unambiguously and it can only terminate when
the columns of the current basis are the labels of vertices all of whom belong to the
top layer. When it terminates, from the final BFS we get a fixed point of the current
piecewise linear approximation.

Example 2.24

Consider n = 1. We consider a single-valued map from R' to R!, F(z) = {22 —5249},
x € R, The special triangulation of R' x [0, 1] is given in Figure 2.16.

Figure 2.16 The column vector by the side of a vertex is its vector label.
The vertices for the triangulation are all the points with integer coordinates in

R'! x [0,1]. For each V = [11)
v?2 — 5v + 9. We take the initial 1-dimensional simplex on the bottom layer to be

(Vo, V1) and the point W to be the interior point (w,0)T = (%, O)T in it. For each V =

[ 8 ] in the bottom layer, define f(V) =W = (3, O)T. The label of the vetex V =

] on the top layer with v integer, we define f(v) =

v . 1 . 1 .
[anrl ] is [ F(v) — v ] if xpe1 =1, 0r [w o ] if xp41 = 0. The labels of some

of the vertices are entered in Figure 2.16. The initial system corresponding to (2.62)
here is
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Ao A1

1 1 1
b -4 o
Ao, A1 > 0

The feasible solution of this system and the basis inverse

are given below.

Basic Basis b Pivot Column | Ratios
variable Inverse Ay,
1 1 9 1/9 .
)\0 2 1 2 5/5 Min.
1 1 7
A1 2 —1l |3 —3

The initial simplex (Vp, V1) is the face of the unique 2-dimensional simplex (Vp, V1, V)
in the triangulation. So we associate the label of V5 with a variable Ay and bring it
into the basic vector. The pivot column is
9 _
[ E ] ~ A,
2

) () -

and this is entered on the inverse tableau. The dropping variable is Ay and the pivot
element is inside a box. Pivoting leads to the next inverse tableau. For ease in un-
derstanding, the vertices are numbered as V;, ¢ = 0,1,... in Figure 2.16 and we will
denote the variable in the system associated with the label of the vertex V; by A;.

N N~

Basic Basis b Pivot Column | Ratios
variable | Inverse Ay,
1 2 1 3 1.
)\2 9 9 9 3 Min.
8 2 8 6 8
A1 9 ~5 |g 9 g

The current 1-simplex (V5, V1) is the face of (Vi, Vi, V) and (Vs, Vi, V32). We came
to the present basic vector through (Vg, Vi, Va), so we have to leave (V3, Vi) through
the 2-simplex (V3, V1, V2). Hence the updated column of the label of V3, A.y;, is the
entering column. It is already entered on the inverse tableau. The dropping variable
is A2. Continuing, we get the following
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Basic Basis b | pivot Column | Ratios
variable | Inverse Ay,
1 2 1 2
A3 35 3 |3 —3
2 2 2 5 2
>\1 3 T3 3 _ 3 5 Min.
Ay,
3 2 3 3
A3 5 5 |3 5 1
2 2 2 2
M 5 —5 13 2] 1
A3 0 1 10
As 1 -1 1

In the basic vector A3, A4, there is a tie for the dropping variable by the usual primal
simplex minimum ratio test, and hence the lexico minimum ratio test was used in
determining the dropping variable. The algorithm terminates with the basic vector
(A3, A5) since the corresponding vertices V3, Vj are both in the top layer. The fixed
point of the piecewise linear approximationis 0 x v3+1xv5 =0x 241 x 3 = 3, from
the terminal BFS. It can be verified that z = 3 is indeed a fixed point of F(x), since

F(3) = {3).

Sufficient Conditions for Finite Termination with a
Linear Approximate Fixed Point

Once the triangulation of R™ x [0, 1] and the piecewise linear approximation are given,
the path generated by this algorithm either terminates with an n-dimensional simplex
on the top layer (leading to a fixed point of the present piecewise linear approximation)
after a finite number of pivot steps, or continues indefinitely. Sufficient conditions to
guarantee that the path terminates after a finite number of steps are discussed in [2.58],
where the following theorem is proved.

Theorem 2.15 Given £ € R" and a > 0 let B(2,a) = {z : ® € R" satisfying
|z — Z|| < a}. Suppose there are fixed positive numbers v and v and a point T € R"
satisfying: for each x € B(Z,v),y € B(z,7)\B(z,v) and u € F(z), (u—2)T (y—z) < 0.
Let z° by an arbitrary point in R". If the above algorithm is executed using the starting
point € {2°} UB(Z,v + v) and a special triangulation K, with its mesh <7, then,
the algorithm terminates in a finite number of steps with a linear approximate fixed
point of F(z). Also, every linear approximate fixed point lies in B(Z,v + ).

We refer the reader to O. H. Merril’s Ph. D. thesis [2.58] for a proof of this theorem.
But it is very hard to verify whether these conditions hold in practical applications.
In practical applications we apply the algorithm and let the path continue until some
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prescribed upper bound on computer time is used up. If termination does not occur
by then, one usually stops with the conclusion that the method has failed on that
problem.

One strange feature of the sufficient conditions to guarantee finite termination of
the above algorithm is the following. Let f(x) = (fi(2),..., fn»(2))T be a continuously
differentiable function from R" into R", and suppose we are applying the algorithm
discussed above, on the fixed point formulation for the problem of solving the system
of equations “f(x) = 0”. Solving the system “f(z) = 0” is equivalent to finding
the Kakutani fixed point of either Fi(z) = {f(z) + z} or Fa(z) = {—f(z) + z}.
Mathematically, the problem of finding a fixed point of F1(z) or Fa(x) are equivalent.
However, if Fy(z) satisfies the sufficiency condition for finite termination, Fo(x) will
not. Thus, if the algorithm is applied to find the fixed points of F;(z), and Fo(z); the
behavior of the algorithm on the two problems could be very different. On one of them
the algorithm may have finite termination, and on the other it may never terminate.
This point should be carefully noted in using this algorithm in practical applications.

Algorithm to generate an Approximate Fixed Point of F(x)

Select a sequence of positive numbers dy = 1, 61, 0o, . . . converging to zero. Let z° = 0.
Set ¢ = 0 and go to Step 1.

Step 1 : Define the piecewise linear approximation for F(z) relative to the special
triangulation 0, K1 (z%) choosing the point W from the interior of the translate of the
n-dimensonal face of the initial simplex (0, I.1, ..., I.,,) on the bottom layer in this tri-
angulation. Find a fixed point of this piecewise linear approximation using this special
triangulation by the algorithm discussed above. Suppose the fixed point obtained is
ot 2t is a linear approximate fixed point of F(z) relative to this special triangu-
lation 6, K1 (2%). If z'+1 € F(z'*1), terminate, #'+! is a fixed point of F(z). Otherwise
go to Step 2.

Step 2 : Replace t by t + 1 and do Step 1.

So this method generates the sequence {x!, 2% 23, ...} of linear approximate fixed
points for F(x). If at any stage x* € F(z?!), it is a fixed point of F(z) and we terminate.
Otherwise, any limit point of the sequence {z! : t = 1,2,...} can be shown to be a
fixed point of F(z). In practice, if finite termination does not occur, we continue until

d; becomes sufficiently small and take the final 2 as an approximate fixed point of

To find Fixed Points of USC Maps Defined on a
Compact Convex Subset ' c R"

Without any loss of generality we can assume that I' has a nonempty interior (if the
interior of I' in R™ is (), the problem is not altered by replacing R" by the affine hull
of T', in which T' has a nonempty interior). Let F(x) be the given USC map. So F(x)
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is defined for all x € T', and for all such z, F(z) is a compact convex subset of I. Since
this map is only defined on I', and not on the whole of R", the algorithm discussed
above does not apply to this problem directly. However, as pointed out by B. C. Eaves
[2.44], we can extend the definition of F(z) to the whole of R™ as below. Let ¢ be any
point from the interior of I'.

{c}, ifex gl
F'(z) = { convex hull of {¢, F(z)}, if 2 € boundary of T
F(x), if € interior of I.

It can be verified that F'(z) is now a USC map defined on R™, and that every fixed
point of F'(z) is in T and is also a fixed point of F(z) and vice versa. Since F'(z) is
defined over all of R", the method discussed above can be applied to find a fixed point
of it.

