
Contents

8 Generalized Network Flows 588
8.1 The Primal Simplex Method for Generalized Network

Flow Problems . 595
8.2 Resolution of Cycling Under Degeneracy in the Primal

Simplex Algorithm for Generalized Network Flows . . . 615
8.3 The Most General Generalized Network Flow Problem 619
8.4 Exercises . 620
8.5 References . 624

i

ii

Chapter 8

Generalized Network Flows

In flow problems discussed so far, we assumed that if fij units of a
commodity enter an arc (i, j) at its tail node i and travel across the
arc, then exactly the same fij units will reach its head node j. This
assumption may not hold in some flow models. For example, in a wa-
ter distribution network, if some quantity of water is shipped across an
open canal linking two nodes, some is lost due to evaporation and seep-
age during transit, and the amount reaching the destination will only
be a fraction of the amount that left the origin. The same phenomenon
takes place in the transmission of electric power through high voltage
transmission lines, because of transmission losses. On the other hand, if
we transmit money from one period to the next by holding it in a bank
account (cash flow), because of the interest earned, the amount reach-
ing the destination will be more than the amount that left the origin.
In all these examples there exists a positive multiplier pij associated
with arc (i, j) such that if a packet of fij units of the commodity enter
the arc (i, j) at node i, and travels through the arc, then by the time
it reaches node j, the packet contains pijfij units of the commodity. If
0 < pij < 1, arc (i, j) is said to be lossy; and if 1 < pij < ∞, it is
said to be gainy. In pure networks studied so far, pij = 1 for all arcs
(i, j), flow problems on them have been called pure network flow
problems. If pij W= 1 for at least one arc, the network is called a gen-
eralized network, or a network with multipliers, or a network
with gains or losses, and flow problems on it are called generalized

588

589

network flow problems.
We assume that the flow variable fij associated with an arc (i, j) in

a generalized network always refers to the amount of material entering
this arc at its tail node i for transit to node j. We also assume that
all the data on this arc (lower bound, capacity, cost coefficient, multi-
plier) applies to this variable. Let G = (N ,A, f = (fij), k = (kij), p =
(pij), c = (cij), s̆, t̆) be a connected directed generalized network with

|N | = n >
= 2, |A| = m, p as the vector of multipliers associated with

the arcs in A, and the usual meaning for the other symbols. Let vs̆, vt̆
denote the amounts of material leaving the source node s̆, and arriv-
ing at the sink node t̆ respectively. Then the flow vector f = (fij) is
feasible in G if it satisfies

− 3
j∈A(i)

fij +
3
j∈B(i)

pjifji =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−vs̆ if i = s̆

0 if i W= s̆ or t̆

vt̆ if i = t̆

(8.1)

fij
<
= fij

<
= kij , for all (i, j) ∈ A

where A(i), B(i) are the after i, and before i sets in G. Because of
the multipliers, vt̆ may not be equal to vs̆ in (8.1). In the coefficient
matrix of the equality constraints in (8.1), each column has exactly
2 nonzero entries, one of them a “−1,” and the other the positive
multiplier associated with the arc in G corresponding to this column.
We may be interested in maximizing vt̆ given vs̆ subject to (8.1), this
problem is known as the minimum loss problem. A feasible flow
vector which maximizes vt̆ is known as a maximum feasible flow
vector. Among all maximum feasible flow vectors, the one which is
associated with the smallest value of vs̆ is known as an optimum
maximum feasible flow vector. The minimum cost flow problem
in G deals with minimizing

�
(cijfij : over (i, j) ∈ A) subject to (8.1),

given vt̆ or vs̆. This is the general problem that we will consider.
Sometimes there may be gains or losses occurring at the nodes, on

the material passing through them. On such networks, replace each
node i associated with a gain or loss factor, by an arc (i1, i2) with the

590 Ch. 8. Generalized Network Flows

new nodes i1, i2 representing the receiving and departing ends of the
original node i as discussed in Section 2.1, and make the multiplier of
this arc (i1, i2) equal to the gain or loss factor at i. In the modified
network only arcs have multipliers.

THEOREM 8.1 Let A be the n×m coefficient matrix of the system
of equality constraints in (8.1). Each row (column) is associated with
a node in N (arc in A). If G is connected, the rank of A is n−1 or n.
Proof Let dd be a spanning tree in G. Draw dd as a rooted tree

with any arbitrary node selected as the root node. Let B be the square
matrix of order n − 1 consisting of the columns in A associated with
the arcs in dd, with the row corresponding to the root node struck off.
We will now prove that the determinant of B is nonzero. Since n

>
= 2,

there exists at least one nonroot terminal node in dd, say i1. So, in the
row corresponding to node i1 there exists a single nonzero entry in B.
Hence the determinant of B is a nonzero multiple of the determinant of
the matrix obtained by striking off the row associated with node i1, and
the column of the nonzero entry in it, from B. The resulting matrix is
of order n− 2, and it is associated with the tree obtained by deleting
node i1 and the unique arc incident at it, from dd. The same process
can be repeated on this matrix, and continued. After n− 2 repetitions
it leads to the conclusion that the determinant of B is nonzero. Hence
the rank of A is n− 1 or n.
THEOREM 8.2 If G is connected, and the rank of A, the coefficient
matrix of the system of equality constraints in (8.1), is n−1, then (8.1)
can be transformed into a pure network flow system.

Proof Suppose the rank of A is n − 1. So, there exists α =
(α1, . . . ,αn) W= 0 such that

α1A1. + . . .+ αnAn. = 0 (8.2)

We will now show that in any α satisfying (8.2), αi W= 0 for all i,
by contradiction. Suppose αn = 0. Select a spanning tree, dd, in G
and draw it as a rooted tree with n as the root node. Let B be the
square matrix of order n− 1, consisting of columns in A corresponding

591

to arcs in dd, with the row corresponding to the root node n struck off.
Since αn = 0, from (8.2), we have αIB = 0, where αI = (α1, . . . ,αn−1).
The column in B corresponding to any in-tree arc incident at node n
contains only a single nonzero entry (it lies in the row corresponding
to the other node on that arc). This, and αIB = 0 together imply that
αi = 0 for all nodes i which are immediate successors of n in dd. In the
same manner, going down dd one level at a time, we conclude that αi
must be 0 for all i, a contradiction. Thus αn could not have been 0.
Similarly, αi W= 0 for all i.
For i = 1 to n, multiply the equation in (8.1) corresponding to node

i by αi on both sides, and let A
I be the matrix of coefficients of the

modified system. From (8.2), the sum of the row vectors of AI is 0.
Since there are exactly two nonzero entries in each column of AI, this
implies that the two nonzero entries in any column of AI must have the
same absolute value, and opposite signs. Let γij denote the absolute
value of the nonzero entries in the column of AI corresponding to the
arc (i, j) ∈ A. Transform the variables using the linear transformation
fij = f

I
ij/γij, for each (i, j) ∈ A. So, if AII is the coefficient matrix of

the equality constraints after these transformations, each of its columns
contains exactly two nonzero entries, a “−1” and a “+1.” Thus AII is
the node-arc incidence of G, and therefore these transformations have
converted (8.1) into a pure network flow system.

Therefore, in the sequel, we will assume that the rank of A is n.
Let CC be an oriented simple cycle in G. The quantity

Product of multipliers associated with reverse arcs in CC

Product of multipliers associated with forward arcs in CC
(8.3)

is known as the loop factor of the cycle CC under this orientation.
If the orientation of CC is reversed its loop factor gets inverted. As an
example, consider the cycle in the subnetwork on the left in Figure 8.1
oriented so that (1, 2) is a forward arc. The numbers on the cycle arcs
are the multipliers. Arcs (1, 2), (3, 4), (4, 5) are the forward arcs; and
arcs (3, 2), (1, 5) are the reverse arcs. The loop factor of this cycle is
(5(4))/(2(1/2)1) = 20. If the orientation of this cycle is reversed, its
loop factor becomes 1/20.

