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Â Low-order state-update matrix (N ×N)

B Full-order input matrix (N0 ×M)

B̂ Low-order input matrix (N ×M)

BL(ω), BR(ω) Acoustic signals received at the ears (freq.-domain)

C Full-order output matrix (P ×N0)
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ABSTRACT

This dissertation develops and validates a novel state-space method for binaural

auditory display. Binaural displays seek to immerse a listener in a 3D virtual auditory

scene with a pair of headphones. The challenge for any binaural display is to compute

the two signals to supply to the headphones. The present work considers a general

framework capable of synthesizing a wide variety of auditory scenes. The framework

models collections of head-related transfer functions (HRTFs) simultaneously. This

framework improves the flexibility of contemporary displays, but it also compounds

the steep computational cost of the display. The cost is reduced dramatically by for-

mulating the collection of HRTFs in the state-space and employing order-reduction

techniques to design efficient approximants. Order-reduction techniques based on the

Hankel-operator are found to yield accurate low-cost approximants. However, the

inter-aural time difference (ITD) of the HRTFs degrades the time-domain response

of the approximants. Fortunately, this problem can be circumvented by employ-

ing a state-space architecture that allows the ITD to be modeled outside of the

state-space. Accordingly, three state-space architectures are considered. Overall, a

multiple-input, single-output (MISO) architecture yields the best compromise be-

tween performance and flexibility. The state-space approximants are evaluated both

empirically and psychoacoustically. An array of truncated FIR filters is used as a

pragmatic reference system for comparison. For a fixed cost bound, the state-space

xviii



systems yield lower approximation error than FIR arrays for D > 10, where D is the

number of directions in the HRTF collection. A series of headphone listening tests

are also performed to validate the state-space approach, and to estimate the mini-

mum order N of indiscriminable approximants. For D = 50, the state-space systems

yield order thresholds less than half those of the FIR arrays. Depending upon the

stimulus uncertainty, a minimum state-space order of 7 ≤ N ≤ 23 appears to be

adequate. In conclusion, the proposed state-space method enables a more flexible

and immersive binaural display with low computational cost.
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CHAPTER I

Introduction

The human sense of hearing, audition, provides a remarkable degree of spatial

sensitivity. Using only two acoustic sensors, our left and right ears, we perceive a

rich three-dimensional auditory environment. We intuitively localize simultaneous

sound sources, even in noisy and chaotic listening conditions. Furthermore, we can

often perceive not only the location of a sound source, but also the spatial extent of

the source and characteristics of the surrounding environment, or enclosure. That

so much spatial information is perceived without the aid of a large array of acoustic

sensors raises many questions about the human auditory system, as well as presents

intriguing possibilities for virtual auditory display.

The two acoustic signals that we observe are sufficient input for us to construct

the spatially rich auditory scene that we perceive. Therefore, the percept of an

arbitrary auditory scene can be created by synthesizing two acoustic signals and

presenting those signals over headphones. The difficulty, of course, is in creating the

two signals so that the correct spatial cues are perceived by the listener. Researchers

from across psychoacoustics, signal processing, and music composition have explored

this question. Burgeoning applications, from video games to sonar to sonification,

1
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Figure 1.1: A sample virtual auditory scene for a sonar operator using a binaural
display. The sonar operator is able to simultaneously hear and localize
the innocuous schools of fish and cruise ship, as well as the nefarious
submarine passing behind.

have further motivated research on how to display a virtual auditory scene1 (VAS)

to a listener. For example, submarine sonar operators currently must steer a hy-

drophone array and listen, over headphones, to individual sources. A sonar system

that displays all sources simultaneously, with appropriate spatial cues, would allow

the sonar operator to listen to the entire underwater scene in realtime. A sample

sonar auditory scene is portrayed in Figure 1.1. A headphone system for the synthe-

sis and display of VAS is known as a binaural auditory display, or simply a binaural

display.

This dissertation considers a general framework for a flexible binaural display

system. We describe a system that can display complex and dynamic virtual audi-

tory scenes, scenes that contain multiple moving sources, spatially-extended sources,

acoustic reflections, and listener motion. The complete binaural display has several

1An auditory scene is the aggregate percept experienced by a listener due to the acoustic waves
at the listener’s ears. A virtual auditory scene is a scene that is not the result of a physical acoustic
scene, but rather is displayed to the listener using headphones.



3

inputs and two outputs. The inputs to the system are a collection of (monaural)

source signals, the time varying positions of the sources, the time-varying position of

the listener, and information about the acoustics of the listener and the environment.

The system outputs the binaural signal to display over headphones. The framework

is based on a simple ‘ray-acoustics’ model of wave propagation. This model is often

used to predict the collection of wavefronts that impinge upon a listener due to a

sound source in an enclosure. The focus of this dissertation is the subsystem after

the ray-acoustics model has been applied: a collection of wavefronts due to multiple

moving sources in an enclosure are impinging upon a listener, and the final binaural

signal at the listener’s two ears is computed from this collection.

The relationship between a plane wave impinging upon a listener, and the two

waves received at the ears is described by the Head-Related Transfer Function (HRTF)

for that listener and direction (1). HRTFs form the cornerstone of contemporary bin-

aural displays, and efficient modeling and implementation of HRTFs has been the

subject of much research throughout the last two decades. Traditional binaural dis-

plays model individual HRTFs, and hence can only display a single stationary far

field source in free space. Such primitive auditory scenes are rarely experienced in

everyday life, and binaural displays designed in this way often yield virtual auditory

scenes that lack presence2. The more flexible binaural display described in this dis-

sertation can display a wide variety of auditory scenes with an improved sense of

presence.

In the present work we develop and evaluate a novel model for a collection of

HRTFs. That is, rather than filter a source signal with a single HRTF for display,

2Presence is the sense that a percept originates from physical space. Percepts that result from
physical acoustic scenes usually exhibit presence, whereas percepts that result from virtual scenes
often exhibit little presence.
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filter the signal with a multiple of HRTFs. This approach has recently been explored

in several studies on the binaural display of complex auditory scenes that include re-

flective environments (2; 3; 4), source or listener motion (5; 6), or spatially-extended

sources (7). Remarkably, while this approach has been adopted for the display of

a variety of complex auditory scenes, few authors have noted that this approach

provides a simple framework for modeling all of the phenomena described above.

The primary contribution of this dissertation is an efficient state-space model

of a collection of HRTFs. The similarity exhibited between HRTFs at different

directions allows us to accurately model multiple HRTFs with a single low-order

state-space system. There is growing interest in state-space models of collections of

HRTFs. Three recent studies (8; 9; 10) describe state-space systems that accurately

model a collection of HRTFs. These studies are reviewed in Section 2.1.2. None

of these studies develop state-space models that are simultaneously accurate and

low-order in any specific sense, however. In the present work, we propose methods

for constructing state-space models of collections of HRTFs that are both accurate

and low-order. We find that order-reduction techniques designed for applications

in robust control are well-suited to the HRTF approximation problem. Through

a series of empirical and psychoacoustic studies, we demonstrate that the state-

space approach yields significantly lower net computational cost than an array of

independent filters. Overall, we find that a perceptually indiscriminable state-space

model yields a computational savings of nearly two orders of magnitude relative to

a full-order HRTF implementation.

The dissertation is organized as follows. The next chapter introduces the state-

space formulation of HRTFs, and describes the order-reduction techniques used to

find efficient approximants. The order-reduction methods are based on the Hankel
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operator. This operator is developed and compared to the convolution operator. One

aspect of HRTFs is found to be poorly modeled by low-order state-space systems; the

interaural time delay (ITD). However, this problem can be circumvented by consid-

ering alternative state-space architectures. Section 2.3 considers three architectures,

and also describes other (unsuccessful) attempts at modeling ITD in state-space. In

Chapter III the performance of the state-space approximants is characterized empir-

ically. Both Hankel and L∞ approximation errors are reported, as well as a common

perceptual audio error measure. In particular, we demonstrate that state-space sys-

tems outperform arrays of FIR filters of equal net cost. Chapter IV then reports on a

series of headphone listening experiments using state-space approximants of HRTFs.

These experiments estimate the minimum approximant order such that a listener

cannot tell the difference between an approximate rendering and an ideal rendering.

For comparison, an array of truncated FIR filters is included in both the empirical

and the psychoacoustic experiments.

The remainder of this chapter develops the fundamentals of spatial hearing and

binaural display, as well as motivates the proposed framework. The next section

describes the classical duplex theory of spatial hearing. Section 1.2 introduces the

HRTF and describes the measured HRTF dataset used throughout the dissertation,

as well as discusses the individuality of measured HRTFs. Section 1.3 then de-

scribes three common models for HRTFs, and Section 1.4 describes the architecture

of conventional binaural displays. The fifth section motivates the framework that is

considered in the subsequent chapters. In particular, Section 1.5.2 addresses acoustic

reflections, and how such reflections can be modeled by a binaural display. The final

section summarizes the chapter and distills the myriad of motivations into a single

hypothesis for the dissertation.
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For completeness, a preliminary study on the binaural display of ‘clouds’ of point

sources is also included. In this study, a two-stage IIR filter implementation is

proposed to efficiently model small collections of nearby point sources. This study

is described in Appendix A.

1.1 Duplex Theory

Throughout most of the last century, research in spatial hearing focused on what

is known as the “duplex theory” of sound localization, a theory derived from the

pioneering work of Lord Rayleigh (11). The duplex theory of sound localization

is predicated on the assumption that the principal cues of a sound’s location are

identified as the differences between the sound field at each ear (12). This assumption

is based on the fact that “the main difference between the two ears is that they are

not in the same place”(13). However, as will be described below, there are significant

limitations to only modelling the difference between the acoustic signals received at

each ear.

The classical formulation of duplex theory further simplifies the model of human

sound localization by assuming the acoustic signals received at each ear are identical

outside of a constant time shift and amplitude difference. The time shift is referred

to as the interaural time difference (ITD) and the amplitude difference is referred

to as the interaural level difference (ILD). Despite its simplicity, this model has

demonstrated great explanatory power for sounds on the lateral axis. Binaural signals

created in this way3 yield sound objects located inside or near the listener’s head (14).

Specifically, the sound objects are perceived to be located on the line connecting

the two ears. While there is no general rule relating localization to lateralization,

3A monaural signal that is displayed binaurally with non-zero ITD and ILD
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Figure 1.2: A plane wave impinging a spherical approximation of the human head.

many of the conclusions drawn from duplex theory lateralization experiments can be

generalized to spatial hearing in three dimensions (1).

Because the two ears are separated by an acoustically significant distance, a

sound source that is located off the median plane4 yields different path lengths to

each ear (15). The resulting time difference between when the wave front arrives at

each ear is the ITD. For periodic signals, the ITD gives rise to a phase difference

between the two ears, known as the interaural phase difference (IPD). For a monaural

signal presented binaurally with non-zero ITD, the sound object is perceived on the

side of the median plane containing the ear that receives the first wavefront. By

modeling the head as a rigid sphere with two point receivers on opposite sides of the

sphere, we find the following far field expression for the difference in path lengths,

as show in figure 1.2 (12),

∆ = α ( θ + sin θ ) (1.1)

4The median plane is the vertical plane that bisects the line connecting the two ears.
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where α is the radius of the head in meters, and θ is the angle of the sound source

from the median plane in radians. Note that this expression only holds for sound

sources in the far field; at a distance of at least 10α from the head. In this case the

sound field incident upon the head is approximately planar. Assuming the speed of

sound is constant across frequency, the ITD is given by

τ = ∆ c (1.2)

where c is the speed of sound (343 m/s), and the IPD is given by τω, where ω is

radian frequency. For an average head radius of 8.75cm, the maximum possible ITD

is about 630µs. Psychoacoustic experiments have shown that for click stimuli, the

lateral displacement of a sound object is approximately linearly proportional to the

ITD of the binaural sound, with maximum lateral displacement achieved for ITD’s

of about 1ms (1). If the ITD is much larger than 1ms the stimuli is perceived as

two sound objects (16).

For ‘continuous’ sounds5 there are no sharp transients to indicate which ear is

leading. Hence the lateral displacement of the sound object must be determined by

the phase difference between the two ears. For sinusoids with wavelength greater

than twice the diameter of the head (frequencies less than about 1 kHz), the IPD is

restricted to ±π and yields an unambiguous ITD. For frequencies greater than 1 kHz

there is a spatial aliasing problem and only a fraction of the ±α lateral displacement

can be achieved by varying the IPD from −π to π (17). Furthermore, the auditory

system seems to be insensitive to interaural phase differences for frequencies above

about 1.5 kHz (12). Hence the ITD is primarily a low-frequency cue.

The ILD, on the other hand, is primarily a high-frequency cue. The different path

5Sounds without an onset transient or other abrupt changes in the amplitude envelope.
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lengths to the two ears yield a slight level difference. More significantly, the acoustic

opacity of the head has a pronounced affect on the amplitude for wavelengths smaller

than the diameter of the head. Above 3 kHz, the head causes two acoustic effects

that vary the pressure at each ear for sources located away from the median plane.

On the ipsilateral side6, the head tends to reflect pressure waves that impinge upon

it, increasing the net pressure at the surface. For normal incidence this yields up to a

6 dB increase relative to the free field. Simultaneously, the contralateral side7 of the

head is acoustically shadowed, yielding up to a 20 dB decrease for high frequencies

relative to the free field (18). For a monaural signal presented binaurally with non-

zero ILD, the sound object is perceived on the side of the median plane containing

the ear that receives the stronger wavefront. Pyschoacoustic headphone studies have

shown that the lateral displacement varies linearly with ILD for ILD’s up to about

15-20 dB, and for ILD’s greater than 20 dB the sound object is perceived “all on one

side” (1).

While the duplex theory has proven enormously useful in binaural research, and

ITD and ILD are firmly established as primary cues used in sound localization, the

incompleteness of the theory is easily demonstrated. ITD and ILD cues allow virtual

acoustic displays to place a sound object anywhere on the line connecting the two

ears. Ideally, we seek a virtual acoustic display that allows us to place virtual sound

sources anywhere in 3D space.

Consider the set of points in 3D space that yield a common ITD and ILD pair.

If the influence of the head is neglected, and only the separation of the two ears is

considered, it is straightforward to show that the set of points that yield a single

6The ipsilateral ear is the ear that is closer to the sound source.
7The contralateral ear is the ear that is farther from the sound source.
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Figure 1.3: Sample “cone of confusion”

ITD/ILD pair define a cone centered on the interaural axis8 A sample cone is shown

in Figure 1.3. This cone is referred to as the “cone of confusion” (13) due to that

fact that listeners often make localization errors in which the listener localizes the

source within the correct cone, but located at an incorrect position within the cone.