Homotopy Interpretation

In the algorithm discussed above for computing a fixed point of the piecewise linear
approximation, there are two layers, the bottom layer and the top layer. We have
the same triangulation of R" in both the bottom and top layers. The labels for the
vertices on the bottom layer are artificial labels corresponding to a very simple map
for which we know the fixed point. The labels for the vertices on the top layer are
natural labels corresponding to the piecewise linear map whose fixed point we want to
find. The algorithm starts at the known fixed point of the artificial map of the bottom
layer and walks its way through the triangulation until it reaches a fixed point of the
piecewise linear map on the top layer. This makes it possible to interpret the above
algorithm as a homotopy algorithm. Other homotopy algorithms for computing fixed
points with continuous refinement of the grid size have been developed by B. C. Eaves
[2.44] and B. C. Eaves and R. Saigal [2.47] and several others [2.40 to 2.80].
Comments 2.2 H. Scarf [2.68] first pointed out that the basic properties of the
path followed by the complementary pivot algorithm in the LCP can be used to com-
pute approximate Brouwer’s fixed points using partitions of the space into sets called
primitive sets, and T. Hansen and H. Scarf [2.69] extended this into a method for
approximating Kakutani fixed points. The earliest algorithms for computing approx-
imate fixed points using triangulations are those by B. C. Eaves [2.44], H. W. Kuhn
[2.54]. These early algorithms suffered from computational inefficiency because they
start from outside the region of interest. The first method to circumvent this difficulty
is due to O. H. Merrill [2.57, 2.58] discussed above. The applications of fixed point
methods in nonlinear programming discussed in Sections 2.7.3, 2.7.4, 2.7.5, 2.7.6 and
2.7.7 are due to O. H. Merrill [2.58]. Besides the triangulation K; discussed above,
Merrill’s algorithm can be implemented using other triangulations, see M. J. Todds
book [2.72] and the papers [2.40 to 2.80].
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2.8 COMPUTATIONAL COMPLEXITY OF THE
COMPLEMENTARY PIVOT ALGORITHM

The computational complexity of an algorithm measures the growth of the com-
putational effort involved in executing the algorithm as a function of the size of the
problem. In the complementary pivot algorithm, we will assess the computational ef-
fort by the number of pivot steps carried out before the algorithm terminates. There
are three commonly used measures for studying the computational complexity of an
algorithm. These are discussed below.

Worst Case Computational Complexity

This measure is a tight mathematical upper bound on the number of pivot steps re-
quired before termination, as a function of the size of the problem. In studying the
worst case computational complexity we will assume that the data is integer, or more
generally, rational, that is, each m;;, ¢; in the matrices ¢, M is a ratio of two inte-
gers. In this case by multiplying all the data by a suitable positive integer, we can
transform the problem into an LCP in which all the data is integer. Hence without
any loss of generality we assume that all the data is integer, and define the size of
the problem to be the total number of bits of storage needed to store all the data in
the problem in binary form. See Chapter 6 where a mathematical definition of this
size is given. The worst case computational complexity of an algorithm provides a
guaranteed upper limit on the computational effort needed to solve any instance of
the problem by the algorithm, as a function of the size of the instance. The algorithm
is said to be polynomially bounded if this worst case computational complexity is
bounded above by a polynomial of fixed degree in the size of the problem, that is, if
there exist constants «, r independent of the size, such that the computational effort
needed is always < as" when the algorithm is applied on problems of size s. Even
though the worst case computational complexity is measured in terms of the number
of pivot steps, each pivot step needs O(n?) basic arithmetical operations (addition,
multiplication, division, comparison) on data each of which has at most s digits, where
s is the size and n the order of the instance; so if the algorithm is polynomially bounded
in terms of the number of pivot steps, it is polynomially bounded in terms of the basic
arithmetical operations. In Chapter 6 we conclusively establish that the complemen-
tary pivot algorithm is not a polynomially bounded algorithm in this worst case sense.
Using our examples discussed in Chapter 6, in [2.74] M. J. Todd constructed examples
of square nonsingular systems of linear equations “Az — b = 0", with integer data, for
solving which the computational effort required by Merrill’s algorithm of Section 2.7.8,
grows exponentially with the size of the problem.

An algorithm may have a worst case computational complexity which is an ex-
ponentially growing function of the size of the problem, just because it performs very
poorly on problem instances with a very rare pathological structure. Such an algorithm
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might be extremely efficient on instances of the problem not having the rare patholog-
ical structure, which may never show up in practical applications. For this reason, the
worst case measure is usually very poor in judging the computational efficiency of an
algorithm, or its practical utility.

The Probabilistic Average Computational Complexity

Here we assume that the data in the problem is randomly generated according to
some assumed probability distribution. The average computational complexity of the
algorithm under this model is then defined to be the statistical expectation of the
number of steps needed by the algorithm before termination, on problem instances
with this data. Since the expectation is a multiple integral, this average analysis
requires techniques for bounding the values of multiple integrals. If the probability
distributions are continuous distributions, the data generated will in general be real
numbers (not rational), and so in this case we define the size of the LCP to be its
order n. We assume that each pivot step in the algorithm is carried out on the real
data using exact arithmetic, but assess the computational complexity by the average
number of pivot steps carried out by the algorithm before termination.

M. J. Todd performed the average analysis in [2.36] under the folowing assump-
tions on the distribution of the data (g, M).

i) With probability one, every square submatrix of M whose sets of row indices
and column indices differ in at most one element, is nonsingular.
ii) ¢ is nondegenerate in the LCP (¢, M).
iii) The distributions of (¢, M) are sign-invariant; that is, (¢, M) and (Sq, SMS)
have identical distributions for all sign matrices S (i. e., diagonal matrices
with diagonal entries of +1 or —1).

Under these assumptions he showed that the expected number of pivot steps taken
by the lexicographic Lemke algorithm (see Section 2.3.4) before termination when
applied on the LCP (¢, M) is at most %.

M. J. Todd [2.36] also analysed the average computational complexity of the lex-
icographic Lemke algorithm applied on the LCP corresponding to the LP

minimize cx

subject to Az > b
x>0

under the following assumptions. A is a matrix of order m x N. The probability
distribution generating the data (A, b, ¢) and hence the data (¢, M) in the corresponding
LCP satisfies the following assumptions :
i) with probability one, the LP and its dual are nondegenerate (every solution of
Az — u = b has at least m nonzero variables, and every solution of yA + v =
¢ has at least N nonzero variables), and every square submatrix of A is
nonsingular.
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ii) the distributions of (A, b, c) and of (S1AS2, S1b, Sac) are identical for all sign
matrices S1, S of appropriate dimension). This is the sign invariance re-
quirement.

Under these assumptions he showed that the expected number of pivot steps taken

by the lexicographic Lemke algorithm when applied on the LCP corresponding to this

5m+11 2N245N+45
2 ’ 2
under slightly different probabilistic models.

In a recent paper, [8.20] R. Saigal showed that the expected number of pivot steps
taken by the lexicographic Lemke algorithm when applied on the LCP corresponding
to the above LP is actually bounded above by m and asymptotically approaches %5 —1,

2
LP is at most, minimum {m + } See also [2.31] for similar results

where m is the number of rows in A.

Unfortunately, these nice quadratic or linear bound expected complexity results
seem very dependent on the exact manner in which the algorithm is implemented, and
on the problabilistic model of the data. For example, it has not been possible so far to
obtain comparable results for the complementary pivot algorithm of Section 2.2 which
uses the column vector e of all 1’s as the original column vector of the artificial variable
20

Empirical Average Computation Complexity

This measure of computational complexity is used more in the spirit of simulation.
Here, a computational experiment is usually performed by applying the algorithm on
a large number of problem instances of various sizes, and summary statistics are then
prepared on how the algorithm performed on them. The data is usually generated
according to some distribution (typically we may assume that each data element is a
uniformly distributed random variable from an interval such as —100 to +100, etc.). In
the LCP, we may also want to test how the complementary pivot algorithm performs
under varying degrees of sparsity of ¢ and M. For this, a certain percentage of randomly
chosen entries in ¢ and M can be fixed as zero, and the remaining obtained randomly as
described above. It may also be possible to generate M so that it has special properties.
As an example, if we want to experiment on LCPs associated with PSD symmetric
matrices, we can generate a random square matrix A as above and take M to be AT A.
Such computational experiments can be very useful in practice. The experiments
conducted on the complementary pivot algorithm, suggest that the empirical average
number of pivot steps before termination grows linearly with n, the order of the LCP.

We know that Merrill’s simplicial method for computing the fixed point of a piece-
wise linear map discussed in Section 2.7.8 may not terminate on some problems. Com-
putational experiments indicate that on problems on which it did terminate, the av-
erage number of simplices that the algorithm walked through before termination, is
O(n?), as a function of the dimension of the problem. See [2.62 to 2.67].
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2.9 THE GENERAL QUADRATIC
PROGRAMMING PROBLEM

From the results in Section 2.3 we know that the complementary pivot method pro-
cesses convex quadratic programs with a finite computational effort. Here we discuss
the general, possibly nonconvex, quadratic programming problem. This is a problem
in which a general quadratic objective function is to be minimized subject to linear
constraints.