592 Ch. 8. Generalized Network Flows

Similarly, let Pji be a simple path from i to j in G. Then the
following quantity is known as the path factor of Pji in G

Product of multipliers associated with reverse arcs on Pji
Product of multipliers associated with forward arcs on Pji (8.4)

THEOREM 8.3 The generalized network flow system (8.1) can be
transformed into a pure network flow system iff there exists nonzero
node weights di for i ∈ N , such that

(dipij)/dj = 1 for each (i, j) ∈ A (8.5)

Proof Define Vi = 0 for i W= s̆ or t̆, −Vs̆ for i = s̆, and −Vt̆ for
i = t̆. If node weights di satisfying (8.5) exist, multiply the equation
corresponding to node i by 1/di on both sides. Since pij = dj/di by
(8.5), this leads to

− 3
j∈A(i)

(fij/di) +
3
j∈B(i)

(fji/dj) = (Vi/di), for i ∈ N (8.6)

Let f Iij = (fij/di), for (i, j) ∈ A. In terms of the new variables f Iij ,
(8.6) are the conservation equations in a pure network flow problem.
Conversely, suppose (8.1) can be transformed into a pure network

flow system. Then, the rank of A, the coefficient matrix of the system
of equality constraints in (8.1), must be n − 1. So, there must exist
α = (α1, . . . ,αn) W= 0 such that when you multiply the ith equation in
(8.1) by αi and add over i ∈ N , we get “ 0 = 0,” i.e., αjpij − αi = 0,
for each (i, j) ∈ A. As in the proof of Theorem 8.2, it can be shown
that αi W= 0 for each i ∈ N in such a vector α. So, (αjpij)/αi = 1, for
each (i, j) ∈ A. Hence, selecting di = 1/αi for each i ∈ N , we have the
node weights di satisfying (8.5).

THEOREM 8.4 Node weights satisfying (8.5) exist iff the loop factor
associated with every cycle in G is equal to 1.

Proof Suppose node weights di satisfying (8.5) do exist. Since
pij = dj/di for all (i, j) ∈ A, by (8.5), the loop factor of any cycle CC
in G is 1.

593

To prove the converse, suppose the loop factor of every cycle in G
is 1. Select a spanning tree ,dd, in G. Set d1 = 1, and determine di
for i W= 1 from (dipij)/dj = 1 for each in-tree arc (i, j), uniquely. If
(r, u) is an out-of-tree arc, by the hypothesis, the loop factor of the
fundamental cycle of (r, u) wrt dd is also 1, this implies (drpru)/du = 1.
Hence (8.5) holds for all (i, j) ∈ A when d is determined as here.
In general, the constraints in a generalized network flow problem

may be inequalities. For example, the net shipment out of a source node
could be

<
= the amount available at it. Or, the net shipment reaching a

sink node could be
>
= the requirement there. Each inequality constraint

leads to a slack variable in the system when all the constraints are
written as equations, and the column associated with that slack variable
contains only one nonzero entry, a +1 or −1. If this nonzero coefficient
is in row i, that column corresponds to the self loop (i, i) at node i.
It is said to be a surplus self loop if the nonzero coefficient in its
column is −1, slack self loop if that entry is + 1. The multiplier
associated with a self loop is always taken to be + 1, whether it is a
surplus or a slack self loop. Hence, for all self loops (i, i) in the network,
pii = +1.
Thus the generalized network G = (N ,A) on which our problem is

defined is a directed network which may have self loops, and multiple
arcs joining the same pair of nodes with the same or different orienta-
tions. To handle the self loops, we modify the definitions of the before
and after sets for any node i in G to be the following:

A(i) = Set of head nodes on arcs incident out of i; and i

if there is a surplus self loop at i

(8.7)

B(i) = Set of tail nodes on arcs incident out of i; and i

if there is a slack self loop at i

We will consider the problem with the general objective function in G,
it is of the form (8.8) given below, and is called the minimum cost
generalized network flow problem. In (8.8), bi represents the re-
quirement (negative of the exogenous flow) at node i. This problem
encompasses all capacitated or uncapacitated LPs in which the coeffi-

594 Ch. 8. Generalized Network Flows

cient matrix contains at most two nonzero entries of opposite signs in
each column (the negative entry can be transformed into −1 by scaling
the associated variable appropriately, after these transformations the
LP assumes the form (8.8)).

Minimize z(f) =
3
(cijfij : over (i, j) ∈ A)

subject to − 3
j∈A(i)

fij +
3
j∈B(i)

pjifji = bi, for i ∈ N (8.8)

fij
<
= fij

<
= kij, for all (i, j) ∈ A

If fij = kij for some (i, j) ∈ A, then fij could be fixed equal to their
common value and eliminated from the problem. So, in the sequel we
assume that f < k.

THEOREM 8.5 Let CC be a simple cycle in G which is not a self
loop. Let Γ be the set of column vectors associated with the variables
fij for arcs (i, j) on CC, in (8.8). Γ is linearly dependent iff ∆, the loop
factor of CC is 1.

Proof Select an arc, say e1 = (1, 2), on CC and orient it so
that this arc is a forward arc. Suppose under this orientation, the
sequence of arcs on CC is e1, . . . , er, and the sequence of nodes is 1, 2,
. . . , r. Γ is linearly dependent iff there exists (α1, . . . ,αr) W= 0 such
that

�r
t=1 αt(column of et in (8.8)) = 0. This equation holds iff when

we make the flow amount on et equal to αt for t = 1 to r, conservation
holds at all the nodes 1, . . . , r. To check whether we can find a nonzero
flow vector on CC that maintains flow conservation at all the nodes, we
select the initial arc, e1 = (1, 2), and fix the flow amount on it to be 1.
This brings the amount p12 to node 2. If the next arc e2 is a forward
arc (i.e., e2 = (2, 3)), for conservation to hold at node 2, the flow on
it must be equal to p12, and this brings p12p23 to node 3. On the other
hand, if e2 is the reverse arc (3, 2), for conservation to hold at node
2, the flow on it must be −p12/p32, this leaves an amount of p12/p32 at
node 3 which has to be shipped out of the other arc incident at it for
conservation to hold. Continuing this procedure, we can determine the
flows on all the arcs on CC. When this procedure is completed by going
around CC once, and we come back to the initial node 1, we determine

8.1. Generalized Network Simplex 595

the flow on the initial arc (1, 2) for conservation to hold at node 1; that
flow amount, β, say, must turn out to be 1, the same quantity that we
fixed it to be at the beginning of this procedure. Otherwise there is no
nonzero flow on CC that maintains conservation at all the nodes on CC.
Let Pi1 denote the path from 1 to i as we travel along the oriented

cycle CC from node 1 to node i.
Let et be any arc on CC, i its tail node, and let γt= 1/(path factor of

Pi1). It can be verified that the flow on et obtained in this procedure
is −γt if et is a reverse arc on CC, or γt if et is a forward arc on CC. So,
β = 1/∆. Hence, a nonzero flow vector maintaining conservation at
all the nodes exists in CC iff 1/∆ = 1, i.e., iff ∆ = 1. Therefore, Γ is
linearly dependent iff ∆ = 1.

There are algorithms for solving the maximum flow problem in
generalized networks, or the optimum maximum flow problem, based
on FAPs obtained by using a labeling method or the shortest chain
method, but we will not discuss these special methods. Instead we
discuss an implementation of the primal simplex algorithm to solve
(8.8) using tree labels without the need for computing the basis inverse
in any step. This algorithm is general enough to handle any of these
generalized network flow problems.

8.1 The Primal Simplex Method for Gen-

eralized Network Flow Problems

A basis for (8.8) is a square nonsingular submatrix of order n of
the coefficient matrix of the system of equality constraints in it. The
basis network corresponding to a basis B, denoted by GB, is the
subnetwork of G consisting of the arcs corresponding to columns of B.
Arcs in the basis network are called basic arcs, those not in the basis
network are called nonbasic arcs.

THEOREM 8.6 A basis network GB for (8.8) may consist of several
connected components. Each connected component of GB consists of a
tree plus an additional arc which may be a self loop, and hence contains
a unique loop or cycle.

596 Ch. 8. Generalized Network Flows

Proof There are n columns in B, so if GB is connected it is a
connected network consisting of a spanning tree with one extra arc,
and hence the statement of the theorem holds in this case.
Suppose GB consists of t connected components, with the gth one

consisting of rg nodes for g = 1 to t. Since the gth component is
connected, it must contain at least rg − 1 arcs. The set of row vectors,
S, of the basis B corresponding to the rg nodes in this component, must
be linearly independent, as B is a basis. If this component contains
only rg − 1 arcs, there are only rg − 1 columns of B which contain
nonzero entries in rows of this set S, this implies that the rank of S
is

<
= rg − 1, a contradiction. So, each connected component of GB

must contain at least as many arcs as nodes. Since B is square, the
number of nodes and arcs in GB are equal. These facts imply that each
connected component of GB has the same number of arcs as nodes, and
hence it is a spanning tree in these nodes with one additional arc. This
additional arc may either be a self loop or an out-of-tree arc. Hence
each connected component of GB contains a unique loop or cycle.

B =

⎛⎜⎜⎜⎜⎝
B1

B2
. . .

Bt

⎞⎟⎟⎟⎟⎠

Bg =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
−1 a2

−1
. . .