The rate at which such errors occur varies considerably between individuals, but is

generally small in physical space and relatively large in virtual auditory space (15).

A special case of the cone of confusion is the median plane, in which case the acoustic

waves received at the two ears are nearly identical. Clearly, only monaural cues can

be used to estimate the elevation and distance of a source in the median plane.

Finally, it should be noted that listeners that are profoundly deaf in one ear can

still localize sound sources somewhat. In this case, monaural cues alone must be

used to localize the sound. Hence it is insufficient to only consider the differences

between the two ears signals.

8Strictly speaking, the set of points form a cone only in the far field. In the near field the set of
points define a 3D hyperbola.
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1.2 Head-Related Transfer Functions

Consider a listener in free space and a far field point source, as shown in Figure 1.4.

In this case, the acoustic wave is approximately planar by the time is reaches the

listener. Due to the acoustic interactions with the listener’s head, torso and pinnae,

the waves received at the listener’s ears are different from the incident plane-wave.

The ratio of the amplitude of the received and incident waves are referred to as the

head-related transfer function (HRTF) for that angle of incidence relative to the

listener. Assuming that air is a uniform isothermal gas, and the magnitude of the

pressure fluctuations is not large, then the HRTF can reasonably be modeled as a

linear time-invariant (LTI) system that is independent of source distance beyond a

scale factor. Accordingly, all source signals for a given direction are related to the

signals received at the listener’s ears by a pair of LTI filters. Let the source signal be

X(ω), and YL(ω) and YR(ω) are the waves received at the listener’s two ears. Then

YL(ω) = HL(ω | θ, φ) X(ω)

YR(ω) = HR(ω | θ, φ) X(ω) (1.3)

where HL(·) and HR(·) are the HRTFs for the left and right ears for direction (θ, φ),

and θ is the source ‘azimuth’ and φ is the source ‘elevation’ relative to the lis-

tener9. The time-domain equivalent of the HRTF is the head-related impulse re-

sponse (HRIR). Eq. (1.3) may be expressed in the time-domain using convolution,

yL(t) = hL(t | θ, φ) ∗ x(t)

yR(t) = hR(t | θ, φ) ∗ x(t) (1.4)

9The precise definitions of θ and φ depend on the specific coordinate system. Three distinct coor-
dinate systems are commonly found in the spatial hearing literature, the vertical-polar system (19),
the lateral-polar system (20), and the double-pole system (21). The vertical-polar coordinate sys-
tem is the most common, and arguably the most intuitive. This is the coordinate system used
throughout the present work. However, the lateral-polar and double-pole coordinate systems have
the notable benefit that each azimuth θ defines an interaural cone.
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Figure 1.4: A far-field point source at azimuth θ and elevation φ.

Note that in (1.3) and (1.4) the source signal is the incident plane wave that impinges

on the listener. Alternatively, the source signal can be viewed as the pressure wave

emanating from an omnidirectional point source. In this case, the right side of (1.3)

and (1.4) must be divided by r, the distance of the source from the listener.

In principle, measuring HRTFs is straightforward. By presenting a listener with

signal X(ω) at direction (θ, φ), and recording YL,R(ω) at the listener’s ears, the

HRTFs are given by HL,R(ω) = YL,R(ω)/X(ω). In practice, accurate measurement

of a listener’s HRTFs is a painstaking process. Great care must be taken in system

identification to avoid loudspeaker and microphone bias. Furthermore, the listener

must remain motionless in an anechoic chamber in order to present individual plane

wave stimuli.

1.2.1 HRTF Measurements

The HRTFs used throughout the present work were measured using a custom

built apparatus at the Naval Submarine Medical Research Laboratory (NSMRL) in

Groton, CT (17). The HRTFs of eight individuals, including the author, are used in

the present work.
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Figure 1.5: Spatial angles for which the HRTF is measured.

The NSMRL facility consists of a cubic anechoic chamber, 10 m on edge, with a

desk chair mounted at the center of the chamber. A vertical circular arc, on which

15 small 2-way Realistic speakers are mounted, is centered around the head of the

listener. The arc has radius 1.9 m, and subtends 252◦. The speakers are uniformly

distributed around the arc in 18◦ elevation increments; from φ = −36◦ up to φ = 90◦,

and back down to φ = −36◦ on the far side. The chair is rotated in 10◦ increments

to measure the HRTF at different azimuths around the head. For a given chair

angle, seven HRTFs are measured for azimuth θ0 (from elevation −36◦ to 72◦), seven

HRTFs are measured for azimuth θ0− 180◦ and one HRTF is measured for φ = 90◦.

The chair is rotated 18 times, yielding HRTFs measured 360◦ around the head in

azimuth. For each listener 253 unique HRTFs are measured. Figure 1.5 shows the

HRTF measurement points for the right-side of the listener. Note that the spatial

density of HRTF sample locations is not uniform.

Measurements are made using a pair of in-ear blocked-meatus microphones (22),

Knowles FG3329 microphones mounted in children-size earplugs (17). For each chair
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angle, each speaker is individually driven by a sequence of ten pairs of 512-point

Golay codes, which have several desirable properties for acoustic system identification

tasks (17). Tucker-Davis Technologies System II AD/DA converters with a 50 kHz

sampling rate and 16-bit resolution are used throughout. A total of 512 samples

are recorded, although the later half of the measured responses was found to be

stationary background noise. The impulse responses are equalized for the speaker

and microphone transfer functions. For compatibility with common audio hardware,

the HRIRs are resampled at 44.1 kHz and truncated to 256 samples. The complete

measurement procedure for an individual takes about 45 minutes.

1.2.2 Individuality of HRTFs

HRTFs are unique to the individual listener. It is often argued that binaural

displays should be designed using individualized HRTFs. However, HRTF measure-

ment is a time-, equipment- and subject-intensive process (17; 19), and as such there

is considerable interest in using non-individualized HRTFs. The most common non-

individualized HRTFs are measured either from simple geometric models (23), or

from anatomically average mannequins (24). Such HRTFs may yield reduced ex-

ternalization and more frequent localization errors, but are common in analytic and

numerical studies nonetheless.

In fact, it is unclear if individualized HRTFs are necessary for the display of

VAS. Localization of broadband noise is clearly degraded when non-individualized

HRTFs are used (25; 26). In particular, front-back reversals and other errors along

the cone of confusion are problematic. However, the localization of low-pass signals,

such as speech, does not degrade substantially when non-individualized HRTFs are

used (2; 27). This is perhaps due to the fact that most of the energy in speech
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signals is below 4 kHz, and as such the perceived location is dominated by simple

ITD and ILD cues, and not by fine spectral detail due to pinna-interations with the

acoustic field that are expected at higher frequencies. Finally, other studies have

found that the use of non-individualized HRTFs does not ‘degrade localization’ so

much as it simply biases localization judgements (28; 29). For example, a listener

might perceive a virtual source at a higher elevation than that of the measured

HRTF, but the percept is still compact and well externalized.

Additionally, it has been proposed that localization performance can be improved

in some cases by deliberately using non-individualized HRTFs. For example, the

use of a ‘magnified-head’ model has been proposed to improve distance perception

in binaural auditory displays (30; 31). Furthermore, listener’s that localize sound

sources accurately typically have measured HRTFs that are strongly dependent on

direction, whereas listeners whose HRTFs show less variation with direction often

demonstrate less accurate localization abilities (28). Hence with training, even a

listener with relatively poor localization skills in physical space may demonstrate

improved localization performance in virtual space constructed with someone else’s

HRTFs. This idea has motivated numerous binaural displays. One such implemen-

tation uses HRTFs measured from several individuals, and then constructs a single

representative set by clustering the HRTFs into groups for each direction, and fi-

nally selecting the most representative token from each cluster (32). Other binaural

displays allow a listener to efficiently search a database of numerous HRTFs to find

a good HRTF for each direction (28; 33), although other authors have found such

techniques to be unsuccessful (27).

There is currently a great deal of interest in methods for adapting HRTFs mea-

sured for one listener to another listeners. A recent study has found that the dif-
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ference in HRTFs measured from different individuals is largely accounted for by a

simple scaling of the frequency axis, and that this scaling is proportional to pinna

size (28; 29; 34). This implies a simple procedure for customizing non-individualized

HRTFs to new listeners (35). Other techniques involve the decomposition of mea-

sured HRTFs into features that vary with individual, such as fine spectral detail,

and features that do not, such as ITD and ILD (36; 37). Finally, there is growing

interest in coupling HRTF measurements with physical models so as to facilitate

direct anthropometric calibration (3; 28; 38; 39).

In the present work, we do not address the issue of individualized HRTFs. In

Chapter III the state-space model that we develop is evaluated empirically with

HRTFs measured from eight individuals. For each set of listener-dependent HRTFs,

we measure the approximation error between the measured HRTFs and the low-order

approximant. Chapter IV reports on a listening experiment in which five participants

are asked to discriminate between measured HRTFs and low-order approximants.

Individualized HRTFs are available for only one of the five participants. For this

participant, we show that discrimination performance is not affected by the use of

individualized versus non-individualized HRTFs. For the main component of the

listening experiment, the discrimination task is performed with non-individualized

HRTFs.

1.3 Modeling HRTFs

HRTF datasets are typically large, with hundreds of transfer functions measured

for an individual. Furthermore, measured HRTFs typically yield high-order impulse

responses, with ∼ 200 − 500 filter taps. Within this abundance of data, numer-

ous patterns are apparent. Accordingly, there is considerable interest in modeling
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HRTFs, both analytically and numerically, so as to identify important perceptual

features of the HRTF, as well as reduce the computational cost of HRTF filtering for

immersive binaural display applications.

1.3.1 Physical Models

The earliest model of an HRTF approximates the head as a rigid sphere and

the source as an omnidirectional point source at distance r from the center of the

head (11). The acoustic pressure at any point on the surface of the head, relative to

the pressure at that position in free space, is given by (18; 31)

Ĥ(ω | θ, r) = − rc

ωα2
e−j ωr

c

∞∑
m=0

(2m + 1)Pm(cos θ)
fm(ωr

c
)

f ′m(ωα
c

)
(1.5)

where ω is the frequency, θ is the angle of incidence10, and α is the radius of the head.

Pm is the Legendre polynomial of degree m, fm is the mth-order spherical Hankel

function, and f ′m is the derivative of fm with respect to its argument.

For sources positions beyond arm’s reach of the listener, Ĥ is approximately

independent of r (18; 40), and Ĥ simplifies to

Ĥ(ω | θ,∞) = −(
c

ωα
)2

∞∑
m=0

(2m + 1)Pm(cos θ)
(−j)m−1

f ′m(ωα
c

)
. (1.6)

Figure 1.6 gives |Ĥ(ω | θ,∞)| for 0◦ ≤ θ ≤ 180◦ in 20◦ increments for radius α =

8.75cm. For low frequencies, it is evident that Ĥ is independent of θ. For frequencies

above 200 Hz however, Ĥ is increasingly direction dependent. The high frequency

response generally decreases as θ increases, although there is a pronounced ‘bright

spot’ at θ = 180◦ due to the intersecting pressure waves being in phase at that point.

While the spherical model is a reasonable first-order physical approximation, it

does not necessarily yield low-order filter implementations. Binaural displays that

10The angle between the line connecting the center of the head and the point source, and the line
connecting the center of the head and the point of interest on the surface of the sphere
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Figure 1.6: Magnitude response for a far-field source impinging on a rigid sphere of
radius 8.75cm.

are based on this model typically result in frequent cone of confusion localization

errors. In particular, virtual sources located outside the horizontal plane are routinely

collapsed to zero elevation.

The simple spherical model has recently been expanded to include the torso and

pinnae (23; 41). Furthermore, the complex acoustic characteristics of the pinna have

been the focus of much research (42; 43; 44). Numerical acoustics techniques such

as the boundary element method (BEM) have also been applied for predicting the

HRTF from a detailed computer model of a listener (45).

1.3.2 Statistical Models

Linear subspace projection, such as principal component analysis (PCA), is often

used to reduce the dimensionality of HRTF data sets. These methods model the

data set as a linear combination of underlying functions (46). PCA has been applied

to several HRTF data sets and found that most of the variance in the data set can be

accounted for with only a small number of principal components (47; 48; 49; 50; 51).
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Kistler and Wightman (48) found that only the first 5 principal components are re-

quired for accurate localization performance, implying that higher-order components

contribute little to perceived location (48). Recently, other methods of dimensional-

ity reduction have been applied to HRTFs, such as nonlinear manifolds (52).

Often statistical data reduction techniques, both linear and nonlinear, provide

little, if any, physical insight. The PCA studies cited above do present a curious

physical analogy, however. The physical analogy depends on the specific HRTF rep-

resentation used in the PCA. Martens (47) and Wu et al. (51) applied PCA directly to

measured HRTFs (or equivalently the HRIRs), whereas Kistler and Wightman (48)

and Middlebrooks (49) applied PCA to the log magnitude spectrum. The former is

equivalent to modeling the transfer function as a collection of parallel LTI systems

that are summed, whereas the latter is equivalent to a series cascade of a collection

of LTI systems. A parallel LTI model is appropriate for multipath modeling, such

as individual reflections from the pinna ridges. In contrast, the series arrangement

is appropriate for modeling the transfer functions as a sequence of separate acoustic

effects, such as head interactions, followed by pinna interactions, followed by ear-

canal interactions (53). Of course, this is only an informal analogy, as the principal

components do not have any specific physical meaning. Finally, Blommer (50) ap-

plied PCA to the HRTF, treating space rather than frequency as the observation

variable. In this case, observations are made at different frequencies, and each each

observation is a two-dimension spatial frequency response surface (SFRS) (17).

While such techniques reduce the dimensionality of the HRTF data set, they do

not reduce the computational complexity of individual HRTF filters. Nonetheless,

PCA representations provide a natural space for HRTF interpolation (48), and may

yield computationally efficient structures for implementing multiple HRTFs simul-
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taneously. Such implementations would be all-zero (FIR), however. A multi-HRTF

pole-zero system would seem to be a more powerful technique for efficiently imple-

menting the spectral detail of the HRTFs. In subsequent chapters we explore one

such pole-zero structure, state-space systems, for modeling multiple HRTFs simul-

taneously.