The Reduction Process

If there is an equality constraint on the variables, using it, obtain an expression for
one of the variables as an affine function of the others, and eliminate this variable and
this constraint from the optimization portion of the problem. A step like this is called
a reduction step, it reduces the number of variables in the optimization problem
by one, and the number of constraints by one. In the resulting problem, if there is
another equality constraint, do a reduction step using it, and continue in the same
manner. When this work is completed, only inequality constraints remain, and the
system of constraints assumes the form F'X > f, which includes any sign restrictions
and lower or upper bound constraints on the variables. We assume that this system is
feasible. An inequality constraint in this system is said to be a binding inequality
constraint if it holds as an equation at all feasible solutions. A binding inequality
constraint can therefore be treated as an equality constraint without affecting the set
of feasible solutions. Binding inequality constraints can be identified using a linear
programming formulation. Introduce the vector of slack variables v and transform the
system of constraints into FX —v = f, v > 0. The i*" constraint in the system,
F;. X > f;, is a binding constraint iff the maximum value of v; subject to F X —v = f,
v > 0, is zero. Using this procedure identify all the binding constraints, change each
of them into an equality constraint in the system. Carry out further reduction steps
using these equality constraints. At the end, the optimization portion of the problem
reduces to one of the following form

Minimize  6(z) = cz + 327 Dz 5 64
Subject to Az >b (2.64)

satisfying the property that Az > b is feasible. Let A be of order m x n. Without any

loss of generality we assume that D is symmetric (because x7 Dz = ;UTD“LTDT:E and

D+—ZDT is a symmetric matrix). Let K = {z : Az > b}. By our assumptions here K # ()
and in fact K has a nonempty interior. Every interior point of K satisfies Az > b and
vice versa. We also assume that K is bounded. The solution of the problem when K
is unbounded can be accomplished by imposing additional constraints —a < z; < «

for each j, where « is a large positive valued parameter. The parameter « is not given
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any specific value, but treated as being larger than any number with which it may be
compared. The set of feasible solution of the augmented problem is bounded, and so
the augmented problem can be solved by the method discussed below. If the optimum
solution of the augmented problem is independent of o when « is positive and large,
it is the optimum solution of the original problem (2.64). On the other hand if the
optimum solution of the augmented problem depends on « however large o may be,
and the optimum objective value diverges to —oo as « tends to +oo, the objective
function is unbounded below in the original problem. In the sequel we assume that K
is bounded. Under these assumptions, (2.64) will have an optimum solution. If D is
not PSD, we have the following theorem.

Theorem 2.16 If D is not PSD, the optimum solution of (2.64) cannot be an interior
point of K.

Proof. Proof is by contradiction. Suppose z, an interior point of K, is an optimum
solution of (2.64). Since z is an interior point of K, we have Az > b, and a necessary
condition for it to be optimum for (2.64) (or even for it to be a local minimum for
(2.64)) is that the gradient vector of §(z) at #, which is VO(Z) = ¢ + 27D = 0. Since
D is not PSD, there exists a vector y # 0 satisfying y” Dy < 0. Using c+ 27D = 0, it
can be verified that 0(Z + \y) = 6(z) + gyTDy. Since T satisfies Az > b, we can find
A > 0 and sufficiently small so that z + Ay is feasible to (2.64), and 0(Z + \y) = 0(z) +
’\;yTDy < 6(z), contradiction to the hypothesis that Z is optimal to (2.64). So if D
is not PSD, every optimum solution must be a boundary point of K, that is, it must
satisfy at least one of the constraints in (2.64) as an equation.

[]

The Method

Express the problem in the form (2.64), using the reduction steps discussed above as
needed, so that the system Az > b is feasible. Suppose A is of order m x n. Then
we will refer to the problem (2.64) as being of order (m,n), where n is the number of
decision variables in the problem, and m the number of inequality constraints on these
variables.

Check whether D is PSD. This can be carried out by the efficient algorithm dis-
cussed in Section 1.3.1 with a computational effort of O(n3). If D is PSD, (2.64) is
a convex quadratic program, the optimum solution for it can be computed using the
complementary pivot algorithm discussed in earlier sections, with a finite amount of
computational effort. If D is not PSD, generate m candidate problems as discussed
below. This operation is called the branching operation.

For i = 1 to m, the i** candidate problem is the following :

Minimize  cz + 337 Dz
Subject to  Ap.x>0b,, p=1tom, p#i (2.65)
Ai.a: = b, .
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If D is not PSD, by Theorem 2.16, every optimum solution for (2.64) must be an
optimum solution of at least one of the m candidate problems.

Each of the candidate problems is now processed independently. The set of fea-
sible solutions of each candidate problem is a subset (a face) of K, the set of feasible
solutions of the original problem (2.64). Using the equality constraint, a reduction step
can be carried out in the candidate problem (2.65). In the resulting reduced problem
identify any binding inequality constraints by a linear programming formulation dis-
cussed earlier. Treat binding constraints as equality constraints and carry out further
reduction steps. The final reduced problem is one of the same form (2.64), but of order
< (m —1,n —1). Test whether it is a convex quadratic programming problem (this
could happen even if the original problem (2.64) is not a convex quadratic program)
and if it is so, find the optimum solution for it using the complementary pivot algo-
rithm and store its solution in a solution list. If it is not a convex quadratic program
carry out the branching operation on it and generate additional candidate problems
from it, and process each of them independently in the same way.

The total number of candidate problems to be processed is < 2™. When there are
no more candidate problems left to be procesed, find out the best solution (i. e., the
one with the smallest objective value) among those in the solution list at that stage.
That solution is an optimum solution of the original problem.

This provides a finite method for solving the general quadratic programming prob-
lem. It may be of practical use only if m and n are small numbers, or if the candidate
problems turn out to be convex quadratic programs fairly early in the branching pro-
cess. On some problems the method may require a lot of computation. For example,
if D in the original problem (2.64) is negative definite, every candidate problem with
one or more inequality constraints will be nonconvex, and so the method will only
terminate when all the extreme points of K are enumerated in the solution list. In
such cases, this method, eventhough finite, is impractical, and one has to resort to
heuristics or some approximate solution methods.

2.9.1 Testing Copositiveness

Let M be a given square matrix of order n. Suppose it is required to check whether
M is copositive. From the definition, it is clear that M is copositive iff the optimum
objective value in the following quadratic program is zero.

Minimize 2T Mz
Subject to x>0 (2.66)
el é 1.

where e is the column vector of all 1’s in R"™. We can check whether M is PSD
with a computational effort of O(n3) by the efficient pivotal methods discussed in
Section 1.3.1. If M is PSD, it is also copositive. If M is not PSD, to check whether
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it is copositive, we can solve the quadratic program (2.66) by the method discussed
above. If the optimum objective value in it is zero, M is copositive, not otherwise.
This provides a finite method for testing copositiveness. However, this method is not
practilly useful when n is large. Other methods for testing copositiveness are discussed
in [3.29, 3.59]. See also Section 2.9.3.

FExercise

2.4 Using the results from Section 8.7, prove that the general quadratic programming
problem (2.64) with integer data is an NP-hard problem.

Comments 2.2. Theorem 2.16 is from R. K. Mueller [2.23]. The method for the
general quadratic programming problem discussed here is from [2.24] of K. G. Murty.

2.9.2 Computing a KKT point for a

General Quadratic Programming Problem

Consider the QP (quadratic program)

minimize Q(z) = cx + 327 Dx
subject to  Ax > b (2.67)
r> 0

where D is a symmetric matrix of order n, and A, b, ¢ are given matrices of orders
m xn, m x 1, and 1 x n respectively. We let K denote the set of feasible solutions
of this problem. If D is PSD, this is a convex quadratic program, and if K # (), the
application of the complementary pivot algorithm discussed in Sections 2.2, 2.3 on the
LCP corresponding to this QP will either terminate with the global minimum for this
problem, or provide a feasible half-line along which Q(z) diverges to —oc.

Here, we do not assume that D is PSD, so (2.67) is the general QP. In this case
there can be local minima which are not global minima (see Section 10.2 for definitions
of a global minimum, local minimum), the problem may have KKT points which are
not even local minima (for example, for (2.66) verify that x = 0 is a KKT point,
and that this is not even a local minimum for that problem if D is not copositive).
The method discussed at the beginning of Section 2.9 is a total enumeration method
(enumerating over all the faces of K) applicable when K is bounded. In this section we
do not make any boundedness assumption on K. We prove that if Q(z) is unbounded
below on K, there exists a half-line in K along which Q(z) diverges to —oo. We also
prove that if Q(z) is bounded below on K, then (2.67) has a finite global minimum
point. This result was first proved by M. Frank and P. Wolfe [10.14] but our proofs
are based on the results of B. C. Eaves [2.9]. We also show that the complementary
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pivot method applied on an LCP associated with (2.67) will terminate with one of
three possible ways

(i) establish that K = (), or
(ii) find a feasible half-line in K along which Q(z) diverges to —oo, or
(iii) find a KKT point for (2.67).