−1 arg−1
−1 arg

self loop
portion

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Rearrange the rows of the basis B so that the rows corresponding to

nodes in each connected component of GB appear consecutively. Now
rearrange the columns of B so that the columns associated with arcs

8.1. Generalized Network Simplex 597

in each connected component of GB appear consecutively; and in the
same order in which these components appear among the rows. Then
clearly B takes the block diagonal form shown above.
Here Bg is a square nonsingular matrix of order rg for g = 1 to

t, and all elements in B outside these diagonal blocks are 0. Bg is
itself a triangular matrix if the loop in the connected component of GB
corresponding to it is a self loop. In this case, the rows and columns of
Bg can be rearranged so that it has the structure given above, where
arg is either +1 or −1, and is the unique nonzero entry in the column
in B corresponding to this self loop. a1, . . . , arg−1 are the multipliers
associated with the other arcs in this connected component.
If the loop in the gth connected component of GB is a cycle which

is not a self loop, the rows and columns of Bg can be rearranged so
that it has the following structure.

Bg =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
−1 a2

−1
. . .

aw−1
−1 aw −1

−1 aw+1
−1

. . .

−1 arg

The cycle portion

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.9)

Columns 1 to w−1 in (8.9) correspond to arcs in the gth connected
component of GB which are not on the cycle, the remaining columns w
to rg correspond to arcs on the cycle. If the “−1” entry in row w and
the last column is made 0 in (8.9), then Bg becomes triangular. Hence
in this case Bg is said to be near triangular.

A quasitree in G is a partial subnetwork (N̂ , Â) with N̂ ⊆ N , and
Â consisting of the arcs in a tree spanning the nodes in N̂ , plus either

598 Ch. 8. Generalized Network Flows

a self loop at one of the nodes in N̂ , or an arc joining two nodes in N̂ .
By Theorem 8.6 every connected component in the basis network GB
is a quasitree. Thus a basis network for the generalized network flow
problem (8.8) is not a spanning tree as in pure network flow problems,
but a set of disjoint quasitrees. We will now discuss how quasitrees can
be stored and manipulated using node labels just as trees were. Node
labels for storing each quasitree are derived separately as described
below.

When all the cycle arcs are deleted from a quasitree leaving all the
nodes as they are, we are left with a set of tributary trees, some of
which may consist of a single node on the cycle. See Figures 8.1, 8.2.
For each tributary tree choose the node in it that belongs to the cycle
as the root, and generate the predecessor, successor, and brother labels
for all the nonroot nodes exactly as in Section 1.2. If the cycle is a
self loop, at node i say, make the predecessor index of i to be +i or −i
depending on whether the nonzero entry in the column corresponding
to it is +1 or −1. If the cycle is not a self loop, let the nodes on
it be i1, . . . , ih in this order when the cycle is written as a path from
some node i1 back to itself with some orientation. Then for r = 1 to h
make the predecessor index of node ir either +ir−1 or −ir−1 depending
on whether the arc joining them is a forward or reverse arc under the
orientation chosen for the cycle, where i0 = ih. Thus each node on
the cycle is its own ancestor. The predecessor indices of nodes on the
cycle can be used to trace these nodes uniformly in a clockwise or
counterclockwise direction. Also, each node in the cycle has an equal
status as an ancestor of all nodes in the quasitree. For each r = 1 to h,
list ir as the youngest son of ir−1 (so, ir is younger to every immediate
successor of ir−1 in the tributary tree rooted at it in the quasitree).

These labels are said to define the rooted loop labeling of the
quasitree. In this labeling, every node has a predecessor, and hence
the predecessor index of no node is empty. As an example consider the
basis network given in Figure 8.1. There are two quasitrees in it. In
the left hand quasitree there is a cycle consisting of nodes 1, 2, 3, 4, 5,
and of these only 1, 3 have tributary trees with one or more arcs (see
Figure 8.2). The second quasitree on the right has a self loop at node
17 which is a slack self loop. The node labels corresponding to

8.1. Generalized Network Simplex 599

1

2

3 4

5

6 7 8

9 10 11 12 13

14

15 16

17

18

19 20

2 4

1

1/2

5

Figure 8.1: A basis network with two quasitrees. The numbers on the
cycle arcs are the arc multipliers.

this basis are given in the following table (empty labels are left blank
in the table).

To find the cycle or the loop in any quasitree using the predecessor
indices, select any node, say i, in this quasitree and trace its predecessor
path. Keep tracing this path until at some stage a node on this path,
say i1, appears for a second time (this will always happen). The cycle in
this quasitree consists of all the arcs and nodes obtained in this process
after i1 has been obtained for the first time. The entire path traced
in this process beginning with node i is known as the predecessor
path of i, it duplicates no arcs, and it contains the cycle or loop in
this quasitree. As an example, the predecessor path of node 12 in the

600 Ch. 8. Generalized Network Flows

1

6 7 8

9 10 11 12 13

14

15 16

43

2 5

Figure 8.2: The tributary trees in the quasitree on the left of Figure
8.1.

Node 1 2 3 4 5 6 7 8 9 10
PI − 5 1 − 2 3 4 1 − 1 1 − 6 6
SI − 8 3 14 − 5 1 −10 −11 −13
EBI 6 14 7 8 10
YBI 2 6 7 9

Node 11 12 13 14 15 16 17 18 19 20
PI 7 − 8 8 − 3 14 14 17 17 −18 18
SI −15 −18 19
EBI 13 15 18 19
YBI 12 4 16 17 20

8.1. Generalized Network Simplex 601

quasitree on the left hand side in Figure 8.1 is: 12, (12, 8), 8, (1, 8), 1,
(1, 5), 5, (4, 5), 4, (3, 4), 3, (3, 2), 2, (1, 2), 1, and this path contains
the unique cycle in this quasitree.
Thus predecessor paths in a basis network for a generalized network

flow problem are elementary but not simple paths.
Node labels other than the predecessor, successor, and brother in-

dices are sometimes used in generalized network codes to store and
manipulate quasitrees. Among these are the distance or depth label,
thread label, etc. The distance or depth label is defined to be 0 for
every node in the cycle or self loop in a quasitree. The depth label for
a non-cycle node is exactly its depth in the tributary tree in which it is
contained as defined in Section 1.2.2. So, the depth label of any node
in a quasitree is the number of non-cycle arcs in its predecessor path.
The thread label is defined exactly as in Section 1.2.2. As an example,
consider the quasitree in Figure 8.3 (arc orientations are not shown for
simplicity), the depth and thread labels for nodes on it are shown in
the table following the figure. With the thread label defined this way,
it can be verified that the set of descendents of any node can be ob-
tained by recursive applications of the maps tr(i) exactly as discussed
in Section 1.2.2.

1

2 3

4 5

6 7

Figure 8.3:

602 Ch. 8. Generalized Network Flows

Node 1 2 3 4 5 6 7
Predecessor label 3 1 2 2 3 5 5
Depth label 0 0 0 1 1 2 2
Thread label 2 4 5 3 6 7 1

Let A be the coefficient matrix of the system of equality constraints
in (8.8). Since G is a connected generalized network with |N | = n, rank
of A is n. A basic solution for (8.8) corresponds to a partition of the
arcs in G into (Q, L, U) where Q is the set of basic arcs, and L, U
are the sets of nonbasic arcs on which the flows are fixed equal to the
lower, upper bounds respectively. In any partition (Q, L, U), |Q| = n,
the matrix B consisting of the column vectors in A corresponding to
arcs in Q is a basis for A, and every arc in U has finite capacity. By
Theorem 8.5, the loop factors of all the cycles in the basis network (N ,
Q) which are not self loops, are different from 1.

How To Compute The Primal Basic Solution
Corresponding To A Given Partition (Q, L, U)

Let B be the basis for (8.8) corresponding to Q, and let f̄ = (f̄ij)
denote the basic solution of (8.8) corresponding to the partition (Q,
L, U). By definition, f̄ij = fij if (i, j) ∈ L, and = kij if (i, j) ∈ U.
For each (i, j) ∈ L ∪U, multiply the column vector corresponding to
it in (8.8) by f̄ij and transfer it to the right hand side, and suppose
this changes the right hand side constants vector in (8.8) to bI. bI is
the vector of remaining requirements at the nodes after the flows on
arcs in L, U are fixed at their lower bounds, capacities respectively.
Now only the flow amounts on the basic arcs remain to be computed
in order to satisfy these remaining requirements. These are obtained
by solving

B(f̄ij : (i, j) ∈ Q) = bI (8.10)

Since B has a block diagonal structure as discussed earlier, we can
solve (8.10) by finding the flow amounts on arcs in each quasitree in
the basis network (N , Q) separately.