1.3.3 Minimum-Phase Model

The phase responses of measured HRTFs are nearly minimum-phase11 if the ITD

is neglected (19; 44). This property greatly simplifies the modeling of HRTFs. There

are two benefits that the minimum-phase approximation provides for binaural au-

ditory displays. First, it implies that the complex HRTF spectrum is completely

specified by its magnitude response; for the magnitude and phase response of a

causal minimum-phase system form a Hilbert transform pair (55). Second, a causal

minimum-phase system has the minimum energy delay of all causal systems with

the same magnitude response |H(ω)| (55). These two properties allow us to model

a left-right pair of measured HRTFs as two minimum-phase systems (specified only

by their magnitude response) and a frequency-independent ITD.

The minimum-phase model of the HRTF is used throughout this dissertation, and

has become ubiquitous during the last two decades12. Several psychoacoustic stud-

ies have shown that the human auditory system is not sensitive to monaural phase

spectra, and only modestly sensitive to binaural phase spectra (57; 58). Further-

more, it has been found that use of the minimum-phase model of HRTFs is usually

indistinguishable from measured HRTFs (48; 59).

11Equivalently, nearly all zeros of the measured HRTFs lie inside the unit circle. One recent
study found a single prominent non-minimum-phase zero in measured HRTFs for frontal locations,
and hypothesized that this zero is due to a strong reflection off the pinna flange (54).

12Many binaural displays, including those described in this thesis, neglect the energy delay of
minimum-phase HRTFs, which while small compared to the ITD, is not strictly zero (56).
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1.3.4 Reduced-Order All-Zero and Pole-Zero Models

Direct implementation of measured HRTFs using convolution is computationally

expensive. Consider a left-right pair of measured HRIRs of length 256 at a sampling

rate of 44.1 kHz. Implementing a single pair of HRIRs through convolution requires

22.5 million additions and multiplications per second. While this computational

load is within the reach of modern computers, once ‘real-world’ complications such

as multiple sources, moving sources or non-anechoic environments are considered, a

22 MIPS starting point is problematic.

A simple and common method for reducing the order of the HRIR is simply to

truncate the minimum-phase impulse response. For an HRIR truncated to length

N + 1, the resulting approximant yields the minimal L2 error13 (55). However, it

is well established that such an error metric is perceptually ill suited to approx-

imating HRTFs, for it assigns relatively too much weight to high-frequencies and

large-amplitude portions of the HRTF (60). Generally speaking, humans are more

sensitive to lower frequencies, and for spatial hearing in particular, spectral notches

are known to be perceptually important (1). A modified method that uses a per-

ceptual spectral distance measure was proposed in (61). Recently, an efficient FIR

technique was proposed that couples wavelet smoothing with sparse FIR filter im-

plementations (62).

IIR filters are often preferable to FIR filters, as freeing the poles from the origin

gives the filter design additional degrees of freedom. Numerous IIR filter design

techniques have been applied to HRTFs (56; 60; 63; 64). In designing the pole-zero

filter, as for the all-zero case, optimizing the conventional L2 spectral error yields

a solution that over-emphasizes high-frequencies and large-amplitudes. To address

13The lowest RMSE in both the frequency and time domains.
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this problem Blommer and Wakefield (63) employ an L∞ spectral error measure

applied to the log-amplitude spectrum. Alternatively, the use of warped IIR filters,

so as to emphasize low-frequency accuracy, have also been employed for constructing

perceptually adequate low-order IIR filters (60).

Another IIR filter design technique that is finding increased popularity for HRTF

implementations is balanced model truncation (BMT) (7; 65; 66; 67). BMT operates

by first transforming the measured HRTF into an equivalent state-space represen-

tation. The system is then balanced and truncated to order N and converted back

into transfer function form. BMT yields a solution that is not optimal in any specific

sense, but generally exhibits features that appear favorable for HRTF approxima-

tion. In the following chapters we explore BMT, as well as another state-space order

reduction technique. Unlike the studies cited above, however, we leave the HRTF

model in state-space form and consider the net computational cost of a state-space

implementation.

1.4 Binaural Display Systems

The binaural display of an auditory scene is predicated on the assumption that

“identical stimuli at a listener’s eardrum will be perceived identically independent of

their physical mode of delivery” (68). Therefore, to immerse a listener in a virtual

auditory scene, it is sufficient to compute only the two signals that arrive at the

listener’s ears. That is, it is not necessary to compute the entire sound field of the

acoustic scene. Furthermore, the criteria for the display of a virtual auditory scene

is looser than the principle above; it is sufficient to display a binaural signal that is

perceptually equivalent, rather than physically identical, to the binaural signal that

results from the physical acoustic scene. For example, minimum-phase HRTFs are
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Figure 1.7: Block diagram of a simple binaural auditory display.

often used instead of the measured HRTFs in generating binaural auditory displays.

A primitive auditory scene that consists a single stationary far field point source

in free space can be displayed to a listener by filtering the monaural source signal with

an appropriate HRTF and presenting the result on a pair of headphones. The block

diagram for a typical binaural display is shown in figure 1.7. In this system, HL,R

is implemented as a minimum-phase filter, DL,R provides the frequency-independent

ITD, and HpL,R
−1 is the inverse of the direction-independent headphone-to-ear-canal

transfer function (HpTF), which is discussed below.

1.4.1 Headphone Equalization

The HpTF has been the subject of some debate within the binaural research

community. Numerous binaural displays have been designed that account for the

HpTF (19; 56; 69; 70), while others make no attempt to equalize for the HpTF at

all (3; 71; 72; 73). Because the HpTF is independent of source direction, the con-

tribution of the HpTF to the final signal received at the eardrums is equivalent to

filtering the source signal with a fixed transfer function14, without influencing local-

ization cues. While monaural cues can influence the perception of source location,

experimental evidence suggests that the influence of the HpTF on perceived spatial

location is negligible (74; 75; 76).

14Assuming that the HpTF is identical for both ears.
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In practice, accounting for the influence of the HpTF exactly is difficult. The

HpTF is dependent on both the headphones and the listener (77; 78); individual

measurements for a listener with a specific pair of headphones are required (74; 79).

Furthermore, the HpTF has been found to vary when the listener repositions the

headphones slightly (80). Overall, accurate compensation for the HpTF is pro-

hibitive, and may not even be beneficial. Accordingly, we have chosen to neglect

headphone compensation in the present work.

1.4.2 Interpolation and Moving Sources

HRTFs are measured for a finite number of directions surrounding the listener.

As such, it is necessary to perform interpolation if a source is to be rendered at

a position for which an HRTF has not been measured. Interpolation is especially

important for the display of moving sources, where the sound object must move

smoothly through auditory space.

One simple method of interpolation is to estimate the HRTF for the desired

location as a linear combination of HRTFs for nearby locations that surround the

desired point (81). In spite of its simplicity, the perceptual artifacts of this inter-

polation method are small, so long as the measured HRTFs are near the desired

location (82). Several variants of this method have been proposed (17; 83; 84), but

without perceptual validation.

For FIR filter implementations, linearly combining the impulse responses is a

stable method for interpolating the HRTFs. For IIR filters however, interpolating

and dynamically updating the filter coefficients can lead to instabilities and audible

artifacts (56). This is a significant practical drawback to IIR implementations and

may large explain why IIR filters are not found in any binaural auditory displays
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that allow for dynamic updating (3; 4; 56). This problem can be solved by updating

the pole/zero locations rather than the filter coefficients, although this method is

computationally burdensome (85).

Rather than compute an interpolated HRTF (and use the interpolated HRTF to

filter the source), an alternative method is to filter the source with several nearby

HRTFs and then take a linear combination of the binaural outputs. This is the bin-

aural analog of vector based amplitude panning (VBAP) for multichannel audio (86),

and has recently been implemented in several binaural auditory displays (5; 7; 67).

This implementation is attractive because it removes the need to dynamically up-

date filter coefficients; only the weights in the linear combination need to change in

realtime. However, it also requires that the source signal be filtered with multiple

HRTFs, thus compounding the computational load.

1.5 Current Challenges for Binaural Displays

From the first generation of binaural display technology, several critical challenges

that limit the technology were evident (1; 19; 87). While progress has been made to

address these challenges, none have been solved entirely. This section describes the

critical limitations of contemporary binaural displays and motivates the framework

we apply to address this problem.

Users of binaural displays often report the following types of localization errors15:

1. Loss of presence, in which the sound object is poorly externalized or ‘inside the

head.’

2. The sound object is not well-focused, in which case it yields ambiguous or

15We note the ambiguity in the interpretation of ‘error’ in this case, as there is no one-to-one
mapping between the location of a sound source in physical space and the location of a sound image
in perceptual space. See, for example (1; 28).
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diffuse directional cues.

3. Front-back reversals, in which the sound object location is mirrored across the

vertical binaural plane.

4. Compressed elevation, in which the perceived location of the sound object is

pulled toward the horizontal plane. This often occurs with virtual sources

located below the listener.

All of these problems are exacerbated when non-individualized HRTFs are used, but

persist for many listeners even with the use of individualized HRTFs and proper

headphone equalization.

Of the problems listed above, the first is perhaps the most pervasive and the

least understood. Many authors attribute the loss of presence in binaural displays

to the reliance on primitive auditory scenes, scenes that are stationary and in free

space (88). We rarely experience such primitive auditory scenes. Listeners regularly

move their heads, if only slightly, to localize sound sources. Furthermore, listeners

rarely experience free-space conditions, as there is almost always at least a single

reflecting surface: the ground (89).

To address these problems, we propose a binaural display framework that ren-

ders each source signal not at a single location, but at a collection of locations.

The remainder of this chapter motivates this framework, and describes methods for

modeling reflective environments using this framework.

1.5.1 Motivation for Modeling Collections of HRTFs

Many of the limitations of contemporary binaural displays stem from their re-

liance on individual HRTF filters. A single HRTF pair models a primitive auditory

scene. Given that we rarely experience such primitive auditory scenes in everyday
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listening, it is not surprising that binaural displays based on this model yield ‘less-

than-convincing’ virtual experiences. In contrast, a collection of HRTF pairs may

be used to model more ‘realistic’ scenes. We propose a framework for modeling au-

ditory scenes that include multiple moving sources in a reflective environment with

a collection of stationary sources in free-space. In practice, this framework requires

that each monaural source signal be filtered with multiple HRTFs simultaneously.

Rendering a monaural signal at many directions simultaneously provides several

advantages for binaural auditory displays. It can be used to display sources with

spatial-extent. For example, consider a passing flock of geese. The spatial extent of

the flock is an important aspect of the perceived sound object. Filtering a monaural

recording of squawking geese with a single HRTF pair collapses the sound object

into a point source. In order to maintain the spatial extent of the flock we should

render the squawks of each goose with a separate HRTF16.

Modeling multiple source directions simultaneously may alleviate problems asso-

ciated with the individuality of measured HRTFs as well. A monaural signal that is

displayed at a collection of nearby directions instead of a single direction may give

the listener additional spatial cues. If the HRTFs are not individualized to the lis-

tener, the spatial cues of a single HRTF may be distorted or unfocused, whereas the

cues from a collection of HRTFs may reinforce each other and improve the spatial

percept. Furthermore, the relative change in the responses between nearby directions

are less dependent on the listener than the absolute response (17; 32).

Dynamic binaural displays that employ a head-tracking device coupled with a

time-varying HRTF filter, are becoming prevalent. Head movement is an important

16Here we are assuming that the squawks of each goose are essentially identical. In this case,
a single squawk, or collection of squawks, is filtered with multiple HRTFs, and then the binaural
squawks are combined according to a poisson process to synthesize the flock (7).
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aid for resolving front-back confusions and other acoustic localization errors (90).

Recent studies have found that dynamic cues strengthen the sense of presence and

source externalization, and greatly improve localization accuracy of binaural dis-

plays (2; 91; 92; 93). In particular, head motion has been found to improve local-

ization accuracy in the median plane. In the static case, only relatively unreliable

monaural cues can be used for localization, whereas in the dynamic case, the rate of

change in ITD/ILD and other binaural cues can be used for localization (94).

Real-time updating of HRTF filters for a time-varying system presents a formidable

challenge. Transient clicks and other spurious phenomena common with adaptive fil-

ters are easily perceived by the auditory system. Rather than dynamically updating

the HRTF filters themselves, a popular alternative is to render a monaural signal

for several spatial locations, and then take a time-varying linear combination of the

binaural signals to accomplish source motion (5; 7; 67).

While the aforementioned advantages are significant, perhaps the most intriguing

advantage of modeling multiple HRTFs is that acoustic reflections can then be easily

included in the virtual auditory scene. In this case, the binaural display is no longer

limited to modeling anechoic environments. This idea is discussed in greater detail

below.

1.5.2 Reflections and Reverberation

We rarely experience anechoic environments. Indeed, anechoic chambers are sur-

prisingly uncomfortable for human subjects largely because they lack the acoustic

reflections that the auditory system expects. The lack of acoustic reflections in virtual

auditory space is often pointed to as the primary reason for the poor externalization

of many binaural displays (2; 95; 88). This has motivated recent interest in binaural
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environment modeling, and a new generation of binaural displays that incorporate

acoustic reflections and reverberation (3; 4; 56; 96).

Classically, the study of auralization is a branch of architectural acoustics con-

cerned with modeling acoustic fields in an enclosure, such as a concert hall (97).

The end result of such modeling is usually a monaural impulse response at the fixed

listening location. For an ideal omnidirectional point source and receiver in a rectan-

gular enclosure with infinitely rigid walls, the impulse response between the source

and receiver can be solved analytically (98). Unfortunately, loosening any of the

restrictions concerning the source, receiver or enclosure, yields a problem that is an-

alytically intractable. However, with the advent of numerical acoustics, numerous

room simulators have been proposed. Until recently, room simulators were restricted

to monaural auralization, although binaural auralization is now an active area of

research as well.

Acoustic room models can be divided into two categories, ‘wave’-based models

and ‘particle’-based models (4). Wave-based models, such as the waveguide mesh

and the finite element method (FEM), construct a dense network of nodes through

which acoustic waves pass (99; 100). Such methods require that the density of the

mesh be small compared to the wavelengths under consideration, hence wave-based

results are only valid for low frequencies17. Furthermore, wave-based methods are

computationally very expensive, and are not appropriate for real-time applications.

Particle-based models, such as the image-source method (101; 102) and the ray-

tracing method (98; 103), are based on the assumption of specular reflection. This

assumption is only valid for wavelengths that are small compared to the dimensions

17This is especially troublesome for binaural displays, where frequencies up to 15 kHz are critical
to the perception of elevation. Accurate simulation up to 15 kHz would require a very dense network
of nodes, with separation on the order of ∼ 1 mm.