From the results in Chapter 1, we know that Z € K is a KKT point for (2.67) iff
there exist vectors ¢, € R™ and 4 € R" which together satisfy

(- () ()= ()
(=0 ()= (2 ()

which is an LCP. We will call (z,y,u,v) a KKT solution corresponding to the KKT
point z. For the sake of simplicity, we denote

u x
[v] by w, and [y] by z

T
] by M, and [fb] by ¢

n+mby N .

(2.68)

[D —AT
A 0

So, if (w, z) is complementary solution of the LCP (2.68), then (z1,...,2,) = T is a
KKT point for (2.67).
A KKT point Z for (2.67) is said to be a reduced KKT point for (2.67) if the set

of column vectors {M.j = [ D.; ] : j such that z; > 0} is linearly independent.

A
Lemma 2.12 Let z be a KKT point for (2.67). From %, we can derive either a
reduced KKT point & such that Q(Z) < Q(Z), or a feasible half-line in K along which

Q(x) diverges to —oo.

Proof. Let (w = (u,7),%z = (z,7)) be a KKT solution associated with z. Let J; =
{j : w; =0}, Iy = {j : z; = 0}. By complementarity J; UJy = {1,...,N}. From
the fact that (w,z) is a KKT solution (i.e., it satisfies (2.68)) it can be verified that
Q(z) = 3(cz + yT'b) = 3(c,bT)z. Consider the following LP
minimize (¢, b7)z
subject to w— Mz =¢q
Wi = 0 for ] e Ji
zZj = 0 for j € Js
w; > 0 for j € Jy
zj > 0for j & Js

(2.69)
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If (w,z) is any feasible solution to this LP, from the constraints in (2.69) it is clear
that the corresponding x = (21, ..., z,) is in K, and that w’ z = 0 (complementarity),
by this complementarity we have Q(z) = 1 (c,bT)z.

There are only two possibilities for the LP (2.69). Either the objective function is
unbounded below in it, in which case there exists a feasible half-line, say {(w!, 21) +
A(wh, z") : X > 0} along which the objective value diverges to —oo (this implies that
the corresponding half-line {z! + Az" : XA > 0} is in K and Q(z) diverges to —oo on
it), or that it has an optimum solution, in which case it has an optimum BFS. If (w, 2)
is an optimum BFS of (2.69), the corresponding z is a reduced KKT point for (2.67)
and Q(z) = 3(¢,b7)z < 1(c,07)z = Q(2).

[

Lemma 2.13 Ifthe QP has a global optimum solution, it has a global optimum solu-

tion ¥ satisfying the property that the set of vectors { [ 27 ] : J such that z; > 0}
j

is linearly independent.

Proof. Follows from Lemma 2.12.

[]

Lemma 2.14 For given D, A; there exists a finite set of matrices L1,...,L;, each
of order n x N, such that for any ¢, b if x is a reduced KKT point of (2.67), then

T
ZL':Lt[C

) ] for some t.

Proof. Let z be a reduced KKT point for (2.67). Let (w = (u,v),z = (,y)) be the
corresponding KKT solution. Then (w, z) is a BFS of an LP of the form (2.69). Since
it is a BFS, there exists a basic vector and associated basis B for (2.69) such that this
(w, z) is defined by

nonbasic variables = 0
basic vector = B~ 1q

The matrix L; can have its j** row to be 0 if z; is a nonbasic variable, or the r*" row
of B~lif x; is the r*" basic variable in this basic vector. By complementarity, there
are only 2N systems of the form (2.69), and each system has a finite number of basic
vectors, so the collection of matrices of the form L; constructed as above is finite and
depends only on D, A. So, for any g, any reduced KKT point must be of the form L;q
for some L; in this finite collection.

[

Theorem 2.17  Assume that K # (). Either the QP (2.67) has a global minimum,
or there exists a feasible half-line in K along which Q(x) diverges to —oo.

Proof. Let {a, : p=1,2,...} be an increasing sequence of positive numbers diverging
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to +o00, such that KN {z : ex < a1} # 0. Consider the QP

minimize cxr + %xTDx
subject to  Ax > b
x>0
er < qp

(2.70)

For every p in this sequence, (2.70) has a non-empty bounded solution set, and hence
has a global nimimum. By Lemma 2.12, it has a global minimum which is a reduced
KKT point for (2.70). Applying Lemma 2.14 to the QP (2.70), we know that there
exists a finite collection of matrices {L1,..., L;} independent of the data in the right
hand side constants vector in (2.70), such that every reduced KKT point for (2.70) is

of the form P P
Lt [ —b ] - Lt [ —b
Qy 0

for some t. So, for each p = 1,2, ..., there exists a t between 1 to [ such that the global
minimum of (2.70) for that p is of the form given in (2.71). Since there are only a finite

0
+ o Ly [0] (2.71)
1

number [, of these ¢’s, there must exist a ¢, say ¢1, which gives the global minimum for
an infinite number of p’s. Let the subsequence corresponding to these p’s in increasing
order be P = {p1,pa,...}. Let

T 0
T = Lt1 —b , g == Lt1 0
0 1

Then the global minimum for (2.70) is z(p,) = Z + a,,y when p = p,, for r =1,2,....
So, the optimum objective value in this problem is Q(x(pr)) = Q(:ﬁ + Ozprgj), and this
is of the form ap + a1, + azagr. The quantity o, is monotonic increasing with r,
so the set of feasible solutions of (2.70) for p = p, becomes larger as r increases, so
Q(a:(pT)) is monotonic decreasing with r. These facts imply that either as < 0 or
as =0and a; £ 0. Ifay < 0oray; =0 and a; <O, Q(x(pr)) diverges to —oo as
r tends to +oo, in this case {Z + Ay : A > «,, } is a half-line in K along which Q(z)
diverges to —oo. On the other hand, if as = a; = 0, Q(z) is bounded below by ag on
K, and in this case Z + o, 7 is a global minimum for (2.67) for any r.

[]

The Algorithm

To compute a KKT point for (2.67), apply the complementary pivot method on the
LCP (v, F) of order n + m + 1, where

cT D —AT ¢
v = —b , F = A 0 0

Qn+m+1
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where ¢, 4+m+1 is treated as a large positive valued parameter without giving any specific
value for it (i.e., ¢p1m+1 is treated as being larger than any numer with which it is
compared), with the original column vector of the artificial variable zo taken to be
(-1,-1,...,—1,0) € R"™™*! By Lemma 2.9, it can be verified that the matrix M
defined above is an Ly-matrix. If the complementary pivot method terminates in a
secondary ray, by Theorem 2.5, we conclude that

—Ar < —b
€T é An+m+1
r =2 0

is infeasible for g, +m,1 arbitrarily large, that is

Az

T

b
0

v v

is infeasible. So (2.67) is infeasible, if ray termination occurs in the complementary
pivot algorithm when applied on the LCP (v, F).

Suppose the complementary pivot method terminates with a complementary so-
lution (w = (w;), z = (z;)) where w,z € R"™™ " If w,4mi1 > 0, Znimy1r = 0,
it can be verified that ((@y,...,Wntm), (Z1,- .+, Zntm)) is a complementary solution
for the LCP < [ < ] [D -4

—-b )’ A 0
T=(21,...,2,)7 is a KKT point for (2.67).
On the other hand, if W, {41 = 0 and Z, 4,41 > 0 in the terminal complementary

] >, that is, it is a KKT solution for (2.67) and

BFS, the basic variables are affine functions of the large positive parameter q,4m+1-
Let Z = (21,...,20)7, § = (Zng1s- -+, Zngm). 1t can be verified that Q(Z) = 3(cZ +
bTy) — %qn+m+12n+m+1 and as ¢p4+m+1 tends to 400, this diverges to —oo. Hence in
this case, Q(z) is unbounded below on K, and a feasible half-line along which Q(x)
diverges to —oo can be obtained by letting the parameter ¢,4m41 tend to 400 in the
solution .

When D is not PSD, it is possible for (2.67) to have some KKT points, even when
Q(x) is unbounded below on K. Thus in this case the fact that this algorithm has
terminated with a KKT point of (2.67) is no guarantee that Q(z) is bounded below
on K.