8.1. Generalized Network Simplex 603

Consider the gth quasitree in (N , Q). Computing the flow amounts
on arcs in this quasitree can be conveniently carried out in two stages.
In Stage 1 flows on arcs on the tributary trees in this quasitree are
determined using back substitution as discussed in Section 5.4. The
Stage 1 procedure processes each non-cycle node on the tributary tree
exactly once. Once a node is processed, the flow amounts on all the
arcs incident at it are known. At any time in Stage 1, Y denotes the
set of processed nodes at that time. This procedure also maintains an-
other set X of non-cycle nodes in the quasitree satisfying the property
that for each node in X, the flow amounts on all the arcs incident at
it are already known at this time except on the arc joining it to its
immediate predecessor. After the flow amount on each arc is obtained,
the requirements at the nodes on it are updated to cancel the require-
ments fulfilled by it, and obtain the remaining requirements still to be
fulfilled, denoted by (bIi) itself.

PROCEDURE FOR DETERMINING THE FLOW AMOUNTS ON
BASIC ARCS IN A QUASITREE IN (N ,Q) IN THE BASIC SOLU-
TION ASSOCIATED WITH THE PARTITION (Q, L, U)

Stage 1 Initiate withX = set of non-cycle leaf nodes in the tributary
trees in this quasitree, Y = ∅.
In a general step, select and delete a node from X, say i. Let
j be the immediate predecessor of i. Let bIi, b

I
j be the remaining

requirements at nodes i, j at this time. If the basic arc joining
i and j is (i, j), make f̄ij = −bIi and change the remaining re-
quirement at j to bIj − f̄ijpij. If the basic arc joining i, j is (j, i),
make f̄ji = b

I
i/pji and change the remaining requirement at j to

bIj + b
I
i/pji. Include i in Y. If j is a non-cycle node, and if all the

brothers of i in its tributary tree are already in Y, include j in
X.

If X W= ∅ repeat the general step above. If X = ∅, go to Stage 2.
Stage 2 If the cycle in the quasitree is a self loop, suppose it is

(i, i). Let bIi be the remaining requirement at node i at this time.
Then f̄ii = −bIi or +bIi depending on whether the self loop at i is
a surplus or slack self loop.

604 Ch. 8. Generalized Network Flows

Suppose the cycle is not a self loop. Suppose the nodes in it are
1, 2, . . . , t in this order when it is oriented with an arc incident
at 1, say e1 = (1, 2), as a forward arc. Let the remaining arcs on
the cycle in this order be e2, . . . , et; so, er is either (r, r + 1) or
(r + 1, r) depending on whether it is a forward or a reverse arc.
Let pr be the multiplier associated with er, and let ar be pr or
1/pr depending on whether er is a forward or reverse arc, for r
= 1 to t. Then ∆ = a1a2 . . . at is the inverse of the loop factor of
this cycle under the present orientation, ∆ W= 1 by Theorem 8. 5.
Denote the flow amount on er in the solution we are computing
by f̄r. Let b

I
r be the remaining requirement at node r at this time,

for r = 1 to t. Then from (8.9) we see that (f̄r : r = 1 to t) is the
solution of a system of equations of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12
a22 a23

a33
. . .

at−1,t−1 at−1,t
at1 att

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̄1
f̄2
f̄3
...

f̄t−1
f̄t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

bI1
bI2
bI3
...
bIt−1
bIt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.11)

where for each r, {arr, ar,r+1} = {−1, pr+1} in (8.11). This system
is near triangular, in the sense that if the flow amount on one of
the arcs in the cycle is given, say α, the flow amounts on the
other arcs can be computed by back substitution from (8.11) as
affine functions of α. Also, by going around the cycle once we get
an equation for α from which α can be uniquely determined.

If f̄r is given, to determine the flow amount on the next arc in
the cycle, f̄r+1, four cases arise corresponding to the orientations
of the two arcs er, er+1. If both er, er+1 are forward arcs (see
Figure 8.4), for conservation to hold at node r + 1, we clearly
have f̄r+1 = −bIr+1 + prfr.
Similarly, if er is a forward arc and er+1 is a reverse arc, f̄r+1 =
(bIr+1 − prf̄r)/pr+1. If er is a reverse arc and er+1 is a forward

8.1. Generalized Network Simplex 605

r

r+1

r+2

er e r+1

b'r+1

f
-

r

Figure 8.4: Flow amount on er is f̄r.

arc, f̄r+1 = −bIr+1 − f̄r. If both er, er+1 are reverse arcs, f̄r+1 =
(bIr+1 + f̄r)/pr+1.

Assume that the flow amount on e1, f̄1, is α. By using the for-
mulas discussed above, all f̄r can be obtained as functions of α.
By going around the cycle once completely we get an expression
for α in terms of itself, which leads to

α = (−bI1−atbIt−atat−1bIt−1−. . .−atat−1 . . . a2bI2)/(1−∆) (8.12)
Get α = f̄1 from (8.12). Then, compute the flow amounts on the
other arcs in the cycle using the formulas developed above.

A partition (Q, L, U) for (8.8) is said to be primal feasible if the
primal basic solution corresponding to it, f̄ = (f̄ij), is feasible to (8.8),

i.e., if fij
<
= f̄ij

<
= kij for all (i, j) ∈ Q; otherwise it is said to be primal

infeasible.

How to Compute the Dual Basic Solution Associated with a
Partition

Let (Q, L, U) be a given partition for (8.8). The dual basic solution
associated with this partition is the node price vector π = (πi) obtained
from

606 Ch. 8. Generalized Network Flows

pijπj − πi = cij, for each i W= j, (i, j) ∈ Q (8.13)

aiiπi = cii, for each self loop (i, i) ∈ Q
where aii = ±1 is the single nonzero entry in the column of fii in (8.8),
and cii the cost coefficient of fii. The node price computation in each
quasitree of the basis network can be carried out separately.
If a quasitree contains a self loop, at node i say, then from (8.13),

πi = cii/aii. Using this value of πi, the node prices for the other nodes
in this quasitree can be computed from the remaining equations in
(8.13) by back substitution, going down this quasitree beginning at i
level by level.
Suppose a quasitree contains a cycle consisting of t nodes; 1, . . . , t

say; in this order, when it is oriented with an arc incident at 1, e1 =
(1, 2) as a forward arc. Let the remaining arcs on the cycle in this
order be e2, . . . , et; so, er is either (r, r + 1) or (r + 1, r) depending
on whether it is a forward or a reverse arc. Let cr, pr be the cost
coefficient, multiplier associated with er, r = 1 to t. For r = 1 to t
define ar = pr, γr = 1/pr if er is a forward arc on the cycle; otherwise
ar = 1/pr, γr = −1. ∆ = a1a2 . . . at is the inverse of the loop factor
of this cycle under the present orientation, ∆ W= 1 by Theorem 8.5.
Applying (8.13) to er on the cycle we get

πr+1 =

⎧⎪⎨⎪⎩
πr
pr
+ cr

pr
, if er is a forward arc

prπr − cr, if er is a reverse arc
(8.14)

By applying (8.14) once around the cycle we get

π1 =
w

∆

∆− 1
WX
ctγt +

ct−1γt−1
at

+
ct−2γt−2
atat−1

+ · · ·+ c2γ2
at · · · a3 +

c1γ1
at · · · a2

~

Having obtained π1, the value of πj for each node j on the cycle can
be computed using (8.14) by going around the cycle. Once node prices
for all nodes on the cycle are known, the node prices of all the non-cycle
nodes in this quasitree can be computed using (8.13) by going down
each tributary tree beginning with the cycle node on it level by level.

8.1. Generalized Network Simplex 607

The Primal Simplex Optimality Criterion

Given a primal feasible partition (Q, L, U) for (8.8) associated with
the BFS f̄ , and the dual basic solution π, the relative cost coefficient
of arc (i, j) ∈ A wrt this partition is cij = cij − (pijπj − πi) if i W= j, or
= cii−aiiπi if i = j, where aii is the single nonzero entry in the column
associated with fii in (8. 8). (Q, L, U) is an optimum partition for
(8.8), and f̄ is an optimum solution for it if

cij > 0 implies f̄ij = fij, i. e.,(i, j) ∈ L (8.15)

cij < 0 implies kij is finite and f̄ij = kij, i.e.,(i, j) ∈ U

If (8.15) does not hold, define

E = {(i, j) : (i, j) ∈ L ∪U and violates (8.15) } (8.16)

E is the set of nonbasic arcs eligible to be an entering arc for a
pivot step in the present primal feasible partition to continue the primal
simplex algorithm.