30

of the enclosure (& 200 Hz for a medium sized room), and large compared to the

roughness of the enclosure walls. Another drawback of these methods is that they

are not well-suited to the incorporation of diffusion (4; 104). Despite the limitations

of assuming specular reflection, it is used in many contemporary artificial reverber-

ators (104; 105; 106; 107; 108). For binaural displays, the image-source method is

attractive because the direction of each reflection relative to the listener is easily

determined from the image source position.

Consider a point source in a rectangular enclosure with rigid walls. If each wall is

considered independently, and is assumed to be infinite in extent and hardness, then

the wall can be modeled by mirroring the source across the wall and then removing

the wall. Repeating this process for all six walls yields the six first-order image

sources, as shown in Fig. 1.8. These image sources must themselves be mirrored

across the other walls, and this recursive process is repeated ad infinitum. The

temporal density of reflections increases quadratically with time, while the strength

of each reflection decreases quadratically with time (98; 108). The modeled impulse

response, when plotted versus time, appears as a sequence of pulses that are initially

strong and sparse (separated by several ms), and gradually become weaker and more

densely packed, and eventually overlap. For more complex enclosures, modeling

becomes difficult; it is necessary to perform a ‘visibility’ check, which is dependent

on listener location, for each image source18 (102; 109).

The individual pulses in the early part of the impulse response (. 100 ms for

a medium-sized room) are termed early reflections whereas the later portion of the

response is termed diffuse reverberation. The wavefronts of the early reflections

impinge upon the listener from a specific direction. In contrast, the later portion

18Strictly speaking, even for rectangular enclosures, not all image sources are ‘visible’. However,
in this case it can be shown that exactly one image source in each mirrored enclosure is ‘visible.’



31

Figure 1.8: The first-order image sources of a rectangular enclosure.

of the reverberation is diffuse, with a high density of weak reflections impinging

on the listener from all directions (98). Hence, the early reflections are dependent

upon the listener position and orientation, whereas the diffuse reverberation is not.

Accordingly, many artificial reverberators employ two subsystems for auralization,

treating early reflections and diffuse reverberation separately (3; 4; 56; 104; 105; 106).

For binaural displays, there is no consensus on what features of early reflections

are perceptually necessary. Diffuse reverberation is less controversial, and often mod-

eled as an all-pass filter (105). The handling of early reflections varies considerably.

For real-time systems, complete physical modeling of early reflections is beyond the

reach of modern computing technology. As such, it is common to employ perceptual

techniques that model only the perceptually salient aspects of the reflections.

Modeling early reflections is complicated by a collection of perceptual phenomena

known as the precedence effect (1; 16). Briefly stated, when a listener experiences a

direct wave-front followed by multiple reflections (i.e. delayed wave-fronts similar to

the direct wave-front), the direct wave-front dominates many aspects of perception.
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In particular, the precedence effect accounts for the fact the we perceive the location

of a sound source largely from cues derived from the first wave-front. For click

stimuli, reflections that follow within 5 ms of the direct wave-front are perceptually

fused with the direct wave-front, and later arriving reflections are ‘grouped’ with

the direct wave-front and inhibited19 (16). However, while reflections do not corrupt

the perception of source direction, they do contribute to the overall percept of the

auditory scene.

Early reflections are known to influence our perception of timbre; concert halls are

judged, in part, on their pattern of early reflections (110). Although our perception

of source direction is usually dominated by the direction of the first wave-front,

this does not mean that the reflected wave-fronts play no role in spatial hearing.

In particular, early reflections and reverberation are known to be important to the

sense of presence and source distance (1; 95). For example, many binaural displays

control source distance by the ratio of direct to reverberant energy (3; 4).

Several studies have addressed human perception of early reflections (56; 111;

112; 113; 114; 115). These studies focused on the audibility of individual reflections.

The studies estimated the minimum intensity of a reflection with fixed delay such

that a listener can reliably detect whether or not the reflection is present. Few

psychophysical studies have explored how early reflections contribute to the spatial

hearing. For binaural display applications, there is evidence that lateral reflections

aid localization, especially for sources located in the median plane (95; 111).

Numerous binaural displays have been proposed that incorporate early reflec-

tions (3; 4; 56; 72; 95), although no studies exist comparing the efficacy of the dif-

ferent methods. Jot (56) performed an informal listening experiment and concluded

19Assuming the time delay is not so large that the reflection is perceived as a distinct echo
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that only the lateral component of the direction of each reflection is perceived, and

proposed a binaural display that renders early reflections by giving them a direction-

dependent ITD and ILD, and filtering them with a direction-independent average

HRTF. In contrast, Begault proposed a binaural display in which early reflections

are computed using a ray-tracing algorithm and individually filtered with the appro-

priate HRTF (95; 2). Recently, Hacihabiboglu proposed a binaural display in which

the direct wave-front is rendered using a high-order HRTF filter, but the length of

the filter is shortened as reflections arrive at the listener. Low-order filters are used

for the reflections, yielding a total computational complexity that is constant as

more reflections are received (72). All of these methods share the same framework:

a monaural signal is rendered by filtering the source with multiple HRTFs, and then

scaling and delaying each binaural signal to model the appropriate enclosure.

This method of synthesizing directional early reflections is implemented as a part

of the dissertation. In particular, Chapter IV includes stimuli that model a listener

in a rectangular enclosure. Only the early reflections are included however, as diffuse

reverberation is difficult to incorporate into a system based upon ray-acoustics.

1.5.3 General-Purpose Binaural Display

The binaural display shown in Figure 1.7 can only display a rudimentary auditory

scene. We are now ready to consider a general-purpose binaural display, a display

that can accommodate multiple sources, spatially-extended sources, acoustic reflec-

tions, and source and listener motion. A simple block diagram showing the inputs

and outputs for this binaural display is shown in Figure 1.9. In the next chapter

we divide this system into two parts, one component that incorporates the dynamic

updates and reflections, and another component that filters the final collection of
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Figure 1.9: A diagram showing the inputs and outputs for the general-purpose bin-
aural display considered in this dissertation.

acoustic rays with direction-appropriate HRTFs. The focus of the dissertation is the

latter component.

1.6 Summary

This chapter reviewed the relevant literature on binaural display technology, and

described the challenges that motivate the methods presented in the remainder of the

dissertation. Classical duplex theory was reviewed and the HRTF was defined. Sec-

tion 1.3 described several approaches to modeling HRTFs. In particular, section 1.3.4

summarizes research efforts to construct low-order HRTF approximants.

Section 1.5 enumerated some of the key challenges that must be overcome for

binaural display technology to be broadly adopted. We have proposed a general

framework for addressing many of these challenges: modeling collections of HRTFs

surrounding the listener, rather than individual HRTFs. This idea has been previ-

ously proposed for specific applications, such as modeling acoustic reflections. How-

ever, no studies have observed that this framework can model reflective environments,

source and listener motion, and spatially-extended sources, simultaneously. Hence

the proposed framework is quite flexible, albeit computationally expensive.
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The following chapters describe efficient implementations of this framework based

on multiple-input multiple-output (MIMO) state-space systems. In the next chapter

we formulate the HRTF in the state-space, describe order reduction methods based

on the Hankel operator, and consider the affect of the ITD on the order reduced

approximants.



CHAPTER II

Modeling Collections of HRTFs in State-Space

Emerging applications in binaural display present a unique opportunity for the

design of efficient state-space systems. For traditional single-input single-output

(SISO) filter design applications, state-space implementations do not provide a com-

putational savings over tapped-delay IIR implementations. However, the previous

chapter proposed a method for binaural display in which multiple HRTFs are im-

plemented simultaneously. In this case, a naive filter array is computationally bur-

densome, as the computational cost scales linearly with the number of transfer func-

tions modeled. Implementing the collection of HRTFs with a single multiple-input

multiple-output (MIMO) state-space system may be advantageous.

This chapter describes techniques for constructing efficient and accurate state-

space approximants of collections of HRTFs. The remainder of this section describes

the synthesis of virtual auditory space using the proposed binaural display frame-

work, and reviews related HRTF models, including three recent studies that consider

state-space models of HRTFs.

Section 2.2 formulates the HRTF filter array in the state-space, and describes two

order reduction techniques based on the Hankel operator. As the Hankel-operator is

not traditionally used to analyze audio filters, we relate this operator to the more

36
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common convolution operator. The two order reduction methods are closely related,

although one is ad hoc and relatively simple to implement whereas the other is

optimal in the Hankel-norm sense but is somewhat more complicated to implement.

The two methods have been compared extensively for SISO filters, but relatively

few comparisons have been made for the MIMO case. The author is not aware of

any studies that compare the two methods for systems as large as those required

for binaural display. Both methods are adapted to HRTF modeling and complete

algorithms are given in appendix B.

Section 2.3 explores a perceptually important property of HRTFs, the interaural

time delay (ITD). The ITD between left-right HRTFs pairs is found to limit the

potential for finding state-space approximants that are both low-cost and accurate.

This limitation is addressed with a variety of techniques, including time-delay state-

space systems and hybrid state-space/FIR systems. However, the most effective

means of addressing this limitation is found to be the use of alternative state-space

architectures, in which case the ITD does not need to be modeled by the state-space

system itself. Three state-space architectures are considered. The performance of the

state-space systems, using both order reduction techniques and all three architectures

is them characterized with an empirical experiment in the next chapter, and then a

headphone listening experiment in chapter IV. The next section provides background

and related research.

2.1 Background

Before formulating the HRTF filter array in the state-space, we first describe

how such an array might fit into a complete binaural display system. Few studies

consider efficient implementations of such HRTF arrays. However, numerous stud-
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Figure 2.1: A naive implementation of the proposed binaural display framework.

ies have considered computationally efficient implementations of individual HRTFs,

while other studies describe models for collections of HRTFs without considering

computational cost. The relevant research is reviewed in this section.

2.1.1 Virtual Auditory Scene Synthesis

The block diagram of a conventional implementation of the proposed binaural

display framework is shown in Figure 2.1. With this framework, a complex auditory

scene, as heard by the listener, is first modeled as a collection of stationary point

sources in free space. This step is performed by the block labeled “Room Model

and Dynamics”. After the input signal for each of these ‘intermediate’ sources is

computed, the final binaural signal is computed by filtering each intermediate source

with the appropriate HRTF and summing the result. This later stage, the HRTF

filter array, is the focus of the dissertation. Clearly, the computational cost of the

implementation shown in Figure 2.1 scales linearly with D, the number of directions

included in the HRTF filter array.

We seek to replace the array of filters shown in the gray box with a single D-

input, 2-output state-space system. However, in Section 2.3 it is shown that this

arrangement of inputs and outputs is problematic, and two alternative state-space
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architectures are considered. Accordingly, the methods described in Section 2.2 are

valid for state-space systems with any number of inputs and outputs.

2.1.2 HRTF Models

HRTFs measured for different directions are similar. A system that models

HRTFs at many directions simultaneously may be able to utilize this similarity to

reduce the net cost of the system. Numerous studies have found that collections

of HRTFs can be reasonably represented in low dimensional spaces. In (48) it is

shown that most of the variance of an HRTF dataset can be accounted for with

the first five principal components. However, principal component analysis yields a

high-order FIR structure for filter implementation. Filters that do not restrict the

system poles to the origin, such as IIR filters, are known to yield substantial cost

savings for individual HRTFs (60; 63; 64). We seek an analogous structure that

models multiple HRTFs. Furthermore, it has recently been shown that HRTFs can

be accurately modeled using pole-zero filters with common pole locations (54). This

implies that a collection of HRTFs can be reasonably approximated using a single

MIMO state-space system, as the rational transfer functions between each input and

output of the system share the same poles.

At first glance, modeling HRTFs with a state-space system may not appear

computationally efficient. Any order N state-space system can be converted to an

equivalent array of order N IIR filters. For SISO systems an IIR implementation

is guaranteed to be lower cost than a equivalent state-space system. Nonetheless,

state-space techniques have been used to design low-order IIR filters from high-order

FIR filters (7; 65; 66; 67). These studies do not consider MIMO state-space systems

however, the computational cost still scales linearly with the number of directions D.
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Furthermore, converting filters from state-space form to transfer function form may

yield IIR filters that are sensitive to coefficient quantization errors (8). In the present

work we avoid this problem by leaving the reduced-order system in state-space form

and considering its net computational cost.

Three recent studies (8; 9; 10) propose state-space systems that model HRTFs

at multiple directions simultaneously. In (8) MISO systems are designed that model

multiple HRTFs for each ear. HRTF redundancy is not fully exploited in this work

however, as separate SISO systems are designed for each HRTF individually, and then

combined into one large MISO system. In contrast, (10) constructs a MISO system

directly from a PCA reconstruction of HRTFs. A MIMO state-space architecture is

considered in (9). Low-order systems are designed for a collection of HRTFs in the

horizontal plane. It was shown that for sufficiently large system order, the localiza-

tion performance with a state-space system was similar to the performance with an

array of measured HRIRs (9). All three studies employ balanced model truncation

(BMT) (116) to reduce the order of the state-space model. However, neither study

considered the computational advantages of state-space implementations. Below we

consider the computational cost of low-order state-space implementations relative to

common FIR arrays, and show that system orders well below those found in (9) may

be perceptually adequate in many cases.
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2.2 State-Space Formulation

Consider a stable, causal, discrete-time MIMO state-space system1

x[n+1] = Ax[n] + Bu[n]

y[n] = Cx[n] (2.1)

where x[n] is the state vector of size N0, u[n] is the input vector of size M , and y[n]

is the output vector of size P . To simplify notation, let Σ =
(
A,B,C

)
represent the

state-space system. The matrix impulse response of Σ is

h[n] =




h11[n] . . . h1M [n]

...
. . .

...

hP1[n] . . . hPM [n]




=





CAn−1B n > 0

0 n ≤ 0

(2.2)

A state-space system can be viewed as a multi-channel filter; the system receives

an M-channel input and computes a P-channel output. Block diagrams for a SISO

FIR filter, and a MIMO state-space are shown in Figure 2.2. Two equivalent forms

of the FIR filter are shown; a traditional tapped delay line form, and a vector multi-

plication form. The impulse response for the FIR filter is b = [b0, b1, · · · bN0 ]. Clearly,

the length of the impulse response of the FIR filter can be no longer than N0 + 1

samples. In contrast, the state-space system is a feedback structure. Hence the

impulse response can be infinite in length, depending upon state-update matrix A.