2.9.3 Computing a Global Minimum,
or Even a Local Minimum in

Nonconvex Programming Problems May be Hard

Consider the smooth nonlinear program (NLP)
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minimize 0(x)

subject to  gi(z) >0, i=1tom (2.72)

where each of the functions is a real valued function defined on R"™ with high degrees
of differentiability. (2.72) is convex NLP if 6(x) is convex and g;(z) are concave for all
¢, nonconvex NLP, otherwise.

A global minimum for (2.72) is a feasible solution z for it satisfying 6(z) > 0(z)
for all feasible solutions z of the problem. See Section 10.2. For a convex NLP, under
some constraint qualifications (see Appendix 4) necessary and sufficient optimality
conditions are known. Given a feasible solution satisfying the constraint qualification,
using these optimality conditions, it is possible to check efficiently whether that point
is a (global) optimum slution of the problem or not.

For a smooth nonconvex nonlinear program, the problem of computing a global
minimum, or checking whether a given feasible solution is a global minimum, are hard
problems in general. To establish these facts mathematically, consider the subset sum
problem, a hard problem in discrete optimization, which is known to be AP-complete
(see reference [8.12] for a complete discussion of AP-completeness): given postive
integers dy, dq,...,d,; is there a solution to

2. djy; = do
7=1

y; = 0or 1 forall j

Now consider the quadratic programming problem (QP)

J Jj=1

2
n n
minimize ( d;y; — d()) + > yi(1—y;)
=1 ]

subject to 0<y; <1, j=1ton.

Because of the second term in the objective function, QP is a nonconvex quadratic
programming problem. Clearly, the subset-sum problem given above has a feasible
solution iff the global minimum objective value in QP is zero. Since the problem of
checking whether the subset-sum problem is A/P-complete, computing the global mini-
mum for QP, a very special and simple case of a smooth nonconvex NLP, is an A/P-hard
problem (see reference [8.12] for a complete discussion of AMP-hardness). This shows
that in general, the problem of computing a global minimum in a smooth nonconvex
NLP may be a hard problem. See also Section 10.3 where some of the outstanding
difficult problems in mathematics have been formulated as those of finding global min-
ima in smooth nonconvex NLPs (for example, there we show that the well known
Fermat’s last Theorem in number theory, unresolved since 1637 AD, can be posed
as the problem of checking whether the global minimum objective value in a smooth
nonconvex NLP, (10.1), is zero or greater than zero).
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Since the problem of computing a global minimum in a nonconvex NLP is a hard
problem, we will now study the question whether it is at least possible to compute a
local minimum for such a problem by an efficient algorithm.

For nonconvex NLPs, under constraint qualifications, some necessary conditions
for a local minimum are known (see Section 10.2 for the definitions of a local minimum,
and Appendix 4 for a discussion of necessary conditions for a local minimum) and there
are some sufficient conditions for a point to be a local minimum. But there are no
simple conditions known, which are both necessary and sufficient for a given point to
be a local minimum. The complexity of checking whether a given feasible solution is
a local minimum in a nonconvex NLP, is not usually addressed in the literature. Many
textbooks in NLP, when they discuss algorithms, leave the reader with the impression
that these algorithms converge to a global minimum in convex NLPs, and to a local
minimum in nonconvex NLPs. The documentations distributed for many professional
NLP software packages also create the same impression. This impression could be quite
erroneous, in the general case. In this section we study this problem by examining the
computational complexity of determining whether a given feasible solution is not a local
minimum, and that of determining whether the objective function is not bounded below
on the set of feasible solutions, in smooth continuous variable, nonconvex NLPs. For
this purpose, we use the very special instance of an nonconvex quadratic programming
problem studied in K. G. Murty and S. N. Kabadi [10.32] with integer data, which
may be considered as the simplest nonconvex NLP. It turns out that the questions of
determining whether a given feasible solution is not a local minimum in this problem,
and to check whether the objective function is not bounded below in this problem, can
both be studied using the discrete techniques of computational complexity theory, and
in fact these questions are A/P-complete problems (see reference [8.12] for definition of
NP-completeness). This clearly shows that in general, it is a hard problem to check
whether a given feasible solution in a nonconvex NLP is even a local minimum, or to
check whether the objective function is bouned below. This indicates the following:
when a nonlinear programming algorithm is applied on a nonconvex NLP, unless it
is proved that it converges to a point satisfying some known sufficient condition for a
local minimum, claims that it leads to a local minimum are hard to verify in the worst
case. Also, in continuous variable smooth nonconvex minimization, even the down-to-
earth goal of guaranteeing that a local minimum will be obtained by the algorithm (as
opposed to the lofty goal of finding the global minimum) may be hard to attain.

We review the known optimality conditions for a given feasible solution Z to (2.72)
to be a local minimum. Let J = {i : g;(Z) = 0}. Optimality conditions are derived
under the assumption that some constraint qualifications (CQ, see Appendix 4) are
satisfied at z, which we assume.
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First Order Necessary Conditions for # to be a Local Minimum
for (2.72)

There must exist a jig = (fi; : 4 € J) such that

Vo(z) — 3 1 Vgi(z) =0
i€d (2.73)
j; >0, foralleeJ.

Given the feasible solution Z, it is possible to check whether these conditions hold,
efficiently, using Phase I of the simplex method for linear programming.

Second Order Necessary Conditions for z to be a Local Minimum
for (2.72)

These conditions include (2.73). Given fy satisfying (2.73) together with z, let L(z,
py) = 0(x) — > ey #igi(z). In addition to (2.73) these conditions require

yTHy >0, for all y € {y : Vg;(Z)y = 0 for each i € J} (2.74)

where H is the Hessian matrix of L(z, fiy) with respect to « at = . Condition (2.74)
requires the solution of a quadratic program involving only equality constraints, which
can be solved efficiently. It is equivalent to checking the positive semidefiniteness of

a matrix which can be carried out efficiently using Gaussian pivot steps (see Section
1.3.1).

Sufficient Conditions for z to be a Local Minimum for (2.72)

Given the feasible solution z, and gy which together satisfy (2.73), the most general
known sufficient optimality condition states that if

yTHy > 0 for all y € T, (2.75)

where Ty = {y : y # 0 and Vg;(Z)y = 0 for each i € {i : ¢ € J and fz; > 0}, and
Vgi(Z)y > 0 for each i € {i: i € J and ji; = 0} }, then Z is a local minimum for (2.72).
Unfortunately, when H is not positive semidefinite, the problem of checking whether
(2.75) holds, leads to a nonconvex QP, which, as we will see later, may be hard to
solve.

Aside from the question of the difficulty of checking whether (2.75) holds, we can
verify that the gap between conditions (2.74) and (2.75) is very wide, particulary when
the set {i:i € J and ji; = 0} # (). In this case, condition (2.74) may hold, and even if
we are able to check (2.75), if it is not satisfied, we are unable to determine whether z
is a local minimum for (2.72) with present theory.

Now we will use a simple indefinite QP, related to the problem of checking whether
the sufficient optimality condition (2.75) holds, to study the following questions :
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i) Given a smooth nonconvex NLP and a feasible solution for it, can we check
whether it is a local minimum or not efficiently 7

ii) At least in the simple case when the constraints are linear, can we check
efficiently whether the objective function is bounded below or not on the set
of feasible solutions ?

Let D be an integer square symmetric matrix of order n. The problem of checking
whether D is not PSD involves the question

“is there an = € R" satisfying = Dz < 0 ?” (2.76)

This can be answered with an effort of at most n Gaussian pivot steps, by the techniques
discussed in Section 1.3.1. This leads to an O(n3) algorithm for this problem. At the
termination of this algorithm, it is in fact possible to actually produce a vector z
satisfying T Dz < 0, if the answer to (2.76) is in the affirmative.

All PSD matrices are copositive, but a matrix which is not PSD may be copositive.
Testing whether the given matrix D is not copositive involves the question

“is there an = > 0 satisfying 7 Dz < 0 ?” (2.77)

If D is not PSD, no efficient algorithm for this question is known (the computational
complexity of the enumerative method of Section 2.9.1 grows exponentially with n in
the worst case). In fact we show later that this question is NP-complete. To study
this question, we are naturally lead to the NLP

minimize Q(z) = 2T Dx

subject to x >0 (2.78)

We will show that this problem is an A/P-hard problem.

We assume that D is not PSD. So () is nonconvex and (2.78) is a nonconvex
NLP. It can be considered the simplest nonconvex NLP. We consider the following
decision problems.