Basis Representation of an Entering Arc

Let Q, L, U be the present primal feasible partition for (8.8), and
suppose the nonbasic arc (g, h) has been selected as the entering arc
for a pivot step in it. To carry out the computations in the ensuing
pivot step we need the updated column of the entering variable fgh
wrt the present basic set Q, which is the pivot column for the pivot
step. Let H(g, h) denote the original column of fgh in (8.8). H(g, h) =
−I.g + pghI.h (here I is the unit matrix of order n) if g W= h, or =
aggI.g if g = h (agg = ±1 is the unique nonzero entry in the column
of fgg in (8.8)). The updated column of fgh wrt Q is the vector of
coefficients in the representation of H(g, h) as a linear combination of
the basic columns, hence it is called the basis representation of the
entering arc wrt the basic set Q. If B is the present basis (the matrix
consisting of the columns corresponding to the basic arcs inQ in (8.8)),
this representation, denoted by y is the solution of

608 Ch. 8. Generalized Network Flows

By = H(g, h) (8.17)

So, y is the vector of flow values on the basic arcs in Q to meet a
requirement of −1 unit at node g, and pgh units at node h, while the
flow amounts on all the nonbasic arcs are 0. So, y can be computed
directly using the procedure described earlier for computing the flows
on basic arcs to meet specified requirements at the nodes. For any
i ∈ N , let Pi(Q) denote both the predecessor path of i in its quasitree
in Q, or the set of arcs on this path. Obviously, nonzero entries in the
basis representation y of (g, h) correspond to arcs in Pg(Q) ∪ Ph(Q).
Selection of the Dropping Arc and Updating
the Primal Solution in a Pivot Step

Let (Q, L, U) be the present primal feasible partition for (8.8)
associated with the BFS f̄ = (f̄ij) in which the optimality criterion
(8.15) is violated. Suppose the nonbasic arc (g, h) has been selected as
the entering arc in this partition for a primal simplex pivot step. Let
y = (yij : (i, j) ∈ Q) be the updated column of the entering variable
fgh. Let Pg(Q), Ph(Q) denote the predecessor paths (or the set of arcs
on these paths) of g, h in their quasitrees in Q. In this pivot step we
keep the flow amounts on all the nonbasic arcs other than (g, h) at
their present values, change the flow amount on the entering arc (g, h)
from its present f̄gh to f̄gh + δλ, where δ = +1 if (g, h) ∈ L, or −1 if
(g, h) ∈ U; and reevaluate the flow amounts on the basic arcs in Q as
functions of λ. This leads to the solution f̂(λ) = (f̂ij(λ)) where

f̂ij(λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f̄ij for (i, j) W= (g, h) in L∪U

f̄ij + δλ for (i, j) = (g, h)

f̄ij − δλȳij for (i, j) ∈ Q

(8.18)

Thus f̂ij(λ) differs from f̄ij only if (i, j) ∈ {(g, h)}∪(Pg(Q)∪Ph(Q)).
The minimum ratio in this pivot step is the maximum value for λ that
keeps f̂(λ) primal feasible, it is

8.1. Generalized Network Simplex 609

θ = Min. {kgh − fgh} ∪
l
kij − f̄ij
−δyij

: (i, j) ∈ Q and δyij < 0

M
∪l

f̄ij − fij
δyij

: (i, j) ∈ Q and δyij > 0

M
(8.19)

In computing θ we adopt the convention that the minimum in the
empty set is∞. θ is always nonnegative. If θ =∞, the unboundedness
criterion is satisfied, f̂(λ) remains feasible for all λ

>
= 0 and its objective

value → −∞ as λ → +∞, we terminate the algorithm. If θ is finite,
let

D = {(i, j) : (i, j) ∈ Q ∪ {(g, h)} ties for the minimum in (8.19)}
(8.20)

D⊂ {(g, h)}∪(Pg(Q)∪Ph(Q)) is the set of blocking arcs, i.e., arcs
which are among those first driven to an upper or lower bound by an
attempted change in the value of fgh away from the bound it currently
equals. Arcs in D are those which are eligible to be the dropping or
leaving arc in this pivot step. Let (r, s) ∈ D denote the arc chosen
as the dropping arc in this pivot step.
This pivot step is degenerate if θ = 0, nondegenerate if θ > 0.

f̂(θ) is the new BFS obtained after this pivot step. Notice that there
is no change in the BFS in a degenerate pivot step.
If (r, s) = (g, h), (g, h) is moved from L or U where it is presently

contained, into the other set. There is no change in Q. This gives the
new partition. Since there is no change in Q, there are no changes in
the node labels or the dual solution π.
If (r, s) W= (g, h), delete (g, h) from L orU which contains it presently.

Drop (r, s) from Q, and include (g, h) in Q in its place. Include (r, s)
in L or U depending on whether f̂rs(θ) = frs or krs respectively. Since
there is a change in the basic set of arcs, the node labels and the dual
basic solution have to be updated as described below.
After all the necessary updatings are carried out, the primal simplex

algorithm moves to the next step with the new partition.

610 Ch. 8. Generalized Network Flows

Updating the Node Labels and Node Prices in a Pivot Step

Let (Q, L, U) be the present partition, (g, h) the entering arc, and
(r, s) W= (g, h) the leaving arc. Let Pg(Q), Ph(Q) be the predecessor
paths (or the set of arcs on these paths) of g, h in their quasitrees
in Q. Q̂ = Q ∪ {(g, h)}\{(r, s)} is the new basic set of arcs in the
next partition. Q̂ contains a new cycle that Q does not contain iff
(r, s) ∈ Pg(Q) ∩ Ph(Q).
If Pg(Q) ∩ Ph(Q) = ∅, nodes g, h belong to different quasitrees in

Q. If Pg(Q)∩Ph(Q) W= ∅, nodes g, h belong to the same quasitree, and
both Pg(Q), Ph(Q) contain the cycle in this quasitree.
For each i ∈ N define Pig(Q) to be the empty path if i is not an

ancestor of g, or the portion of the predecessor path of g up to node i
the first time that i appears on the path if i is an ancestor of g. In the
latter case Pig(Q) is a simple path beginning with g and ending with
i. We will also use the same symbol Pig(Q) to denote the set of arcs
on this path.
Let π = (πi), π̂ = (π̂i) denote the dual basic solutions wrt Q, Q̂

respectively. Removing the outgoing arc (r, s) from Q without adding
the incoming arc (g, h) creates a unique tree in Pg(Q)∪Ph(Q), which
we denote by dd. It is possible that dd may consist of a single node
only. See Figures 8.5, 8.6, 8.7. π̂i = πi for all nodes i except those
on dd, as can be verified from the manner in which the dual solution
is computed by the procedure discussed above. So, it is necessary to
update the node prices only for the nodes in dd in this step.
When Pg(Q)∩Ph(Q) W= ∅, we define
x : the node on Pg(Q) such that Pxg(Q) = Pg(Q)\Ph(Q)

(8.21)

y : the node on Ph(Q) such that Pyh(Q) = Ph(Q)\Pg(Q)
If g and h belong to the same tributary tree, then x = y, and this

is the first common node on Pg(Q) and Ph(Q). See Figure 8.5. If g
and h belong to different tributary trees of the same quasitree, then
x, y are the roots (i.e., cycle nodes) of these quasitrees. See Figure 8.6.
We now discuss the procedures for updating the node labels and node
prices under several cases separately.

8.1. Generalized Network Simplex 611

Dropping arc

(r , s)

Entering arc

x = y

g h

Figure 8.5: The tree dd is marked with thick lines.

In Figures 8.5 to 8.8 orientations of the arcs are not shown. On
each non-cycle arc, the node at the top is the predecessor of the node
at the bottom. Cycles are drawn in such a way that as you move in
the clockwise direction, you move from a node to its predecessor.

CASE 1 : Pg(Q)∩Ph(Q) = ∅, AND THE DROPPING ARC (r, s) ∈
Pg(Q).

Let i, j be the predecessor, successor nodes respectively, among r, s.
So, PI(j) =±i and (r, s) is either (i, j) or (j, i). Make PI(g) =−h, SI(h)
= g, SI(i) = SI(j) = ∅. Reverse the predecessor, successor relationships
on each arc along the path Pjg(Q). Make corresponding changes in the

612 Ch. 8. Generalized Network Flows

Entering arc
g h

1 2

3

4

5

6 7

x y

i j

D A (r, s)

Figure 8.6: The dropping arc, DA, is on Pxy(Q). The tree dd is marked
with thick lines. Position after this pivot step is indicated in Figure
8.8(b).

successor index and brother indices of nodes along this path, and their
brothers, as in Section 5.4. See Figures 8.7, 8.8 (a). The updating of
other node labels such as the depth label, thread label, etc. can be
carried out in a similar way. We leave these to the reader, in this and
in the following cases.
Node prices change only for nodes in dd. After updating all the node

labels, the values of π̂i for i ∈ dd are computed using (8.13) beginning
with the known value of π̂h = πh.