1For convenience the systems considered here have no feed-through term (the Du[n] term),
similar to (8; 9). The Hankel operator, described below, is not influenced by the D matrix, hence
the choice of D is somewhat arbitrary for this class of order reduction methods. In the present
work we simply set D = 0. The interested reader is referred to (117) for a detailed discussion of
this term.
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Σ

Length N0+1 shift registerInput

Output

Output
b

Length N0+1 shift registerInput

Length N0+1 
coefficient 
vector

Figure 2.2: Block diagram of an FIR filter (left) and a MIMO state-space system
(right). Two equivalent forms of the FIR filter are shown: vector multi-
plication (top) and tapped delay line (bottom).

Furthermore, for any given state-space system Σ there are an infinite number of dis-

tinct systems Σ̃ with the same input-output response. All such state-space systems

can be related to each other via a similarity transform (118).

The FIR filter in Figure 2.2 requires that the current input sample, as well as

N0 previous input samples, be available for the vector multiplication. In contrast,

the state-space system only requires the current input sample for each channel. This

length M column vector is multiplied by B and added to the length N0 state vector,

which is itself updated by A, and also determines the output via C. Note that

the length N0 state vector is the only memory requirement for the entire MIMO

state-space system.

It is straightforward to design a state-space system Σ that implements a collection

of 2D HRIRs exactly2. For example, a D-input 2-output system that models the

HRTFs in the gray box in Figure 2.1 has the following block impulse response

h[n] =

[
hL

1 [n] hL
2 [n] . . . hL

D[n]

hR
1 [n] hR

2 [n] . . . hR
D[n]

]
(2.3)

where hL
d [n] and hR

d [n] are the HRIRs for the left and right ears for direction d.

2For example, the controller canonical form, as described in Appendix B.
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However, such a state-space system is high order (N0 ≈ 500) and computationally

prohibitive. As such, we explore order reduction techniques to design low-cost ap-

proximants Σ̂ =
(
Â, B̂, Ĉ

)
with order N ¿ N0. The two reduction methods that

we explore are based on the Hankel operator, which is described next.

2.2.1 Operators and Norms

Relative to SISO systems, there are few methods for reducing the order of MIMO

systems such that the resulting low-order approximant is optimal in some sense.

One metric for which optimal solutions can be found is the Hankel norm. However,

interpreting this metric for audio applications, including binaural displays, is some-

what subtle. The Hankel norm is a lower bound to the L∞ norm, which has a clear

spectral interpretation. Additionally, it is often observed in practice that Hankel-

optimal methods yield solutions for which the Hankel error is a fortuitously tight

lower bound on the L∞ error. As such, we explore Hankel-based order reduction

techniques in the next section. To aid in the interpretation of these techniques, the

L∞ and Hankel norms are described below along with the corresponding convolution

and Hankel operators. The development below is based on a review given in (119),

and is general for all MIMO systems.

Consider a matrix X ∈ Rp×m. The 2-induced norm of this matrix is defined as

‖X‖2·ind , sup
u6=0

‖Xu‖2

‖u‖2

(2.4)

where ‖·‖2 is the standard Euclidean, or 2-norm, of a vector. If the matrix is viewed

as a linear map, X : Rm→ Rp, then the 2-induced norm is the maximum gain of the

map. The singular value decomposition (SVD) of X is

X = USV∗ (2.5)
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where U and V are square unitary matrices. S is a diagonal rectangular matrix with

the singular values of X arranged along the diagonal, (σ1 ≥ σ2 ≥ · · · ≥ σN0), where

N0≤ min(p,m) is the rank of X. The SVD can be viewed as a dyadic decomposition

of X into a sum of rank one matrices,

X =

N0∑

k=1

σkukv
∗
k (2.6)

where uk and vk are the kth columns of U and V. It is simple to show that ‖X‖2·ind =

σ1. Furthermore, for a matrix X̂ with size p×m and rank N < N0, then

‖X− X̂‖2·ind = σ1

(
X− X̂

) ≥ σN+1

(
X

)
(2.7)

where σ1

(
X−X̂

)
is the largest singular value of X−X̂ and σN+1

(
X

)
is the (N +1)th

largest singular value of X. This inequality is known as the Schmidt-Mirsky theorem

and gives a lower bound on how well any low-rank matrix X̂ can approximate X in

the 2-induced norm.

Consider the state-space system Σ with M inputs and P outputs given in (2.1).

Associate the following convolution operator L : u 7→ y with Σ:

y[n] =
n−1∑

k=−∞
h[n− k]u[k], n ∈ Z (2.8)

where h[n] is the matrix impulse response defined in (2.2). The convolution operator

can be expressed in matrix form as



...

y[−1]

y[0]

y[1]

...




=




. . .
... . . .

0 0 h[1]

. . . 0 h[1] h[2] . . .

h[1] h[2] h[3]

. . .
...

. . .




︸ ︷︷ ︸
L




...

u[0]

u[−1]

u[−2]

...




︸ ︷︷ ︸
U
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The 2-induced norm of the system Σ is defined as

‖Σ ‖2·ind , ‖L‖2·ind = sup
U 6=0

‖LU‖2

‖U‖2

(2.9)

The discrete-time Fourier transform can be applied to each element of the impulse

response h[n], yielding the P × M matrix frequency response H(ω). Due to the

equivalence between time and frequency domains, it is straightforward to show that

‖Σ ‖2·ind = sup
ω

σ1

(
H(ω)

)
, ‖Σ ‖L (2.10)

where σ1

(
H(ω)

)
is the largest singular value of H(ω). Hence the 2-induced norm is

also known as the L∞ norm. For SISO systems, this norm is equal to the maximum

spectral magnitude.

Optimal causal approximations of MIMO systems in the L∞ norm are not cur-

rently known3. However, if the domain and range of the convolution operator are

restricted, then optimal solutions are known. For this reason, we consider the Hankel

operator of Σ, H : u− 7→ y+, which maps past inputs to future outputs:

y[n] =
−1∑

k=−∞
h[n− k]u[k], n ∈ Z+ (2.11)

Note that if Σ is causal, stable, and has no feed-through term, then there is a one-

to-one relationship between the impulse response and Hankel operator. The Hankel

operator can be expressed in matrix form as



y[0]

y[1]

y[2]

...




=




h[1] h[2] h[3]

h[2] h[3] h[4] . . .

h[3] h[4] h[5]

...
. . .




︸ ︷︷ ︸
H




u[−1]

u[−2]

u[−3]

...




3In some instances, such as one-step order reduction, L∞ optimal approximations are
known (119).
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The matrix H, while potentially infinite in size, has rank not greater than N0. The

rank is exactly N0 if and only if the system Σ is minimal. Let (σ1 ≥ σ2 ≥ · · · ≥ σN0)

be the singular values of H. The Hankel norm of the system Σ is defined as the

maximum singular value of H

‖Σ ‖H , σ1 = ‖H‖2·ind (2.12)

It can be shown that the Hankel norm lower bounds the L∞ norm. It can also be

shown that twice the sum of the Hankel singular values upper bounds the L∞ norm

σ1 ≤ ‖Σ ‖L ≤ 2(σ1 + · · ·+ σN0) (2.13)

Let Σ̂ be another state-space system with M inputs, P outputs, and order N <

N0. Then

σN+1 ≤ ‖Σ− Σ̂ ‖H ≤ ‖Σ− Σ̂ ‖L (2.14)

where the first inequality follows directly from (2.7) and (2.12), and the second

inequality follows from (2.13). It can also be shown that the L∞ error is upper

bounded by both the 1-norm applied to h[n]− ĥ[n], as well as twice the sum of the

Hankel singular values of the error system Σ− Σ̂ (120; 121), although we have found

in practice that these bounds are typically loose.

Remarkably, it can be shown that there exists a low-order system that achieves

the lower bound on the Hankel error in (2.14). This result was proven for Hankel

operators by Adamjan, Arov and Krein and is known as the AAK theorem (122).

Later, Glover (117) extended this result to state-space systems and developed a

method for computing all optimal Σ̂. In the next section we describe both Glover’s

method, as well as a simpler suboptimal method.
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2.2.2 Hankel Order Reduction

Two order reduction techniques are considered, balanced model truncation (BMT)

and Hankel-norm optimal approximation (HOA). In the SISO case, the two methods

have been applied to the design of IIR filters (65; 123), and have been directly

compared as well (124; 125). However, few comparisons have been made in the

MIMO case. Both methods are briefly reviewed below, and detailed algorithms are

given in appendix B.

Balanced state-space systems are a special form that allow for direct order re-

duction (126). In this form, any state x0 that results in a ‘small’ amount of energy

output (with the input set to zero) also requires a ‘large’ amount of energy at the

input to move the system from zero to state x0. Such states contribute little to

the input-output behavior of the system, and can be truncated without greatly af-

fecting the transfer function. BMT operates by first applying a balancing similarity

transform to Σ, and then discarding all but the N largest Hankel singular values

of the system. For HRTF modeling, the BMT solution can be computed directly

from the sample Hankel matrix, H, without constructing and explicitly balancing

the high-order Σ (116).

While BMT is convenient, it is not optimal in any specific sense. The HOA

method is also based on the theory of balanced systems. However, rather than simply

truncate the N0 −N least significant states, HOA operates in a more sophisticated

manner. The N + 1th state is removed directly by means of an all pass dilation,

and the remaining N0 − N − 1 states are transformed so as to be both antistable

and anticausal, in which case they no longer influence the Hankel operator of the

system. The order N stable subsystem is then extracted, yielding a Hankel-optimal
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approximant Σ̂ (117)

‖Σ− Σ̂‖H = σN+1

(H)
(2.15)

The following bounds apply to order N < N0 systems reduced using either BMT or

HOA4

‖Σ− Σ̂ ‖H ≤ ‖Σ− Σ̂ ‖L ≤ 2(σN+1 + · · ·+ σN0) (2.16)

In practice, the upper bound on the L∞ error is often loose, whereas the Hankel

error is often a relatively tight lower bound on the L∞ error.

Both the Hankel error and the L∞ error are reported in Chapter III for several

state-space and FIR systems that approximate HRTF filter arrays. A perceptual

RMS error is also reported in Chapter III. However, a significant problem for state-

space approximants of HRTFs is not clearly reflected in any of these error measures.

This problem relates to the interaural time delay, and is explored in detail in the

next section and possible solutions are proposed.

2.3 ITD Modeling

The monaural phase response of HRTFs may not need to be accurately mod-

eled (57), but the binaural time-delay between ipsilateral and contralateral HRTFs

is perceptually critical. Human listener’s are sensitive to changes in the interaural

time delay (ITD) as small as several microseconds (1). This perceptual sensitivity

presents a difficulty in the design of low-order MIMO state-space systems.

Hankel methods are known to well approximate transfer functions that are min-

imum phase, or nearly so (65). However, including time-delay terms in the transfer

functions introduces zeros outside the unit circle. Cancelling these zeros with state-

space poles during order reduction distorts the phase response of the approximant.

4If the state-space system is given a feed-through path, then the upper bound on the L∞ error
is halved for the HOA method (117).
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Figure 2.3: The first 100 Hankel singular values for two full-order SIMO systems.
The two systems model the same 19 contralateral HRTFs. One system
includes the ITD (gray line) and other does not (black line). Both linear
and log scales are shown.

For contralateral HRTFs, the time-delay terms introduce up to 40 zeros, at 44.1kHz

sampling rate, outside the unit circle. In order to retain the contralateral time-delays

in the low-order approximant exactly, 40 state-space poles must be restricted to the

origin. The ILD compounds this problem, as pole positions are weighted more by

the ipsilateral HRTFs, leaving few ‘left-over’ poles for time-delay modeling. There

are few analytic tools for understanding the time-domain distortion if too few poles

are restricted to the origin. In lieu of a simple analytic theory, an example makes

clear the practical influence of ITD on state-space order reduction.

Consider a SIMO system that models 19 contralateral HRTFs in the horizontal

plane with azimuth angles ranging from 0◦ to 180◦ in 10◦ increments. Two full-order

SIMO systems are built from the 19 measured HRIRs. For one system the natural

time-delays due to ITD are included in the impulse responses, but are removed for

the other system. The Hankel singular values for these two systems are shown in

Fig. 2.3. The first 100 singular values of the system with ITD are significantly larger
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Figure 2.4: Matrix impulse responses for eight SIMO systems; four without ITD (top
row) and four with ITD (bottom row). This is equivalent to the first 19
rows of the Hankel matrix of each system. The leftmost column shows the
ideal matrices for this system (constructed from 19 contralateral HRIRs).
The remaining three columns show response matrices for N = (1, 6, 30)
approximants.

than those of the system without ITD. Hence, if the ITD is included in the HRTFs,

any low-order approximant with N < 100 will have larger Hankel error, and likely

larger L∞ error, than it would if the ITD is neglected. This performance degradation

does not affect all 19 transfer functions equally, however.

The block impulse responses of the two high-order systems are shown at the left

of Figure 2.4. Time is indicated by the horizontal axis, and azimuth is indicated

by the vertical axis5. The right three columns of Figure 2.4 show impulse responses

for low-order systems designed using HOA. From left to right the reduced system

orders are N =(1, 6, 30). For the system without ITD, the order N =1 system retains

most of the energy of all impulse responses. In contrast, for the system with ITD,

most of the responses are nearly zero. For the order N =6 approximants, the system

5Due to the SIMO architecture, the block impulse responses are equivalent to the top 19 rows
of the Hankel matrices of the systems.
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without ITD is visually well approximated for all azimuths. For the system with ITD

however, the impulse responses far from the median plane remain nearly zero, and

even the responses close to the median exhibit obvious distortion. As N increases,

both systems are visually well approximated, as shown in the N =30 case (127).

The distortion seen in Figure 2.4 is problematic for spatial hearing: there is no

longer a clear ITD. A typical example for a practical display is shown in Fig. 2.5.

Measured left and right HRIRs for the direction (az., el.) = (−120◦, 0◦)6 are shown

by thin black lines. An order N = 40 MIMO system is designed using HOA from

measured HRIRs for D = 68 directions, including the direction shown in Fig. 2.5.

The state-space impulse responses for the same direction are shown by thick gray

lines. The left ear response is accurately approximated, but the time delay of the

right ear response is ‘smeared.’ The extent of this phase distortion varies with N ,

but is generally negligible for N >70, even for large D. We seek systems with lower

order, however. In this case the phase distortion is problematic for some directions:

impulse responses with small time delay, less than 400µs, exhibit little smearing,

whereas responses with large time delay exhibit substantial smearing. We have found

that, perceptually, the smearing results in a sound object with increased diffuseness,

displacement towards the median plane, and possibly even a split into two separate

sound objects if the smearing is severe.

The observation above helps explain results presented in (9), where MIMO state-

space systems for HRTFs in the horizontal plane were evaluated by human listeners.