Problem 1: Is = 0 not a local minimum for (2.78) 7

Problem 2: Is Q(z) not bounded below on the set of feasible solu-
tions of (2.78) 7

Clearly, the answer to problem 2 is in the affirmative iff the answer to problem 1 is.
We will show that both these problems are ANP-complete. To study problem 1, we can
replace (2.78) by the NLP

minimize Q(z) = 2T Dx

subject to 0 <z; <1, j=1ton (2.79)

Lemma 2.15 The decision problem “is there an T feasible to (2.79) which satisfies
Q(Z) < 07, is in the class NP (see [8.12] for the definition of the class NP of decision
problems).
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Proof. Given an z feasible to (2.79), to check whether () < 0, can be done by
computing @Q(z) which takes O(n?) time. Also, if the answer to the problem is in
the affirmative, an optimum solution T of (2.79) satisfies Q(Z) < 0. There is a linear
complementarity problem (LCP) corresponding to (2.79) and an optimum solution for
(2.79) must correspond to a BFS for this LCP. Since there are only a finite number
of BFSs for an LCP, and they are all rational vectors, a nondeterministic algorithm
can find one of them satisfying Q(x) < 0, if it exists, in polynomial time. Hence, this
problem is in the class NP.

[]

Lemma 2.16  The optimum objective value in (2.79) is either 0 or < —2 % where L
is the size of D, (i.e., the total number of binary digits in all the data in D).

Proof. Since the set of feasible solutions of (2.79) is a compact set and Q(x) is contin-

uous, (2.79) has an optimum solution. The necessary optimality conditions for (2.79)
lead to the following LCP

() -0 6) =) (25

(2.81)

(1) ()= 2

It can be verified that whenever (u,v,z,y) satisfies (2.80), (2.81) and (2.82), 21’ Dz =
—eT'y, a linear function, where e is the column vector of all 1’s in R™. There exists
an optimum solution of (2.79) which is a BFS of (2.80), (2.81). By the results under
the ellipsoid algorithm (see, for example Chapter 8 in this book, or Chapter 15 in
[2.26]), in every BFS of (2.80), (2.81), each y; is either 0 or > 27%. If the optimum
objective value in (2.79) is not zero, it must be < 0, and this together with the above
facts implies that an optimum solution z or (2.79) corresponds to a BFS (u,v,z,y)
of (2.80), (2.81) in which —eTy < 0. All these facts clearly imply that the optimum
objective value in (2.79) is either 0 or < —2°%.

—_—
4
~—
1A%
ja)
—
S
—
1A%
ja)

[]

We now make a list of several decision problems, some of which we have already
seen, and some new ones which we need for establishing our results.

Problem 3: Is there an > 0 satisfying Q(z) <0 7

Problem 4: For any positive integer ag, is there an z € R" satisfy-
ing ef'z =ag, > 0and Q(z) <07

Now consider a subset sum problem with data dy; di,...,d,, which are all positive

2
integers. Let v be a positive integer > 4 (do (2?21 dj>> n3. Let [ be the size of this
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subset sum problem, that is, the total number of binary digits in all the data for the

2
problem. Let € be a positive rational number < 271" The subset sum problem is :

Problem 5: Subset sum problem: Is there a y = (y;) € R" satis-
fying 2?21 djy; = do, 0 <y; <1,5=1ton,andy
integer vector 7

We now define several functions involving nonnegative variables y = (y1, . ..

and s = (s1,...,5,)7, related to the subset sum problem.
2
n n n
fi(y,s) = Zdjyj —do| +7v Z(yj +s;— 12| + Zyjsj
j=1 7=1 7=1
2

n n n
=) diys | + D uisi+v D (i + )

n n
— 2dy Zdjyj +2fyZ(yj+sj)+n'y+d§
j=1 j=1

f2(y,8) = faly,s) +2do | > djy; (1 - y;)
j=1

n
— 2d Zdjy? +2’}/Z(yj+$j)+n’}/+dg
7=1 7=1

j=1
2
n n n
faly,s) = Zdjyj +’YZ(?/J'+SJ) +Z?/JSJ
j=1 j=1 j=1
2
. 2 d% - ny
_2d02d1y3 — ( — ) Z(y3+sj)
Jj=1 j=1

fs0:9) = falyss) = (=5 ) | Dot + )

» Yn

)T
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Let P = {(y,s) : ¥y > 0,5 >0, Z?Zl(yj + sj) = n}. Consider the following additional
decision problems

Problem 6: Is there a (y,s) € P satisfying fi(y, s

[IA

Problem 7: TIs there a (y,s) € P satisfying fo(y, s

(4, ) (Y, 5)
(9, 5) (¥, )
(9, 5) (¥, )
(4, ) (y,8) <

[IA

07
07
07

Problem 8: Is there a (y,s) € P satisfying f4(y, s

IIA

Problem 9: Is there a (y, s) € P satistying f5(y, s

Theorem 2.18 Problem 4 is an NP-hard problem (see [8.11] for the definitions of
an N'P-hard problem).

Proof. Since fi(y, s) is a sum of nonnegative terms whenever (y, s) € P, if (y,5) € P
satisfies fi(y,s) < 0, then we must have f1(y,5) = 0, this clearly implies from the
definition of fi(y, s), that the following conditions must hold.

n
Zdjgj:d(), gijjzoandgjj+§j:1, foralljzlton.
7=1

These conditions clearly imply that 7 is a solution of the subset sum problem and that
the answer to problem 5 is in the affirmative. Conversely if § = (g;) is a solution to
the subset sum problem, define § = (§;) where §; =1 — g; for each j =1 to n, and it
can be verified that fi(g,$) = 0. This verifies that problems 5 and 6 are equivalent.

Whenever y is a 0-1 vector, we have y; = gjjz for all 7, and this implies that
f1(y,s) = f2(g, s) for any s. So, from the above arguments, we see that if (g,5) € P
satisfies f1(g,5) < 0, then f1(7,5) = f2(9,5) = 0. If 0 < y; < 1, we have 2dod;y;(1—y;)
> 0. If (y,s) € P, and y; > 1, then (y; + s; — 1)% + 2dod;y; (1 — y;) > 0, since v is
large (from the definition of 7). Using this and the definitions of fi(y,s), fa(y, s), it
can be verified that for (y,s) € P, if fa(y,s) < 0 then fi(y,s) < 0 too. These facts
imply that problems 6 and 7 are equivalent.

Clearly, problems 7 and 8 are equivalent.

From the definition of e (since it is sufficiently small) and using Lemma 2.16, one
can verify that problems 8 and 9 are equivalent.

Problem 9 is a special case of problem 4. Since problem 5 is NP-complete, from
the above chain of arguments we conclude that problem 4 is NP-hard.

O
Theorem 2.19 Problem 4 is NP-complete.

Proof. The answer to problem 4 is in the affirmative iff the answer to the decision
problem in the statement of Lemma 2.15 is in the affirmative. So, from Lemma 2.15
we conlcude that problem 4 is in AP. From Theorem 2.18, this shows that problem 4
is NP-complete.

[
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Theorem 2.20 Problem 3 is NP-complete.

Proof. Problems 3 and 4 are clearly equivalent, this result follows from Theorem 2.19.

[]
Theorem 2.21  Both problems 1 and 2 are NP-complete.

Proof. Problems 1 and 2 are both equivalent to problem 3, so this result follows from
Theorem 2.20.
[

Theorem 2.22 Given an integer square matrix D, the decision problem “is D not
copositive 7?7 is NP-complete.

Proof. The decision problem “is D not copositive ?” is equivalent to problem 1, hence
this result follows from Theorem 2.21.

[]

Can We Check Local Minimality Efficiently
In Unconstrained Minimization Problems 7

Let 6(z) be a real valued smooth function defined on R". Consider the unconstrained

problem
minimize 6(z) . (2.83)

A necessary condition for a given point Z € R"™ to be a local minimum for (2.83) is

(see Appendix 4)
VO(z) =0, H(O(z)) is PSD (2.84)

where H(0(z)) is the Hessian matrix (the matrix of second order partial derivatives)
of O(x) at z. A sufficient condition for Z to be a local minimum for (2.83) is

VoO(z) =0, H(0(z)) is positive definite. (2.85)

Both conditions (2.84) and (2.85) can be checked very efficiently. If (2.84) is satisfied,
but (2.85) is violated, there are no simple conditions known to check whether or not
is a local minimum for (2.83). Here, we investigate the complexity of checking whether
or not a given point z is a local minimum for (2.83), and that of checking whether 6(x)
is bounded below or not over R".

As before, let D = (d;;) be an integer square symmetric matrix of order n. Con-
sider the unconstrained problem,

minimize h(u) = (u3,...,u2)D(u3,... u2)T (2.86)

Clearly, (2.86) is an instance of the general unconstrained minimization problem (2.83).
Consider the following decision problems.

Problem 10: Is @ = 0 not a local minimum for (2.86) ?

Problem 11: Is h(u) not bounded below on R™ ?