CASE 2 : Pg(Q)∩Ph(Q) = ∅, AND THE DROPPING ARC (r, s) ∈
Ph(Q).
Define nodes i, j as in Case 1. Make PI(h) = g, SI(g) = −h, SI(i) =

SI(j) = ∅. Reverse the predecessor, successor relationships on each arc
along the path Pjh(Q). Make corresponding changes in the successor
index and brother indices of nodes along this path, and their brothers,
as in Section 5.4.
In this case node prices are updated for nodes on dd using the known

value of π̂g = πg as mentioned in Case 1.

8.1. Generalized Network Simplex 613

Dropping arc

(r , s)

Entering arc
g

1 2 i

j

h

34

Figure 8.7: Illustration of Case 1. The tree dd is marked with thick
arcs. Position after the pivot step is indicated in Figure 8.8(a).

CASE 3 : Pg(Q)∩Ph(Q) W= ∅, AND THE DROPPING
ARC (r, s) IS NOT IN Pg(Q)∩Ph(Q).

If (r, s) ∈ Pg(Q)\Ph(Q), update the node labels and node prices as
in Case 1. If (r, s) ∈ Ph(Q)\Pg(Q) update the node labels and node
prices as in Case 2.

CASE 4 : THE DROPPING ARC (r, s) ∈ Pg(Q) ∩ Ph(Q),
BUT NOT ON THE CYCLE IN THIS QUASITREE.

See Figure 8.5. In this case nodes g, h belong to the same tributary
tree in Q and nodes x, y defined in (8.21) are the same. dd ∪ {(g, h)}
forms a new quasitree in the new basic set Q̂. The cycle in this new
quasitree is a new cycle that is created, and it contains the entering arc
(g, h). Update the node labels as in Case 1. Compute the new node
prices π̂i for nodes i in this new quasitree by the procedure discussed
earlier. Node prices at all other nodes remain unchanged.

CASE 5 : THE DROPPING ARC (r, s) IS ON THE CYCLE IN
Pg(Q) ∩ Ph(Q).

See Figure 8.6. In this case dd∪{(g, h)} forms a new quasitree in Q̂.
Define nodes i, j as in Case 1. If (r, s) ∈ Pxy(Q), make PI(h) = g, SI(g)

614 Ch. 8. Generalized Network Flows

h

g

1

2

3

4 g h

1 2

3

4

5

6 7

(a) (b)

Figure 8.8:

= −h; and reverse the predecessor, successor relationships on each arc
along the path Pjh(Q). See Figures 8.6, 8.8 (b). If (r, s) ∈ Pyx(Q),
make PI(g) = −h, SI(h) = g; and reverse the predecessor, successor
relationships on each arc along the path Pjg(Q). Make corresponding
changes in the successor index and brother indices of nodes along these
paths, and their brothers, as in Section 5.4.

Compute the new node prices π̂i for nodes i in this new quasitree by
the procedure discussed earlier. Node prices at all other nodes remain
unchanged.

8.2. Resolution of Cycling 615

The Primal Simplex Method for (8.8)

If a primal feasible partition is known, (8.8) can be solved by initiat-
ing the primal simplex algorithm with it. Each primal feasible partition
obtained in this algorithm is checked for optimality. If the optimality
criterion (8.15) is satisfied, the present BFS is optimal and the algo-
rithm terminates. Otherwise, an entering arc is selected among those
nonbasic arcs eligible to enter, and a pivot step is carried out using the
procedures discussed above. The same process is then repeated with
the new partition.
If a primal feasible partition for (8.8) is not known, select a spanning

tree in G, and make it into a basic set Q for (8.8) by including an
additional arc in this spanning tree. Partition the nonbasic arcs into
L, U arbitrarily and generate the initial partition (Q, L, U). If it
is primal feasible, use it to initiate the primal simplex algorithm. If
the initial partition is primal infeasible, alter the lower bounds and
capacities on basic arcs and construct a Phase I problem exactly as
discussed in Section 5.4 for the pure network flow problem. Solve the
Phase I problem by the primal simplex algorithm beginning with this
initial feasible partition for it. At Phase I termination, we will either
obtain a feasible partition for the original problem (8.8), or conclude
that it is infeasible.

8.2 Resolution of Cycling Under Degen-

eracy in the Primal Simplex Algorithm

for Generalized Network Flows

The potential theoretical consequences of degeneracy (cycling and stalling)
in the primal simplex method have already been explained in Chapter
5 and possible remedies for them in the minimum cost pure network
flow problem have been discussed. Similar techniques are needed in the
generalized network flow problem too under degeneracy. In this section
we discuss a method developed by Elam, Glover, and Klingman [1979]
for resolving cycling under degeneracy in the primal simplex algorithm
for the minimum cost generalized network flow problem (8.8) when

616 Ch. 8. Generalized Network Flows

the multiplier vector (pij) > 0. It is called the method of strongly
convergent partitions or the strongly convergent primal sim-
plex algorithm or the SC method in short. It can be viewed as
an extension of the method of strongly feasible partitions for the min-
imum cost pure network flow problem discussed in Section 5.4, to the
generalized network case.
The main idea behind the SC method is the following. A subset

of feasible partitions for (8.8) called strongly convergent feasible
partitions or SC partitions is defined. It is shown that (8.8) always
has an SC partition when it is feasible. The method is initiated with an
SC partition. A dropping arc choice rule which determines the dropping
arc uniquely and unambiguously, and maintains the SC-character in the
next partition, is developed. So, when the primal simplex algorithm is
initiated with an SC partition and executed using this special dropping
arc choice rule, it is restricted to SC partitions throughout. Finally it
is shown that under this restriction it cannot cycle, and hence has to
terminate in a finite number of pivot steps, and it can only do so by
satisfying either the unboundedness or the optimality criterion.
Let (Q, L, U) be a feasible partition for (8.8). In this partition,

a basic arc (i, j) ∈ Q is said to be a forward basic arc if node i is
a predecessor of node j, or if i = j and the arc is a slack self loop; a
reverse basic arc otherwise. For any subset of basic arcs A ⊂ Q,
FOR(A), REV(A) denote the sets of forward and reverse basic arcs
in A respectively. We have already defined loop factors of cycles, and
path factors of simple paths, which depend on the orientation selected
for those objects. Extending this concept, here we define a collective
gain/loss factor for any subset of basic arcsA ⊂ Q to be ψ(A) given
by

ψ(A) =
Product of multipliers associated with arcs in REV(A)

Product of multipliers associated with arcs in FOR(A)

where the product of multipliers in a set is defined to be 1 if that set
is ∅.
In a feasible flow vector f̄ = (f̄ij) for (8.8), an arc (i, j) is said to

have lower leeway if f̄ij > fij, upper leeway if f̄ij < kij, both
lower and upper leeways or double leeway if fij < f̄ij < kij .

8.2. Resolution of Cycling 617

In a primal feasible partition (Q, L, U) for (8.8), a basic arc (i, j) ∈
Q is said to be an SC arc or to have SC leeway if it is a forward
basic arc with a lower leeway or a reverse basic arc with an upper
leeway. The primal feasible partition (Q, L, U) for (8.8) is said to
be a strongly convergent partition or SC partition if: (1) all
basic arcs have SC leeway in it, and (2) the collective gain/loss factor
of every cycle in Q that is not a self loop is < 1. It is always possible
to construct an initial SC partition which may involve some artificial
variables, since a basic set consisting of slack or surplus self loops,
possibly artificial, satisfies the condition for being an SC partition for
the appropriately set Phase I problem.
In a pivot step of the primal simplex algorithm in a feasible partition

(Q, L, U) for (8.8), let (g, h) be the nonbasic arc selected as the
entering arc, and let (yij : (i, j) ∈ Q) be its basis representation.
Define

B+ = {(i, j) : (i, j) ∈ Q and yij > 0}
B− = {(i, j) : (i, j) ∈ Q and yij < 0}
B = B+ ∪B− (8.22)

H = {(i, j) : either (i, j) ∈ FOR(B) and yij < 0,
or (i, j) ∈ REV(B) and yij > 0}

J = {(i, j) : either (i, j) ∈ FOR(B) and yij > 0,
or (i, j) ∈ REV(B) and yij < 0}

Hence H is the set of all forward basic arcs whose flow change has
the same sign, and all reverse basic arcs whose flow change has the op-
posite sign, to that of the entering arc (g, h) in this pivot step. A simi-
lar symmetric interpretation holds for J. Elam, Glover, and Klingman
[1979] have proved that H = Pg(Q),J = Ph(Q), if Pg(Q)∩Ph(Q) = ∅;
and that in general even when Pg(Q) ∩ Ph(Q) W= ∅, H consists of con-
secutive arcs in Pg(Q) and J consists of consecutive arcs in Ph(Q).
Index the arcs in H, J in ascending order, in the same sequence as
they are encountered by a trace of the predecessor paths of g and h
starting at these nodes. Thus if H W= ∅, the arc joining g and its pre-
decessor PI(g) is the first in H; and if J W= ∅, the arc joining h and its