Localization errors were found to be small for systems with order N > 80. However,

for systems with lower order, sources far from the median plane were heard to be

6Negative azimuth corresponds to the left. Vertical-polar coordinates are used throughout the
present work. Azimuth angles vary from −180◦ to +180◦, and elevation angles vary from −90◦

(below) to +90◦ (above). The direction (az., el.) = (0◦, 0◦) is straight in front of the listener.
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Figure 2.5: Measured HRIRs and HOA-reduced impulse responses for azimuth θ =
−120◦ and elevation φ = 0◦. Note that the left (ipsilateral) ear response
is about four time larger than than the right (contralateral) ear response.

located consistently closer towards the median. The poor localization performance

far from the median may have been primarily due to smearing of the contralateral

time-delay. Were it not for the time-delay distortion, the state-space order may have

been reduced farther without incurring substantial error.

2.3.1 Modeling Time-Delay with State-Space Systems

Classical state-space systems theory provides few tools for maintaining multiple

time-delays during order reduction. One trivial solution is to design a low-order state-

space system that models the HRTFs without ITD , using either BMT or HOA. The

system is then converted to a canonical form, and augmented with either pure delay

terms or Padé approximations (128). However, this method increases the system

order dramatically (multiple orders of magnitude), and is untenable in practice.

Time-delay state-space systems have been the subject of several recent stud-

ies (129). Unfortunately, attempts to model the HRTF filter array as a single time-

delay system have been unsuccessful, as the HRTF filter array is a multi-time-delay

system. An ad hoc alternative is to employ a state-space system with a single state-

update, but let the output be a function of both the present state and T previous
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state vectors,

x[n+1] = Âx[n] + B̂u[n]

y[n] = Ĉ0x[n] + Ĉ1x[n−∆1] + · · ·+ ĈTx[n−∆T ]

The system is designed by first constructing a low-order system Σ̂′ that models

the HRTFs without ITD. (Ĉ0, Ĉ1, · · · ĈT ) are then computed by solving, in a least

squares sense, an over-conditioned linear system using the measured HRTFs with

ITD. This procedure was found to yield satisfying performance if T ≈ D, but rapidly

deteriorated for smaller T . Hence this method only yields satisfactory performance

for systems with prohibitive computational cost.

A more successful alternative is a hybrid state-space/FIR system. In this case, a

state-space system is augmented by FIR filters to reduce the time-delay distortion.

The low-order state-space system is designed from a collection of HRTFs, includ-

ing the ITD, and individual FIR filters connected to the input-output pairs that

correspond to HRTFs with large time-delay (> 0.4ms). The FIR filter between

the mth input and pth output is given by hpm[n] − ĥpm[n], where ĥpm[n] is the re-

sponse achieved by the low-order state-space system alone. A heuristic rule is used

to control the computational cost of the FIR filters; a delay operator is incorporated

in each filter, and the filter length is restricted to the duration over which ĥpm[n]

poorly approximates hpm[n]. For example, for the system described in Fig. 2.5, an

FIR filter would be added to the right-ear response, and the FIR response would be

nonzero from about 0.3ms through 1.2ms. The hybrid system is designed so that

the state-space system accounts for two-thirds of the net cost, and the array of FIR

’compensation filters’ account for the remaining third.

The methods outlined above are all adequate for modeling ITD using a state-
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space system. However, inevitably each of these methods incurs a large increase in

the computational cost. If the total cost must be minimized, then each of these

methods yields mediocre time-domain performance. Of these methods, the hybrid

state-space/FIR system yields the most promising performance, and this system is

included in the comparisons in the next chapter. Ultimately, any state-space time-

delay necessarily increases the underlying system order substantially. Hence, it is

preferable to model the ITD outside the state-space system. Of course, this approach

can only be applied to state-space architectures that allow the time-delay terms to

be factored out of each transfer function. Alternative state-space architectures are

described next.

2.3.2 State-Space Architectures

The HRTF filter array shown by the gray box in Figure 2.1 implements a total of

2D transfer functions. A MIMO state-space system that implements this filter array

as shown has D inputs and 2 outputs. The matrix impulse response for this system

is given by (2.3). Clearly, the 2D transfer functions must include the appropriate

ITD between the left and right ears for each direction. The ITD smearing described

above limits the potential for reducing the order the MIMO system, however.

Fortunately, modeling ITD in the state-space can be avoided with alternative

architectures. If the arrangement of inputs and outputs is changed such that the

state-space system has only a single input or a single output, then the time-delay

terms in the contralateral HRTFs can be factored out and implemented externally.

This approach was taken in the design of MISO systems in (8). In the present work

we consider both SIMO and MISO architectures. Block diagrams of binaural displays

with the three architectures are shown in Figure 2.6.
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Figure 2.6: Three state-space architectures for binaural display.
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If we simplify the binaural display, as shown in Figure 1.9, such that the display

only displays a single virtual source, and swap the HRTF filter and the room modeling

and dynamics7, then a SIMO state-space architecture may be used. In this case

only a single monaural signal can be input to the system, although spatial-extent,

reflections and motion can still be rendered. Hence the SIMO architecture is not

a complete solution to the general binaural display problem. Nonetheless, it is a

reasonable alternative in the case that only one source signal needs to be rendered.

For the SIMO architecture M = 1 and P = 2D, and matrix impulse response is

h[n] =
[

hL
1 [n] hR

1 [n] hL
2 [n] hR

2 [n] . . . hR
D[n]

]T
(2.17)

Alternatively, rather than restrict the binaural display to one input and swap the

internal components, we can simply break the MIMO HRTF system into two MISO

systems. In this case there are two state-space systems with M = D inputs, and

P = 1 output, and two impulse response matrices

hL[n] =
[

hL
1 [n] hL

2 [n] . . . hL
D[n]

]

hR[n] =
[

hR
1 [n] hR

2 [n] . . . hR
D[n]

]
(2.18)

In total, we consider three state-space architectures for the HRTF filter portion

of the binaural display: MIMO, SIMO and MISO. Each architecture has one rela-

tive disadvantage that may favor the other architectures. The MIMO architecture

requires that the ITD be modeled in the state-space, hence time-delay smearing will

be a problem for low-order MIMO approximants. The SIMO and MISO architec-

tures allow the ITD to be implemented outside the state-space. However, the SIMO

architecture only solves a subset of the general binaural display problem: the single

7The order of LTI filters does not affect the overall transfer function of the system.
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source case. And the MISO architecture has the disadvantage of requiring two sep-

arate systems that model similar transfer functions, due to symmetry of the head.

This redundancy would seem to limit the computational efficiency of the MISO archi-

tecture. It is unclear a priori which architecture yields the best balance of flexibility

and approximation quality.

For the MIMO architecture, every feature of the HRTFs must be implemented

by the state-space system, including both ITD and ILD. In contrast, for the SIMO

and MISO architectures, it is simple to implement both ITD and ILD externally. We

have chosen to only factor the ITD out of the state-space systems, the frequency-

independent ILD is left in the state-space. The natural ILD of the HRTFs is mathe-

matically equivalent to weighting the ipsilateral HRTFs more strongly than the con-

tralateral HRTFs during order reduction. Alternatively, the ILD can be implemented

externally, in which case the ipsilateral and contralateral HRTFs are weighted equally.

However, there is evidence that the spectral detail of the contralateral HRTFs is less

important than that of the ipsilateral HRTFs (130; 131; 132; 133), hence the natural

weighting due to the ILD may be desirable during order reduction. Weighting is

discussed in more detail in Section 3.4.

2.4 Summary

This chapter formulated the HRTF filter array in the state-space and described

two methods of order reduction based on the Hankel operator. The Hankel operator

and Hankel error were developed in Section 2.2.1, and related to the more common

convolution operator and L∞ error. The ITD was found to be problematic for state-

space order reduction, as any time-delays in the transfer functions require additional

states with poles at the origin. Alternative state-space architectures were successfully
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applied to address this issue by allowing the ITD to be modeled externally. How the

alternative architectures might affect the performance is unclear, however.

The performance of the proposed state-space methods is characterized in chap-

ters III and IV. The next chapter describes a large numerical experiment in which

state-space approximants are compared to truncated FIR arrays of equal net cost.

Chapter IV then reports on a binaural listening experiment.



CHAPTER III

Approximation Performance

To characterize the performance of the state-space systems described in the pre-

vious chapter, an empirical experiment is conducted in which low-order state-space

systems are constructed and their response is compared to measured HRTFs. The

state-space methods are capable of modeling the measured HRTFs exactly, but we

seek efficient approximants. In order to show that the state-space approximants are

both low-cost and accurate, we include a simple and practical baseline approximation

for comparison. The baseline approximation is an array of truncated HRIRs, and is

described in Sections 3.1.1 and 3.4.5.

In order to compare the state-space systems with the baseline FIR array, we need a

measure of computational cost C that is consistent for both tapped delay-line systems

(a.k.a. FIR filters) and state-space systems. We use the arithmetic complexity as a

measure of cost. The cost C for both systems is discussed in Section 3.1.2. For all

configurations considered below, the state-space and FIR systems are constructed so

as to have approximately the same cost.

Section 1.3 reviewed several methods of modeling measured HRTFs. These stud-

ies only considered modeling individual HRTFs, however. In the present work, we are

interested in approximating collections of HRTFs. The number of directions D that

59
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are required for a binaural display depends upon the application. For some applica-

tions, such as displays that allow limited motion, only a small number of directions

need to be included (5; 7). However, modeling acoustic reflections often requires a

large number of directions surrounding the listener (2; 3). Hence, we view D as an

independent variable. In the experiment below, we construct HRTF systems, both

state-space and FIR, that model a varying number of directions D, but with fixed

cost C.

The focus of the numerical evaluation is aggregate performance, although sev-

eral examples are given as well. The main experiment is described in Section 3.2,

and results are reported in Sections 3.2.1 and 3.2.2. The performance of the state-

space/FIR hybrid system is reported separately in Section 3.2.3. A sample response

is given in Section 3.3. The results are discussed in Section 3.4. The performance

of the two order reduction techniques, BMT and HOA, is compared in detail, and

approximation quality for ipsilateral versus contralateral HRTFs is considered. A

headphone listening experiment is then reported on in the next chapter.

3.1 Basis for Comparison

Before describing the experimental procedures, we define the baseline filter array

and the computational cost C for both state-space approximants and the baseline.

3.1.1 Baseline Filter Array

In the present work we follow the example of (60), and compare the proposed

state-space approximants to truncated minimum-phase FIR filters. An array of order

N FIR filters is constructed by truncating all but the first N +1 samples of each

min.-phase HRIR. Hence the FIR filters are optimal FIR approximants in terms of

L2 error (55).
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For any given cost bound, two FIR arrays are constructed, one with cost bound

Cmax, and the other with cost bound 2Cmax. The ‘double-cost’ FIR array is included

to gauge the significance of the improvement in the approximation quality of the

state-space systems. In so doing, we will demonstrate that for some configurations,

a state-space system not only outperforms an FIR array of equal cost, but also

outperforms an FIR array of twice the cost.

3.1.2 Computational Cost

In the experiment below, state-space systems are compared to FIR filter arrays

of equal computational cost. We define the cost C as the number of multiplication

operations required per sample period, or equivalently, the total number of non-zero

coefficients in the system. This measure of computational cost is common in filter

design applications when comparing FIR and IIR filters (7; 60; 55). An FIR filter

array of order N with M inputs and P outputs requires C = PM(N+ 1) multiplies

per sample period. For example, consider a 10-input and 2-output FIR filter array

that implements D = 10 HRTF pairs with order N = 255. The cost of this array is

C =5120.

For state-space systems, the computational cost depends on the choice of system

realization, as there are many state-space systems with the same input-output be-

havior. In general, a state-space system of order N with M inputs and P outputs,

and no feed-through path, requires C = N2 + (P+M)N multiplies per time step.

However, after a low-order state-space system has been designed, it is possible to

apply a similarity transform to the system matrices (A,B,C) to reduce the num-

ber of non-zero elements in A. For example, a modal decomposition can be used

to diagonalize the A matrix (134), reducing the system cost to C = (P +M +1)N .
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However, in this case the system matrices are complex. Alternatively, the A can be

transformed to Jordan canonical form, a real and nearly diagonal form. Unfortu-

nately, the Jordan form is difficult to compute in general, and notoriously sensitive

to quantization error.

A more practical alternative is to employ a Schur decomposition to triangularize

the A matrix (134). Because we seek system matrices that are strictly real, the

new A matrix is only quasitriangular, with 1 × 1 and 2 × 2 blocks down the main

diagonal. An algorithm for computing the real Schur decomposition can be found

in (135). In this case the cost of the final state-space system is not greater than

C = N2/2 + (P +M +1)N . For example, consider a 10-input and 2-output state-

space systems with order N =20. The cost of this array is C =460.

To speed computation, FIR filters are sometimes implemented in the frequency

domain using the overlap-and-add method (55). For FIR filters with high order, this

technique yields a substantial computational savings. However, the overlap-and-add

method presents several complications that prevent direct cost comparisons. The

method increases system latency, as the signal is processed in frames, and also in-

creases memory requirements. For binaural displays, if the overall system latency

becomes too large, localization performance as well as the sense of presence de-

grades (136). The method also requires hardware that can perform FFTs, and ac-

commodate complex numbers. Furthermore, in the present study we are primarily

concerned with truncated FIR filters of order N <100, in which case the savings of

the overlap-and-add method is modest. For these reasons we only consider direct

implementation of the FIR filters using convolution.
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Figure 3.1: Sample collection of D = 50 directions.

3.2 Aggregate Performance

In the main experiment, approximants are constructed for a varying number of di-

rections, and fixed cost. More precisely, for every D, the largest system order N ∈ Z+

is chosen such that the total computational cost of the system does not exceed Cmax.

In the next chapter we consider the distribution of approximation error for different

directions, and in the experiment below we focus on aggregate statistics. Separate

systems are designed for each the eight individual HRTFs datasets, and averaged.

Overall we observed little difference in performance for different individuals.

For a fixed number of directions, there are many possible arrangements of D

directions around the listener. We use a simple rule for selecting D directions that

is both practical for modeling common auditory scenes and limits the redundancy in

the transfer function matrix. For every system constructed, D directions are chosen

randomly subject to a constraint that they be approximately uniformly arranged

around listener, but without perfect left-right or front-back symmetry. Figure 3.1

shows a sample collection of D=50 directions.
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Figure 3.2: System order for five systems as a function of the number of directions
D. The system labelled ‘FIR ×2’ has a cost bound of 8000, and the
remaining four have a cost bound of 4000.