2.9. THE GENERAL QUADRATIC PROGRAMMING PROBLEM 179

We have, for 7,7 =1 ton

Oh(u)

P = 4u; ((u%, ey ui)D.j)
0?h(u) .,
8U¢8Uj = 8uiujd¢j, 7 75 ]
0?h(u)

J

where D.; is the 4t column vector of D. So, # = 0 satisfies the necessary conditions
for being a local minimum for (2.86), but not the sufficient condition given in (2.85).

Using the transformation z; = ujz-, j =1 to n, we see that (2.86) is equivalent to
(2.78). So problem 1 and 10 are equivalent. Likewise, problems 2 and 11 are equivalent.
By Theorem 2.21, we conclude that both problems 10 and 11 are A’P-hard. Thus, even
in the unconstrained minimization problem, to check whether the objective function is
not bounded below, and to check whether a given point is not a local minimum, may
be hard problems in general. This also shows that the problem of checking whether a
given smooth nonlinear function (even a polynomial) is or is not locally convex at a
given point, may be a hard problem in general.

What Are Suitable Goals for Algorithms in Nonconvex NLP 7

Much of nonlinear programming literature stresses that the goal for algorithms in
nonconvex NLPs should be to obtain a local minimum. Our results here show that in
general, this may be hard to guarantee.

Many nonlinear programming algorithms are iterative in nature, that is, beginning
with a initial point 2%, they obtain a sequence of points {z" : 7 = 0,1, ...}. For some of
the algorithms, under certain conditions, it can be shown that the sequence converges
to a KKT point for the original problem, (a KKT point is a feasible solution at which
the first order necessary conditions for a local minimum, (2.73), hold). Unfortunately,
there is no guarantee that a KKT point will be a local minimum, and our results point
out that in general, checking whether or not it is a local minimum may be a hard
problem.

Some algorithms have the property that the sequence of points obtained is ac-
tually a descent sequence, that is, either the objective function, or a measure of the
infesibility of the current solution to the problem, or some merit function or criterion
function which is a combination of both, strictly decreases along the sequence. Given
x", these algorithms generate a y” # 0 such that the direction " + Ay", A > 0, is a de-
scent direction for the functions discussed above. The next point in the sequence z"t!
is usually taken to be the point which minimizes the objective or criterion function
on the half-line {z" + Ay" : A > 0}, obtained by using a line minimization algorithm.
On general nonconvex problems, these methods suffer from the same difficulties, they
cannot theoretically guarantee that the point obtained at termination is even a local
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minimum. However, it seems reasonable to expect that a solution obtained through a
descent process is more likely to be a local minimum, than a solution obtained purely
based on necessary optimality conditions. Thus a suitable goal for algorithms for non-
convex NLPs seems to be a descent sequence converging to a KKT point. Algorithms,
such as the sequential quadratic programming methods discussed in Section 1.3.6, and
those discussed in Chapter 10, reach this goal.

2.10 Exercises

2.5 Let 0(x) be a convex function defined on R", which is known to be unbounded
below on R". Does there exist a half-line along which §(z) diverges to —oo ? Either
prove that it does, or construct a counterexample. Does the answer change if 0(z) is
known to be a differentiable convex function ?

2.6 Consider the problem
Minimize 0(x)
Subject to Az >b

where A is a matrix of order m x n, and 0(x) is a convex function. Suppose it is known
that 0(z) is unbounded below in this problem. Does there exist a feasible half-line along
which 6(x) diverges to —oo ? Either prove that it does, or construct a counterexample.
Does the answer change if §(z) is a differentiabl convex function ?

2.7 If the data in the LCP (g, M) satisfies
i) M+MT >0, and
i) ¢ — MTz >0, z2>0 is feasible,
prove that the complementary pivot algorithm will terminate with a solution when
applied on the LCP (¢, M).
(Philip C. Jones [2.16])

2.8 Let G be the set {(w,z) cw—Mz=q, w>0, 220, wiz; =0 for all s ;éj}, and
let G =J(Gj:j=1ton). If M is PSD or a P-matrix, prove that G is a connected
subset of R". If (¢, M) is the LCP corresponding to the following quadratic program,
show that G is not connected.

minimize cr + %a:TDa:
subject to 0<xz < u
-2 -3 -3 10 4
where D= | -3 -5 —-1|,u=]10],c"'=1]3
-1 -1 4 10 )

(W. P. Hallman and I. Kaneko [2.15])
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2.9 Prove that the complementary pivot algorithm will process the LCP (¢, M) if M
is a Z-matrix.

(R. Saigal [2.32])

2.10 Let {A.4,...,A.,_1} be a linearly independent set of column vectors in R". Let
§ = {y',...,y"} be another finite set of column vectors in R"”, and let b € R™ be
another given column vector. It is required to choose A., € § so that the minimum
distance from b to Pos{A4.1,..., A.,} is a small as possible. Develop an efficient algo-
rithm for doing it.

2.11 Let - )

v- (5 4) - (%)
Show that the LCP (g, M ) has a solution. However, show that all the variants of the
complementary pivot algorithm discussed in this Chapter are unable to find a solution

to this LCP (g, M).

2.12 Let (P) be a linear programming problem, and (@) the corresponding linear
complementary problem as obtained in Section 1.2. It has been suggested that the
sequence of solutions generated when the LCP, (@), is solved by the complementary
pivot method, is the same as the sequence of solutions generated when the LP, (P), is
solved by the self-dual parametric algorithm (see Section 8.13 of [2.26]). Discuss, and
examine the similarities between the self-dual parametric algorithm applied to (P) and
the complementary pivot method applied on (Q).

2.13 Let
2 2 1 2 _4
3 3 2 3 —6
M=t o5 1 5 o 4= 4
1 -2 1 2 4

i) Prove that M is strictly copositive.
ii) Show that the LCP (g, M) has an infinite number of complementary feasible so-
lutions.

2.14 Given a square matrix M of order n, let K(M) denote the union of all the
complementary cones in C(M). Prove that K(M) is convex iff K(M) = {q : ¢+ Mz > 0,
for some z > 0}.

(B. C. Eaves [2.8])

2.15 Let aq,...,a,, b be positive integers satisfying b > max{ai,...,a,}. Let
q(n+2) = (ay,...,a,,—b,b)T
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0 0

_In

M(n+2) = 0 0
el —1 0

- 0 -1

n

where I,, is the identity matrix of order n, and el is the row vector in R" all the entries
in which are “1”. Consider the LCP (¢(n+2), M (n+2)) of order n+2. Are any of the
algorithms discussed in this chapter able to process this LCP ? Why 7 If not, develop
an algorithm for solving this LCP using the special structure of the matrix M.

2.16 Consider the quadratic program

minimize  —x1 — 225 + (20} + 42125 + 423)
subject to 3r1 — 229 — X3 =2
—r1 + 2.1'2 — Tyg4 = 6

z; 20 forally.

Formulate this program as an LCP of order 4 and write down this LCP clearly. Does
a solution of this LCP lead to a solution of this quadratic program ? Why 7

It is required to solve this LCP using the variant of complementary pivot method
in which the column vector of the artificial variable is (1,2, 2,6)7. Obtain the canonical
tableau corresponding to the initial almost complementary basic vector, and then carry
out exactly one more pivot step in this algorithm.

2.17 Suppose B > 0, and the linear programs

i) Maximize ¢x; subject to Ax <b,z>0 and

ii) Minimize b”y; subject to (A+ B)Ty >c,y>0
have finite optimum solutions. Show that the complementary pivot algorithm termi-
nates with a complementary feasible solution for the LCP (¢, M) with

(3 e ()

(G. B. Dantzig and A. S. Manne [2.6])

2.18 Let I be a nonenmpty closed convex subset of R". For each x € R" let Pr(z)
denote the nearest point in I' to x in terms of the usual Euclidean distance. Prove the

following :
(i) ||Pr(z) —yll? <z — y||? for allz e R",y €.

(ii) ||Pr(z) — Pr(y)||? < ||z — y||? for all z,y € R™ .
(Y. C. Cheng [3.6])
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2.19 Let G and H be symmetric PSD matrices of order n and m respectively. Consider
the following quadratic programs :

- 1,.T 1, T
maximize cr — 5x° Gz — Jy" Hy

subject to Az — Hy <b

T >0

and
minimize by + %.TTG.T + %yTHy

subject to Gz + ATy > e’
y=0

Prove that if both the problems are feasible, then each has an optimal solution, and
the optimum objective values are equal; moreover, the optimal solutions can be taken
to be the same.