618 Ch. 8. Generalized Network Flows

predecessor PI(h) is the first in J, etc. In addition, include (g, h) in H
at the beginning of this set.
The set of arcs eligible to be the dropping arc in this pivot step is

the set D defined in (8.20). The SC dropping arc selection rule or
the SC pivot rule specifies that the dropping arc (r, s) in this pivot
step should be selected from D according to the following:

if (g, h) ∈ L, (r, s) is the last arc on J in the set J∩D if this
set is nonempty, otherwise it is the first arc in {(g, h)}∪H
that is in D

if (g, h) ∈U, (r, s) is the last arc in the set ({(g, h)}∪H)∩D
if this set is nonempty, otherwise it is the first arc in J that
is in D

Elam, Glover, and Klingman [1979] have shown that if the feasible
partition (Q, L, U) at the beginning of this pivot step is an SC parti-
tion, and if the dropping arc in this pivot step is selected by this special
rule, then the next partition will also be an SC partition. Furthermore,
any choice of the dropping arc other than that specified by the above
rule destroys the SC property in the next partition.
The method of strongly convergent partitions is the primal simplex

algorithm initiated with an SC Partition, and executed using the spe-
cial dropping arc choice rule given above, in each pivot step. In each
pivot step the entering arc can be selected by any rule, or even arbi-
trarily from the set of those eligible (this is the set E of (8.16)). All
partitions obtained in the algorithm will be SC partitions. It has also
been shown that in any sequence of consecutive degenerate pivot steps
in this SC algorithm, any node price that changes always increases,
i.e., they always change in a uniform direction throughout the entire
sequence of degenerate pivot steps. This is the reason for the phrase
strongly convergent in the name. A similar property was shown
to hold in Section 5.4 in the method of strongly feasible partitions for
pure network flow problems. This property guarantees that the SC
algorithm cannot cycle, and hence must terminate in a finite number
of pivot steps by satisfying either the unboundedness or the optimality
criteria. Orlin [1985] has shown that the SC pivot rule is equivalent to

8.3. General Problem 619

lexicography in its choice of the exiting arc. Thus the SC algorithm
extends the method of strong feasibility to generalized network flow
problems with positive multipliers.

A Phase I problem, which is in the same form but with a readily
available artificial SC partition, can be formulated for (8.8). When the
SC algorithm is applied to solve this Phase I problem beginning with
this initial SC partition, it will terminate finitely with either a proof
of infeasibility of the original problem, or with an SC partition for it.
If, feasible, beginning with the SC partition provided by Phase I, the
original problem can be solved finitely by the SC algorithm in Phase
II.

8.3 The Most General Generalized Net-

work Flow Problem

The generalized network flow model discussed so far can accommo-
date any LP in which the coefficient matrix has the property that
each column has at most two nonzero entries, and if there are two
nonzero entries in a column they have opposite signs. This sign con-
dition guarantees that the multiplier associated with every arc in the
corresponding generalized network is always a positive number.

The most general problem of this type is any LP in which every
column in the coefficient matrix has at most two nonzero entries, with-
out any restriction on the sign of these nonzero entries in any column.
Given such an LP, scale each column with two nonzero entries so that
one of these entries becomes equal to −1. After scaling, associate a
node with each row of the coefficient matrix. If a column has a single
nonzero entry, say in row i, associate that column with a self loop at
node i. If a column has two nonzero entries, say a “−1” in row i and
an entry of p W= 0 in row j, associate it with arc (i, j) and make p the
multiplier of that arc. Here p may be positive or negative. The LP is
equivalent to the generalized network flow problem of the form (8.8) on
this network, but some of the multipliers may be negative. The results
at the beginning of this chapter continue to hold for this problem, and it
can be solved by the implementation of the primal simplex algorithm

620 Ch. 8. Generalized Network Flows

discussed in Section 8.1. However, the SC algorithm of Section 8.2
and all the special convergence properties mentioned there are based
on the assumption that all the arc multipliers are positive, and these
properties and results may not hold for the general problem with some
negative multipliers. But recently, Arantes, Birge, and Murty [1992]
developed a special method for resolving the problem of cycling un-
der degeneracy in the primal simplex algorithm applied to this general
generalized network flow problem. This method is also a specialization
of lexicography using the special structure of this problem.

8.4 Exercises

8.1 Let (Q, L, U) be an SC partition for (8.8). Prove that the pivot
step in this partition with (g, h) as the incoming arc is nondegenerate
iff either the dropping arc (r, s) = (g, h), or (r, s) ∈ J if (g, h) ∈ L, or
(r, s) ∈ H if (g, h) ∈ U; where J, H are the sets defined in Section 8.2.

8.2 In Section 3.3 we discussed a method for transforming a single
commodity minimum cost flow problem in a pure non-bipartite net-
work, into a similar problem on a pure bipartite network. Show that
the minimum cost flow problem (8.8) in a non-bipartite generalized
network G can similarly be transformed into a problem on a bipartite
generalized network (Malek-Zavarei and Aggarwal [1972]).

8.3 Consider the mixed 0-1 integer programming problem of mini-
mizing z(x) = cx subject to, d

<
= Ax

<
= b, xj ∈ {0, 1} for all j ∈ N1,

0
<
= xj

<
= uj for all j ∈ N\N1; where A is of order m × n, N = {

1, · · · , n}, N1 ⊂ N, and A.j has at most two nonzero entries for each
j ∈ N\N1. Show that this problem can be transformed into a mixed
0-1 generalized network flow problem (i.e., a generalized network flow
problem in which the flow on a specified subset of arcs is required to be
0 or 1). In addition, for each j ∈ N\N1 suppose the following holds:
If A.j contains a single nonzero entry, it is +1 or −1; if it contains
two nonzero entries, one is + 1 and the other is −1. In this case show
that this problem can be transformed into a mixed 0−U pure network
flow problem (i.e., one in which the flow on a specified subset of arcs
is required to be either the lower bound 0 or the capacity on that arc).

8.4. Exercises 621

8.4 Let G = (N ,A, f, k, p) be a generalized network with p as the
multiplier vector. Prove that a necessary and sufficient condition for
the existence of a feasible circulation in G is that the following condition
holds for every tree (N, A) in G, and any node price vector π = (πi) in
G satisfying: πi = 0 for i ∈ N\ N, and πi− πjpij = 0 for all (i, j) ∈ A.3

(i,j)∈A
kij(max. {0, πi − pijπj}) >=

3
(i,j)∈A

fij(max. {0,pijπj − πi})

Verify that no feasible circulation exists in the network in Figure
8.9, where the data on arc (i, j) is fij , kij , pij in that order; and that
the above condition fails to hold for the tree with arcs (1, 2), (3, 1) and
the vector π = (1, 1/2, 1).

1

23

0,1,1 0,1,2

1,1,1

Figure 8.9:

(Hassin[1981])

8.5 Cash Flow Management Model Consider a discrete time
deterministic cash flow problem. There are n time periods in the plan-
ning horizon. The supply and demand for cash in each time period is
known in advance. Spare cash can be saved from one period to the
next in a savings account at fraction yield of α per period, or invested
in a bond portfolio at fraction yield of β per period. All transactions
occur at the beginning of a period, and returns are obtained at the end
of a period. c1, c2 are the per unit fraction cost of converting cash into
bond portfolio, a bond back into cash, respectively. Conversions are

622 Ch. 8. Generalized Network Flows

instantaneous and can be carried out either way in any quantity. S(t)
is the new supply (incoming) of cash in addition to any return from
investments, and D(t) is the demand for cash (to be paid out) at the
beginning of period t = 1 to n. There is an initial inventory in bond
portfolio of y0 at the start.

(i) It is required to determine the amounts to be invested in each as-
set in each period so as to maximize the return from the final plan-
ning period. Formulate this as a generalized network flow prob-
lem on a network with 2n+3 nodes. Construct this network model
for the numerical problem in which n = 3, (S(1), S(2), S(3)) =
(12, 8, 5), (D(1),D(2),D(3)) = (4, 10, 10) in million$, α =
.05,β = .08, c1 = c2 = .02 and y0 = 1 in million$ units; and
obtain the optimum solution.