A cost bound of Cmax = 4000 is used below, which is approximately the cost of

eight full-order HRIR pairs. State-space systems are designed that meet this bound

for a varying number of directions 1≤D≤110. Three architectures are considered:

MIMO, SIMO and MISO, as described in Section 2.3.2. The ITD is included in

the MIMO system, but not by the SIMO or MISO systems. Systems are designed

using both BMT and HOA, as described in Section 2.2.2. Hence for every D, six

state-space systems are designed. Two FIR arrays are designed for each D as well.

Figure 3.2 shows the order N for five systems: MIMO, SIMO and MISO state-

space systems with cost C ≤ Cmax, an FIR array with cost C ≤ Cmax, and a second

FIR array with cost C ≤ 2Cmax. For the MISO architecture, N is the order of each

state-space system. Note that for the two FIR filter arrays, it is not necessary to

truncate the measured HRIRs if D ≤ (8, 16) in order to satisfy the cost constraint.

The hybrid state-space/FIR system for the MIMO architecture, as described in
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Section 2.3.1, is also considered in the experiment. In the interest of simplifying the

presentation, the performance of this system is given in Section 3.2.3.

3.2.1 Hankel and L∞ Results

The Hankel error is defined as the largest Hankel singular value of the error system

Σ−Σ̂ (117), and computation is straightforward. The L∞ spectral error is estimated

by finding the maximum largest singular value of the transfer function error matrix,

H(ω)− Ĥ(ω), over a finely sampled frequency grid. This method of estimating L∞

is computationally expensive, but was not problematic for the experiment. Efficient

methods of estimating L∞ have been developed (137).

Figure 3.3 shows the Hankel and L∞ errors of state-space and FIR systems with

order given by Figure 3.2. Each panel corresponds to one architecture, from top

to bottom: MIMO, SIMO and MISO. The L∞ error is shown with black lines, and

the Hankel error is shown with gray lines. Note that the truncated FIR filters are,

individually, identical for all three architectures, but that the Hankel and L∞ errors

depend on the architecture. For the MISO architectures, the errors shown are the

mean errors for the left-ear and right-ear systems.

Both errors increase monotonically as a function of D for all systems. The per-

formance trends are very similar for all three architectures. As expected, the Hankel

error lower bounds the L∞ error in all cases. For the FIR systems, the Hankel error

is a loose bound on the L∞ error for D > 40. In contrast, for the state-space systems,

the Hankel error is a relatively tight bound for all D.

For D < 8 the FIR array yields zero error, and for D < 16 the ‘double-cost’ FIR

array yields zero error. For larger D however, the error of the FIR arrays increases

significantly. Both state-space designs, BMT and HOA, outperform the FIR systems
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for D > 25. The two order reduction methods show similar performance, although

HOA yields lower Hankel and L∞ errors than BMT. These results are promising, but

system theoretic measures of performance are not necessarily suitable for auditory

applications. Next we consider a modified L2 error as a simple model of auditory

perception.

3.2.2 Auditory L2 Results

The ‘auditory’ L2 error that we report has been previously employed in HRTF

approximation studies (60). This error measure is computed by warping the log-

magnitude response of the ideal and low-order systems to a log-frequency scale. A

fifth-octave smoothing filter is then applied to both responses to model the critical

bands of the auditory system. The L2 error (RMSE) between the two modified

responses is then computed over the range 300 Hz to 16 kHz. The auditory L2 error

is computed for each input-output pair, and averaged.

The lower bound of the L2 integration is lower than in (60). In free-field condi-

tions, ILD cues below 1 kHz do not dominate the localization of sound sources (1).

However, it has been shown that low-pass sources can be localized in elevation (20).

Furthermore, studies have shown that sensitivity to ILD cues extends below 1kHz in

the presence of reflecting surfaces (114), and that the sense of ‘externalization’ is af-

fected by ILD cues below 1 kHz (138). In fact, recently it has been shown for gerbils

that the presence of a reflecting surface introduces perceptually salient magnitude

features for localization as low as 500 Hz, whereas such features only appear above

10 kHz in the free-field case (89). Because we are interested in low-cost systems

for binaural environment modeling, we include frequencies as low as 300 Hz in the

auditory L2 error.
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Figure 3.4: Auditory L2 error as a function of D. The auditory L2 error is com-
puted for each input-output pair and averaged, and is independent of
architecture for the FIR arrays.

Figure 3.4 shows the auditory L2 error for eight systems: six state-space and

two FIR. Naturally, the auditory L2 error of the FIR systems does not change with

architecture. For this error measure, the results of the different architectures can be

directly compared, and are shown in a single panel. For D>10, the SIMO and MISO

architectures yield lower approximation error than the FIR array, and for D > 40 the

SIMO and MISO architectures outperform the ‘double-cost’ FIR array as well. The

SIMO architecture yields slightly lower error than the MISO architecture, although

this difference vanishes for D > 100. Furthermore, the BMT systems yield slightly

lower error than the HOA systems for D<100.

In contrast to the SIMO and MISO architectures, the MIMO architecture does
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not perform well, for both BMT and HOA. For 30<D<60, the state-space systems

yield slightly lower error than the FIR array, but greater error for other D. As will

be discussed in Section 3.4, the mediocre performance of the MIMO architecture is

due to the ITD and contralateral HRTFs. We now report on the performance of the

hybrid state-space/FIR method.

3.2.3 Hybrid System Performance

The SIMO and MISO architectures described above model the ITD externally.

This approach ensures that the ITD is accurately modeled, and that all of the state-

space poles are free to model the spectral detail in the HRTFs. However, the MIMO

architecture requires that the ITD be modeled by the state-space system. Section 2.3

demonstrated that modeling the ITD with low-order state-space systems yields unac-

ceptable performance, even if the L∞ and auditory L2 errors are small. Accordingly,

we consider augmenting the MIMO state-space systems so as to correct the distor-

tion to the ITD, as described in Section 2.3.1. The performance of the SIMO and

MISO state-space systems above surpasses that of the hybrid systems. Nonetheless,

the performance of the hybrid is reported here for completeness.

The hybrid state-space/FIR system is designed such that the state-space portion

consumes two thirds of the total computational cost, and the array of FIR ‘correction’

filters consumes the remaining third. The order of the state-space component as a

function of D is shown in Figure 3.5, as well as the order of the MIMO state-space

system and the two FIR systems.

Figure 3.6 shows the L∞ error as a function of D for the hybrid approximants.

Hybrid approximants were designed using both BMT and HOA for the state-space

component. Figure 3.6 also shows the L∞ error for the state-space and FIR systems
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Figure 3.5: System order for four systems as a function of D. The order shown for
the hybrid system is the order of the state-space component.

shown in the top panel of Figure 3.3. The L∞ error of the hybrid systems is lower

than that of the equal cost FIR array, but larger than that of the state-space systems.

Figure 3.7 shows the auditory L2 error for the same six approximants as Fig-

ure 3.6. In this case, the hybrid systems yield slightly lower error than the state-space

systems, although the improvement is negligible in the region where the state-space

systems outperform the equal cost FIR array. The advantage of the hybrid systems

are not apparent in the L∞ and auditory L2 errors, however. The motivation for

the hybrid system is to reduce the time-delay smearing that results from state-space

order reduction, and neither the L∞ nor the auditory L2 errors strongly reflect the

degree of time-delay smearing.

Time-domain distortion is often quantified from the phase spectra of the original

and approximant responses. For binaural applications, such error measures are dif-

ficult to interpret. We are not concerned with the overall phase response, but only
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Figure 3.8: The fraction of approximant impulse response energy that appears prior
to the time-delay given by ITD in the contralateral responses, as a func-
tion of the number of directions D.

the ITD. Accordingly, we quantify the ITD smearing using a simple and intuitive

measure: the “ITD error” is defined as the fraction of the approximant impulse re-

sponse energy that appears prior to the time-delay mandated by the ITD. The ITD

error for each contralateral response is measured, and averaged.

Figure 3.8 shows the ITD error for the MIMO hybrid and state-space systems. Of

course, the ITD error for the FIR arrays, as well as the SIMO and MISO state-space

systems, is zero. From Figure 3.8, the hybrid systems have successfully reduced

the ITD error by a factor of four. However, it is unclear whether this reduction is

sufficient for binaural applications. Even small shifts in the ITD are problematic for

binaural displays, but little is known about ITD smearing. For the hybrid systems,

less than 5% of the impulse response energy appears prior to the time-delay, and the

main ‘pulse’ of the response appears at exactly the right time-delay. This may be a

sufficient condition for perceptually adequate HRTF models.
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Finally, from Figure 3.8 it is apparent that BMT yields lower ITD error than

HOA for both the hybrid and state-space systems. This is discussed in greater detail

in Section 3.4.

3.3 Local Structure

Before discussing the aggregate performance below, we present an example. The

local structure of the responses reveals additional differences between the FIR and

state-space approximants.

Consider a SIMO system that models D = 44 HRTF pairs (M = 1, P = 88). One

direction included in this system is the direction (az., el.) = (+120◦, 0◦). The HRTF

magnitude responses for this direction are shown in Figure 3.9. The left column of

Figure 3.9 shows the response over a wide frequency range, from 100 Hz to 20 kHz.

The right column gives the response over more narrow frequency range, as indicated

by the dotted lines in the left column.

Two low-cost systems are constructed from the 88 transfer functions: a state-

space system designed using the HOA method, and an array of FIR filters1. Both

systems are designed not to exceed a cost bound of Cmax = 3000. For the state-space

system, order N =28 is chosen, yielding a net system cost of C =2912. For the FIR

array, order N =33 is chosen, yielding a net system cost of C =2992.

The magnitude responses of the two approximants at (+120◦, 0◦) are shown in

Figure 3.9. At low-frequencies, the response of the FIR filters diverge from the desired

response, especially below 300 Hz. Although, it is unclear if accurate low-frequency

magnitude modeling is perceptually critical for spatial listening.

From the right column of Fig. 3.9, it is apparent that the spectral notches in

1A state-space system designed with BMT was also considered. The magnitude response of the
BMT and HOA systems was visually similar, only the HOA response is shown here.
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Figure 3.9: Magnitude responses for direction θ = 120◦ and φ = 0◦, for the right ear
(top) and left ear (bottom). The vertical dotted lines in the left column
indicate the frequency bounds of the right column.

the measured HRTF are more accurately modeled by the state-space system than

the FIR array. For the right ear response, the shallow notch at 4.5 kHz is well

approximated by the state-space system, but is shifted by the FIR system. A more

significant difference is seen at 8.5 kHz, where the measured HRTF exhibits a sharp,

lopsided notch. The state-space system also exhibits a lopsided notch at the same

frequency, whereas the FIR system exhibits two notches with the same depth (-18

dB), one at 8.5 kHz and another at 9.7 kHz. The deep notch in the left ear response

at 2.5 kHz is well approximated by the state-space system, whereas the FIR system

exhibits only a shallow dip at this frequency. This trend is seen throughout the

results: spectral notches are more accurately modeled by the state-space systems

than the FIR arrays, particularly notches below 5 kHz.
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3.4 Discussion

The main experiment above demonstrates that, when modeling collections of

HRTFs, equal-cost state-space systems outperform truncated FIR arrays. The ag-

gregate results also exhibit contradicting trends, however. For example, MIMO state-

space system yield favorable performance in terms of the L∞ error, but not in terms

of the auditory L2 error. Other differences in the trends with these two error mea-

sures are apparent: HOA yields lower L∞ error whereas BMT yields lower auditory

L2 error. These disparate trends are explained below, along with several other issues

that arise when comparing systems with different structures (an array of independent

FIR filters versus a single state-space system).

The differences between BMT and HOA are most apparent in the design of ‘sim-

ple’ filter approximants, such as an ideal bandpass filter. Accordingly, we explore

the approximation of simple ideal filters using both BMT and HOA in the next

subsection. The following subsection explores BMT and HOA applied to HRTF

approximation. The third subsection examines the distribution of approximation

error between ipsilateral and contralateral HRTFs. The fourth subsection discusses

weighting, and the final subsection describes the significance of the FIR baseline, and

considers implementation issues when comparing FIR and state-space systems.

3.4.1 BMT versus HOA: Simple Filters

BMT and HOA have been employed in studies of simple SISO filters, although

less is known about their relative strengths in the MIMO case (124; 125; 127). For

simple filters that consist only of pass-bands and stop-bands, the differences between

BMT and HOA are clear and significant. In this section we consider three example

filter approximations, two SISO and one MIMO, and compare the error spectrum of
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Figure 3.10: The bottom two panels show the magnitude response for two order 100
FIR filters; a notch filter (left) and a band-pass filter (right). The top
two panels show the magnitude error of low-order state-space systems
designed using either HOA or BMT. For the notch filter N = 6 state-
space systems are designed, and for the band-pass filter N =10 systems
are designed.

BMT and HOA.

The two SISO examples below are similar to those presented in (125), which

directly compares BMT and HOA for IIR filter approximation. The bottom row of

Figure 3.10 shows the magnitude response of two N =100 FIR filters, a narrow notch

filter and a wide band-pass filter. For both filters, two state-space approximants are

constructed, one using BMT and one using HOA. The error magnitude is show in

the top row of Fig. 3.10. For both filters, the HOA method exhibits relatively flat

magnitude error. The BMT method yields lower magnitude error at most frequencies,

but also exhibits substantial peaks above the error of the HOA method. For the notch

filter example, the BMT method concentrates error in the narrow stop-band. For

the band-pass filter, the BMT method concentrates error near the transition bands.

These performance trends have been previously observed (124; 125): BMT often
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Figure 3.11: The bottom two panels show the magnitude responses for two-input,
two-output FIR array with order N = 100. The top two panel shows
σ1

(
H(ω) − Ĥ(ω)

)
, for two N = 20 state-space systems designed using

HOA and BMT.

concentrates error near stop-bands and transition-bands.

The trends outlined above for the SISO case can be observed in simple MIMO

filters as well. Figure 3.11 shows the magnitude response of four N = 100 FIR

filters. The filters are simple in shape: band-pass, band-stop and low-pass. The

four filters are arranged as a 2-input, 2-output MIMO system, and two N = 20

state-space approximants are constructed using BMT and HOA. The resulting error

magnitude responses are shown in the top panel of Figure 3.11. The error peaks of

the BMT system again occur near the transition bands of the original filters. Indeed,

the highest error peak exhibited by the BMT approximant occurs at the frequency

where all four transfer functions exhibit transitions between stop bands and pass

bands. However, in the MIMO case, this performance trend is less consistent than

the SISO case. Other examples may be constructed in which the BMT method
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Figure 3.12: HRTF magnitude response for location (θ, φ) = (30◦,−36◦), ipsilateral
ear. Also shown are error magnitudes for four low-order approximations.
The top panel shows the error responses for two N = 6 state-space
systems designed using HOA and BMT. The bottom panel shows error
responses for two N =30 systems.

concentrates error at frequencies away from the transition-bands.