(R. W. Cottle [2.5] and W. S. Dorn [2.7])

2.20 Let M be a nondegenerate square matrix of order n. Let d € R", d > 0 be
such that for every J C {1,...,n}, if dy = (d; : j € J), M3y = (my; : i,j € J),
then (Mjz)~'dy > 0. Then prove that if the LCP (¢, M) is solved by the variant of
the complementary pivot algorithm discussed in Section 2.3.3 with —d as the original
column vector for the artificial variable z°, it will terminate with a solution of the LCP
after at most (n + 1) pivot steps.

(J. S. Pang and R. Chandrasekaran [8.18])

2.21 Consider the process of solving the LCP (¢, M) by the complementary pivot
algorithm. Prove that the value of the artificial variable zy decreases as the algorithm
progresses, whenever M is either a PSD matrix or a P-matrix or a Py-matrix, until
termination occurs.

(R. W. Cottle [4.5] and B. C. Eaves [2.8])

2.22 Consider the process of solving the LCP (g, M) by the variant of the comple-
mentary pivot algorithm discussed in Section 2.3.3 with the column vector d > 0 as
the initial column vector associated with the artificial variable zy. Prove that in this
process, there exists no secondary ray for all d > 0 > ¢ iff M is an L,-matrix. Using
this prove that the variant of the complementary pivot algorithm discussed in Section
2.3.3 with the lexico minimum ratio rule for the dropping variable section in each step,
will always terminate with a complementary solution for all ¢, no matter what d > 0
is used, iff M is an L,-matrix.

(B. C. Eaves [2.8])
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2.23 Consider the convex quadratic programming problem
cx + 227 Dz

b
0

minimize Q(x)
subject Az

8
VIV I

where D is a symmetric PSD matrix. If the problem has alternate optimum solution

prove the following :

(i) the set of optimum solutions is a convex set,

(i) (y — 2)TD(y — x) = 0 and actually (y — z)TD = 0 for every pair of optimum
solutions x and y, of the problem,

(iii) the gradient vector of Q(z), VQ(x) is a constant on the set of optimum solutions,

(iv) the set of optimum solutions is the intersection of the constraint set with some
linear manifold.

(M. Frank and P. Wolfe [10.14])

2.24 Let A', B!, two given matrices of orders m x n each, be the loss matrices in
a bimatrix game problem. Prove that the problem of computing a Nash equilibrium
strategy pair of vectors for this bimatrix game, can be posed as the LCP (¢, M), where

=) = 3)

where A > 0 and B < 0. Prove (use Lemma 2.8) that the complementary pivot
algorithm will terminate with a solution when applied on this LCP.
(B. C. Eaves [2.8])

2.25 Consider the LCP (¢, M) of order n. Let C; be the set of feasible solutions of

the system
w— Mz =q
w, z 20
wjz; =0, 7=2ton.

If ¢ is nondegenerate in the LCP (¢, M) (i.e., if in every solution (w, z) of the system
of linear equations “w — Mz = ¢”, at least n variables are nonzero) prove that Cj is a
disjoint union of edge paths. What happens to this result if ¢ is degenerate 7

2.26 In Merrill’s algorithm for computing a Kakutani fixed point discussed in Section
2.7.8, we defined the piecewise linear map in the top layer of the special triangulation

of R" x [0,1] by defining for any vertex V = [11} ] , f(V) = [f(lv) ] where f(v)

is an arbitrary point chosen from the set F(v). Examine the advantages that could
be gained by defining f(v) to be the nearest point (in terms of the usual Euclidean
distance) in the set F(v) to v.
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2.27 Let M, q be given matrices of orders n x n and n x 1 respectively. If y7 My +yTq
is bounded below on the set {y : y > 0}, prove that the LCP (¢, M) has a comple-
mentary solution, and that a complementary solution can be obtained by applying the
complementary pivot algorithm on the LCP of order (n + 1) with data

q M e]
= , M =
1 [Qn-i—l] [_eT 0

where g,+1 > 0, with the initial column vector associated with the artificial variable
zo to be (—=1,...,—1,0) € R,
(B. C. Eaves [2.8])

2.28 Consider the general quadratic program (2.67). If Q(z) is unbounded below on
the set of feasible solutions K of this problem, prove that there exists a feasible half-line
through an extreme point of K along which Q(x) diverges to —oo.

(B. C. Eaves [2.9])

2.29 Let M be a given square matrix of order n. Let {B.1,...,B..} be a given set
of column vectors in R™. It is required to check whether zT Mz is > 0 for all z €
Pos{B.1,...,B.,.}. Transform this into the problem of checking the copositivity of a
matrix.

Can the problem of checking whether 27 Mz is > 0 for all x € {z : Az > 0} where
A is a given matrix of order m x n, be also transformed into the problem of checking
the copositivity of a matrix 7 How 7

2.30 (Research Problem) Application to pure 0-1 Integer Programming
Consider the pure 0-1 integer programming problem

minimize cx
subject to Az =0b
Dx > d

z; = 0or 1 forallj

where z € R", and ¢, A, b, D, d are the data in the problem. In the interval 0 < z; <1,
the function z;(1 — z;) is non-negative, and is zero iff z; is either 0 or 1. Using this we
can transfom the above discrete problem into a continuous variable optimization by a
penalty transformation as given below

n
minimize  cz + a( Y, x;(1 — z;))
7=1
subject to Ax =1b

Dz >d
0<z;<1,j=1ton
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where « is a large positive penalty parameter. This is now a quadratic programming
problem (unfortunately, it is a concave minimization problem and may have lots of
local minima, in fact it can be verified that every integer feasible solution is a local
minima for this problem). Check whether any of the algorithm for LCP discussed here
are useful to approach the integer program through the LCP formulation of the above
quadratic program.

2.31 Consider the system
w—Mz=q
w,z >0

where M is a given square matrix of order n. Let C; be the set of feasible solutions of
this problem satisfying the additional conditions

wizj =0, j=2ton.

Assuming that ¢ is nondegenerate in this system (i.e., that in every solution (w, z) of
the system of equations “w— Mz = ¢”, at last n variables are non-zero), study whether
C; can contain an edge path terminating with extreme half-lines at both ends, when
M is a copositive plus matrix.

2.32 (Research Problem) : Consider the general quadratic programming problem
(2.67) of Section 2.9.2, and let K be its set of feasible solutions.

Develop necessary and sufficient conditions for (x) to be unbounded below on
K. Develop an efficient procedure to check whether Q(z) is unbounded below on K.

In (2.67), the objective function is said to be strongly unbounded below, if it
remains unbounded below whatever the vector ¢ may be, as long as all the other data
in the problem remains unchanged. Develop necessary and sufficient conditions for
and an efficient procedure to check this strong unboundedness.

Extend the enumeration procedure for solving the general quadratic programming
problem under the assumption of a bounded feasible set discussed in Section 2.9, to
the case when K is unbounded.

The method discussed in Section 2.9 for solving this problem, may be viewed as a
total enumeration method (enumerating over all the faces of K). Develop an efficient
method for computing a lower bound for Q(z) on K, and using it, develop a branch and
bound method for solving this problem (this will be an efficient partial enumeration
method). (See B. C. Eaves [2.9] for some useful information on this problem.)

2.33 Let M be a square matrix of order n which is D + E where
D is symmetric and copositive plus
FE is copositive.
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Let ¢ € R,,. If the system Dz — ETy > —q, y > 0 is feasible, prove that the com-
plementary pivot algorithm will terminate with a solution when applied on the LCP
(¢, M).

(P. C. Jones [2.17))

2.34 Let (w, z) be the solution of the LCP (g, M).
i) If M is PSD, prove that z7¢q < 0.
ii) If the LCP (g, M) comes from an LP prove that zTq = 0.

2.35 Prove that if M is a copositive plus matrix of order n, and ¢ € R" then the
optimum objective value in the following quadratic program is zero, if the problem has
a feasible solution.
minimize Q(z) = 27 (Mz + q)
subject to Mz +q >0
x >0

2.36 In Section 2.9.2, we have seen that if a quadratic function Q(z) is bounded
below on a convex polyhedron, then (x) has a finite global minimum point on that
polyhedron. Does this result hold for a general polynomial function ?

(Hint: Examine the fourth degree polynomial function f(z) = 22 + (122 —1)? defined
over R?).

(L. M. Kelly)

2.37 Apply the Complementary pivot method on the LCP with the following data.

(—4) (2 1 1)
a) g=|-5|, M= 1 2 1
\_1) \ 1 1 2J
(—1) (1 2 0)
b) g=1-2|, M=|-2 -1 0
{ —3 ) (-1 -3 -1)
(—1) (-1 2 —2)
c) g=1-2|, M= 2 -1 2.
\_3/ \_2 2 _1J

Verify that (z1, 22, 23) is a complementary feasible basic vector for (c).
Also, solve (a) by the variant of the complementary pivot method discussed in
Section 2.4.
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