(ii) Consider the same problem with two additional features. One is
a minimum cash balance specification, i.e., the firm is required by
policy to put down a minimum of L units in cash in the savings
account from each period to the next. The other is a borrowing
capability at a fraction interest of γ per period up to an upper
limit of U units in any period. Discuss the modifications to be
made in the network model of (i) to incorporate these features.
Construct this model for the numerical problem in which n = 4,
(S(1) to S(4)) = (5, 10, 20, 15), (D(1) to D(4)) = (16, 12, 8, 8),
α = .05, β = .08, γ = .10, L = 5, U = 10, y0 = 10. The cash unit
is one million $. Find the optimum cash flow policy. Solve the
same numerical problem with all the data the same, except γ =
.09, .1025, .12 respectively. Verify that as γ increases from .09 to
.10, and from .1025 to .12, the optimum policy actually borrows
more, a counterintuitive phenomenon. Explain.

(iii) Assume β > α. N∗ is said to be a forecast horizon for period
t if demands in periods beyond N∗ have no effect on amounts
converted from cash into bonds or vice versa at period t in an
optimum policy. If N I is the smallest positive integer N satisfying
(1− c1)(1− c2)(1+ β)N

>
= (1+α)N, then prove that min. {n, t+

N I − 1} is a forecast horizon for period t.

8.4. Exercises 623

(iv) Instead of a single bond-portfolio, suppose there are r different

assets (r
>
= 2) in which cash can be invested in each period. Given

corresponding data for each asset, discuss the modifications to be
made in the network model to handle this change.

(Golden, Liberatore, and Lieberman [1979])

8.6 Consider the minimum cost flow problem (8.8) on the generalized
network G = (N ,A), with the multiplier vector (pij : (i, j) ∈ A) > 0,
and |N | = n. Let (Q, L, U) be a feasible partition for this problem
with the arcs in Q arranged and numbered as e1, . . . , en. Let B be the
basis for (8.8) corresponding to Q. Let en+1 be a nonbasic arc with
(yt : t = 1 to n) as its basis representation wrt Q. Let β = B−1. For
each t = 1 to n such that yt W= 0 define St. = (βt.)/yt, and let S be the
matrix with all these rows St.. So, if r = |{t : yt W= 0}|, then S = (stj)
is of order r × n. Prove the following:

(i) For each t = 1 to n, all the nonzero elements of βt. have the same
sign. This shows that the unisign property discussed in Theorem
1.8 also holds in generalized networks in which all multipliers are
positive.

(ii) For some t1, t2, if St1. is lexicographically greater than St2., then

st1j
>
= st2j for all j = 1 to n.

(iii) Suppose the partition (Q, L, U) was obtained in the process
of solving (8.8) by the primal simplex algorithm, and that en+1
is the arc selected to be the entering arc into it. Suppose the
dropping arc in this pivot step has been selected by the special
dropping arc choice rule specified by the SC algorithm, and it is
er. Then show that Sr. is the lexico maximum row among the
rows of S.

Comment 8.1 Bhaumik [1973], Glover, Hultz, Klingman, and Stutz
[1978], Golden, Liberatore, and Lieberman [1979], Hamacher and Tufekci
[1987], are some references discussing applications of generalized net-
work flow models.

624 Ch. 8. Generalized Network Flows

In general, any LP in which the coefficient matrix of constraints
other than individual bound restrictions on single variables contains at
most two nonzero entries per column, can be treated as a generalized
network flow problem. In this chapter we discussed an implementation
of the primal simplex method based on rooted loop labelings of qua-
sitrees, for the generalized minimum cost flow problem. Although total
unimodularity is not there, this implementation makes it possible to
execute the primal simplex method on this problem in a purely com-
binatorial mode without the use of basis inverses. Brown and Mcbride
[1984], Elam, Glover, and Klingman [1979], Glover and Stutz [1973],
Nulty and Trick [1988] are some references on this topic. Elam, Glover,
and Klingman [1979] report that this implementation gave excellent
performance in computational tests. For solving randomly generated
generalized minimum cost flow problems it was far superior than sim-
plex based general purpose LP codes. However it takes about 3 times
the computer time than a corresponding code does to solve a pure
minimum cost flow problem of comparable size.
Several other algorithms are available for this problem. One of the

earliest is a primal-dual algorithm due to Jewell [1962]. Jensen and
Bhaumik [1977] describe a shortest augmenting path type approach
for this problem. Bertsekas and Tseng[1988] have extended their re-
laxation methods (discussed in Section 5.6 for pure minimum cost flow
problems) to handle minimum cost flow problems in generalized net-
works.

8.5 References

J. C. ARANTES, 1991, “Resolution of Degeneracy in Generalized Networks and

Penalty Methods for Linear Programming,” Ph. D. dissertation, University of

Michigan, Ann Arbor, MI.

J. C. ARANTES, J. R. BIRGE, and K. G. MURTY, 1992, “Studies of Lexicog-

raphy in the Generalized Network Simplex Method,” Tech. report, University of

Cincinnati, Cincinnati, Ohio.

D. BERTSEKAS and P. TSENG, Jan. - Feb. 1988, “Relaxation Methods for Min-

imum Cost Ordinary and Generalized Network Flow Problems,” OR, 36, n0. 1(93-

114).

8.5. References 625

G. BHAUMIK, 1973, “Optimum Operating Policies of a Water Distribution System

with Losses,” Ph. D. dissertation, University of Texas at Austin, TX.

G. G. BROWN and R. MCBRIDE, 1984, “Solving Generalized Networks,” MS,

30(1497-1523).

V. CHANDRU, C. R. COULLARD, and D. K. WAGNER, July 1985, “On the

Complexity of Recognizing a Class of Generalized Networks,” OR Letters, 4, n0.

2(75-78).

J. ELAM, F. GLOVER, and D. KLINGMAN, Feb. 1979, “A Strongly Convergent

Primal Simplex Algorithm for Generalized Networks,” MOR, 4, no. 1(39-59).

F. GLOVER, J. HULTZ, D. KLINGMAN, and J. STUTZ, Aug. 1978, “Generalized

Networks: A Fundamental Computer Based Planning Tool,” MS, 24, no. 12(1209-

1220).

F. GLOVER and D. KLINGMAN, 1973, “On the Equivalence of Some Generalized

Network Problems to Pure Network Problems,” MP, 4(369-378).

F. GLOVER and J. MULVEY, May-June 1980, “Equivalence of the 0-1 Integer

Programming Problem to Discrete Generalized and Pure Networks,” OR, 28, no.

3(829-836).

F. GLOVER and J. STUTZ, 1973, “Extensions of the Augmented Predecessor In-

dex Method to Generalized Network Problems,” TS, 7(377-384).

B. GOLDEN, M. LIBERATORE, and C. LIEBERMAN, 1979, “Models and Solu-

tion Techniques for Cash Flow Management,” COR, 6, no. 1(13-20).

H. W. HAMACHER and S. TUFEKCI, 1987, “On the Use of Lexicographic Mini-

mum Cost Flows in Evacuation Modeling,” NRLQ, 34(487-503).

R. HASSIN, 1981, “Generalizations of Hoffman’s Existence Theorem for Circula-

tions,” Networks, 11, no. 3(243-254).

P. A. JENSEN and G. BHAUMIK, 1977, “A Flow Augmentation Approach to the

Network with Gains Minimal Cost Flow Problem,” MS, 23(631-643).

W, S, JEWELL, 1962, “Optimal Flow Through Networks with Gains,” OR, 10(476-

499).

M. MALEK-ZAVAREI and J. K. AGGARWAL, 1972, “Optimal Flow in Networks

with Gains and Costs,” Networks, 1(355-365).

J. MAURRAS, 1972, “Optimization of the Flow Through Networks with Gains,”

MP, 3(135-144).

R. D. MCBRIDE, July 1985, “Solving Embedded Generalized Network Problems,”

EJOR, 21, n0. 1(82-92).

W. G. NULTY and M. A. TRICK, April 1988, “GNO/PC Generalized Network

626 Ch. 8. Generalized Network Flows

Optimization System,” OR Letters, 7, no. 2(101-102).

J. B. ORLIN, 1985, “On the Simplex Algorithm for Networks and Generalized Net-

works,” MPS, 24(166-178).

K. TRUEMPER, 1977, “On Max Flow with Gains and Pure Min-Cost Flows,”

SIAM J. Applied Mathematics, 32(450-456).

Index

For each index entry we provide
the page number where it is de-
fined or discussed first.

Basic arc 595
Forward 616
Reverse 616

Basis representation 607
Blocking arcs 609

Collective factor 616

Degenerate 609
Dropping arc 609

Gainy 588

Leeway 616
Double 616
Lower 616
Upper 616

Loop factor 591
Lossy 588

Multiplier 588

Near triangular 597
Network 588

Basis 595

Generalized 588
Pure 588
With multipliers 588

Nondegenerate 609

Path factor 592
Predecessor path 599

Quasitree 597

Rooted loop labeling 598

SC 616
Leeway 617
Method 616
Partitions 616
Pivot rule 618

Self loops 593
Slack 593
Surplus 593

Tributary trees 598

627