3.4.2 BMT versus HOA: HRTF Filters

For simple filters shapes, significant differences between BMT and HOA order-

reduction methods are apparent. For more complicated filters, such as HRTFs, the

two methods yield similar results. Nonetheless, the performance trends outlined

above are still present, albeit more subtle.

Figure 3.12 shows the magnitude response of one HRTF2. The error magnitude

for two N = 6 state-space systems is shown in the top panel, and for two N = 30

state-space systems is shown in the bottom panel. To facilitate comparison, the

error magnitudes are shown in the same panel as the HRTF magnitude; the error

2Unlike Fig. 3.9, which shows HRTFs on a log-frequency, log-amplitude scale, Fig. 3.12 shows
an HRTF on a linear-frequency, linear-amplitude scale.
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Figure 3.13: MIMO HRTF magnitude response for 44 directions surrounding the
listener, σ1H(ω), where H(ω) is a 2 × 44 matrix function. Also shown

are MIMO error responses, σ1

(
H(ω)−Ĥ(ω)

)
, for two N =40 state-space

systems designed using HOA and BMT.

magnitude values are given on the left of the figure, and the HRTF magnitude values

are given on the right of the figure. The differences between the error magnitudes

for the BMT and HOA systems are not as significant in this example as in the

simple filter approximations above. The HOA approximants exhibit a flatter error

magnitude than the BMT systems, although at most frequencies the BMT error

magnitude is lower than the HOA error. The BMT error magnitude exhibits peaks

in the error, some of which are at or near spectral notches in the original HRTF. For

example, the errors of both BMT approximants exhibit a peak near the HRTF notch

at 5.5 kHz.

HRTFs measured at different directions exhibit spectral notches at different fre-

quencies. A collection of HRTFs is unlikely to exhibit many notches at the same

frequency. But notches located at common frequencies across many directions may

influence where the BMT method concentrates approximation error. Figure 3.13

shows an example for a MIMO system that models D = 44 HRTF pairs. In this
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case the magnitudes shown are the maximum singular value of the matrix transfer

functions. State-space approximants with order N = 40 are constructed using both

BMT and HOA. Both approximants yield error magnitudes between 1 and 1.3 for

most frequencies. The BMT error magnitude again yields greater fluctuations than

the HOA error magnitude. The BMT error exhibits several small peaks, some of

which are located at or near notches in the global HRTF response. Nonetheless, the

two methods yield highly similar results.

For collections of HRTFs, the difference in performance between approximants

designed using BMT and HOA is small. Nonetheless, the trends described above ex-

plain the disparity between the aggregate L∞ and auditory L2 results. The disparity

is due to the difference between the ∞-norm and the 2-norm. The BMT method

yields lower error at most frequencies, hence the auditory L2 is lower with BMT.

However, the BMT approximants yields peaks in the error response that rise above

the relatively flat error response of the HOA approximants. Hence HOA yields lower

L∞ error.

In practice, we have found no significant advantage to using either BMT and

HOA for approximating collections of HRTFs. HOA yields slightly lower L∞ error,

whereas BMT yields slightly lower auditory L2 error. That BMT concentrates error

near the spectral notches would be problematic for HRTF approximation if the trend

were stronger. Spectral notches in the HRTF are known to provide important cues

for spatial hearing (1; 21; 139; 140). In particular, accurate modeling of HRTF

notches is thought to be critical for the perception of elevated sources. However, we

found the error peaks resulting from BMT to be are small compared to the overall

error. On the other hand, if we consider time-domain distortion, the HOA method

suffers from a slight drawback. For the SIMO and MISO architectures, time-domain
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distortion is negligible. For the MIMO architecture however, the ITD smearing is

problematic, and the HOA method appears worse in the regard. However, even the

BMT method smeared the ITD sufficiently for the method to be unusable.

In summary, while there are relative pros and cons to using BMT versus HOA,

the two methods yield very similar results for collections of HRTFs.

3.4.3 Ipsilateral versus Contralateral Approximation

The poor performance of the MIMO state-space systems, which include ITD,

is reflected in the auditory L2 error, but not in the L∞ error. This performance

disparity is explained by considering the distribution of error between the ipsilateral

and contralateral HRTFs. The MIMO approximants model the ipsilateral HRTFs

relatively well, but not the contralateral HRTFs. This is shown in Figure 3.14,

which gives the same results as Figure 3.4 except that the average ipsilateral and

contralateral errors have been separated. The poor contralateral performance is

due to the ITD, as discussed in chapter II. However, due to the ILD, the poor

approximation quality of the contralateral HRTFs has little impact on the L∞ error.

In contrast, the auditory L2 error is computed from log magnitude spectra, hence

the ipsilateral and contralateral approximations influence the average error equally.

Several psychoacoustic studies have shown that the magnitude response of the

ipsilateral HRTF dominates the monaural cues during spatial hearing (130; 131; 132;

133). Hence it may not be problematic for the contralateral HRTFs to be poorly

approximated. Nonetheless, with the MIMO state-space architecture, the time-delay

of the contralateral response is also distorted, and this is an unacceptable distortion

in most cases.
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Figure 3.14: Auditory L2 error as a function of D, ipsilateral HRTFs only (left) and
contralateral HRTFs only (right).

3.4.4 Weighting

The previous subsection raises the issue of weighting. For example, due to the

perceptual weighting applied to the ipsilateral HRTFs, it may be desirable to weight

ipsilateral HRTFs more heavily than contralateral HRTFs during order reduction.

For the SIMO and MISO architectures, this is straightforward: simply increase the

level of the ipsilateral HRTFs when constructing the original high-order system,

perform order reduction, and then decrease the level of the appropriate rows of Ĉ for

the SIMO architecture or the appropriate columns of B̂ for the MISO architecture.

Other weights than ipsilateral versus contralateral may be applied as well. For

example, weighting across direction has been proposed in modeling reflective environ-

ments (72). The auditory system gives precedence to the direct wave in perceiving the

location of a sound source (16). Precedence arguments might suggest that some di-

rections be weighted more than others, although the weighting must be time-varying

if motion is included. Furthermore, localization performance alone may not be a
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suitable criteria for the design of a binaural display, as a listener may be able to cor-

rectly ‘localize’ a sound source without being perceptually immersed in the auditory

scene3. In the interest of flexibility and generality, a uniform weight for both ears

and all directions may be preferable.

Frequency weighting is common in the design of audio filters (60). Frequency

weighting for audio applications usually heavily weight low frequencies, and weight

less high frequencies. For example, Bark-scale frequency weighting is common. Sev-

eral studies have proposed frequency-weighting extensions to state-space order re-

duction techniques (141). However, the BMT and HOA methods, as applied to

collections of HRTFs, were found to naturally weight low frequencies, rendering fre-

quency weighting unnecessary. Similar results have been reported in studies that

model collections of HRTFs using PCA (48).

3.4.5 Baseline Interpretation

Of course, comparing FIR arrays to state-space systems is a bit like comparing

apples to oranges. Nonetheless, an array of truncated HRIRs is a natural baseline

for studies in HRTF approximation.

Previous studies in HRTF approximation make few comparisons to any other

method of approximation. Rather, most studies define a criterion for an HRTF

approximation to be adequate, and them demonstrate that the proposed approxi-

mation meets the criterion. Different studies have employed different criteria, and

as such concluded that very disparate minimum system orders required for adequate

HRTF approximation, from orders less than ten (64; 66) to orders greater than one

hundred (9; 87).

3For example, studies have reported on instances in which a listener correctly localizes a virtual
far-field sound source (i.e. its direction), but still perceives the virtual source as being inside the
head (2).
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One recent review article compares several HRTF approximation techniques (60).

In particular, this study directly compares low-order IIR approximants with trun-

cated min.-phase FIR approximants of equal net cost. In this case, IIR filters are

shown to outperform FIR filters modestly. This comparison is revealing because any

‘adequacy criteria’ that an IIR approximant satisfied would likely also be satisfied

by a truncated HRIR of slightly higher cost.

That truncated HRIRs are natural approximants is further evidenced by the va-

riety of measured HRIR lengths in the published literature. In theory, the duration

of an HRTF is infinite, hence the duration of a measured HRTF is restricted by

measurement noise or perceptual considerations. Published lengths range from 200

samples at 44.1 kHz (142) to 1000 samples at 50 kHz (19). Furthermore, several

studies have reported truncated HRIRs that are ‘perceptually adequate’ with filter

orders between 30 and 70 (60; 61; 143). It would seem that for any HRTF approxi-

mant to be declared efficient and accurate, it must at least outperform a truncated

FIR filter of equal cost.

The experiment above demonstrates that state-space approximants outperform

arrays of truncated FIR filters by a significant margin. However, the structural

differences between these two systems limits the impact of this result. For example,

to reduce computational cost, the FIR array can be implemented in the frequency-

domain using the overlap-and-add method (55). We do not consider this possibility

here, as such an implementation requires more sophisticated hardware, additional

memory, and introduces significant latency.

If the FIR filters are implemented directly with a tapped-delay system, an integer

data type is sufficient. Fixed-point data types are not always sufficient for IIR filters

or state-space systems, however. For these systems, floating-point data types are
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sometimes necessary. An informal study of the state-space approximants has revealed

that the first- and second-order statistics of the state vector are similar to those of

the input and output audio signals. Furthermore, the state-space system matrices

have been found to be reasonably robust to small quantization error. These two

observations support the use of an integer data type for the state-space approximants.

Furthermore, a recent study of IIR filters revealed that fixed-point data types are

sufficient for audio applications (144).

3.5 Summary

This chapter reported on a large numerical experiment that characterizes the per-

formance of the state-space methods proposed in the previous chapter. State-space

approximants of varying size D, but fixed cost C, were constructed. Three architec-

tures and two order-reduction techniques were considered. A truncated FIR array

was used as a practical baseline for comparison. The SIMO and MISO architectures

were found to perform well. For C =4000 and D>20, the state-space approximants

were found to outperform both the ‘equal cost’ and the ‘double cost’ FIR arrays.

In particular, the state-space approximants more accurately modeled the spectral

notches in the HRTFs, as well as the low-frequency envelope, than FIR arrays.

In contrast, the performance of the MIMO architecture suffered due to the ne-

cessity of modeling time-delay in the state-space. The performance with the MIMO

architecture was improved somewhat by moving to a hybrid system in which FIR

filters were used to mitigate the time-delay smearing that resulted from state-space

order reduction. However, the performance of the hybrid system was still inferior to

that of the SIMO and MISO state-space systems.

The two order reduction techniques, BMT and HOA, were found to yield similar
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performance for collections of HRTFs. For simple filter shapes, BMT is known

to concentrate error near stop-bands and transition-bands. This is a potentially

problematic property for modeling HRTFs, as spectral notches play an important

role in spatial hearing. However, the shape of HRTFs is sufficiently complex that

BMT does not concentrate error significantly. As such, both BMT and HOA are

suitable for constructing low-order HRTF approximants.



CHAPTER IV

Psychophysical Validation

The previous chapter demonstrated that low-order state-space systems can ef-

ficiently model collections of HRTFs. For a fixed computational cost, state-space

systems can be constructed that yield significantly lower approximation error than

FIR filter arrays. While low approximation error is an encouraging property of the

state-space systems, we ultimately seek the minimum approximant order for which

the listener cannot tell the difference between the approximant and the measured

HRTFs. This order threshold is estimated below with a series of three listening

experiments.

We estimate order thresholds by using standard psychoacoustic discrimination

tasks. In the experiments below, the order of the approximant will be adjusted sys-

tematically to determine the threshold at which listeners are able to discriminate a

full-order rendering from an approximate one a certain percentage of the time. Stim-

ulus conditions are included which estimate worst-case order thresholds. In addition,

order thresholds are estimated for tpical conditions found in music recordings and

complex auditory environments.

Observers are instructed to perform the discrimination based on any perceived

difference, without paying specific attention to spatial attributes. This particular

87
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strategy potentially yields overly conservative order thresholds. On the other hand,

this strategy is far less sensitive to interpretation by the listener, and provides a

reliable upper-bound estimate of the system order. To estimate this upper-bound,

one stimulus condition uses a single sample from a random noise process to generate

all instances in each trial. In this case, small changes in the coloration of the sound

introduced by the approximant’s monaural characteristics can be used by the listener

to perform the discrimination task, even if the spatial characteristics of the sound

are not affected. Such coloration cues, though subtle, are reliable and we expect

the listener to focus on such cues with sufficient training. We expect that when

such coloration cues are not available to the listener, then the order thresholds will

decrease. Accordingly, other stimulus conditions are included that draw independent

samples of the noise process for each instance in a trial, include virtual acoustic

reflections, or even employ complex moving sound sources as stimuli. These stimulus

conditions allow us to estimate thresholds which are more typical of spatial audio

applications.

The baseline array of FIR filters is included in the first two experiments. The

baseline is included, in part, to show that the state-space approach is not only

accurate, but also efficient. In so doing, we also find that the stimulus conditions

affect the order thresholds of the FIR and state-space approximants differently. This

allows us to further refine the relative advantages of the state-space approach.

Three experiments are reported in the following. The first experiment was con-

ducted with a single participant, the author. The primary objective of this experi-

ment was to determine if a more statistically efficient psychophysical procedure could

be used in the subsequent experiments. The results of Experiment 1 were used to

design an ‘adaptive-level’ procedure for Experiment 2, and a ‘method of adjustment’
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procedure for Experiment 3. For Experiments 2 and 3, discrimination thresholds

for five listeners, including the author, are estimated for a variety of stimulus con-

ditions. The first two experiments use stationary wideband noise bursts as stimuli,

while the third experiment uses complete virtual auditory scenes constructed from

field recordings.

4.1 Experiment I: Psychometric Functions

Standard psychophysical discrimination tasks characterize the psychometric func-

tion of an observer, which describes the probability of correct discrimination as a

function of some independent physical variable (145). In the present study, the in-

dependent physical variable is the approximant system order N . In general, for very

small N , listeners easily discriminate between stimuli generated by the full-order

system and those generated by the low-order approximant, and performance in the

task is 100%. As N grows large, the differences between the stimuli grow small and

listeners perform near 50% in the discrimination task.

Methods of estimating the psychometric function are distinguished by whether

they estimate the function over the listener’s operating range, or simply some refer-

ence point (e.g. the 50% correct point) on the function. Furthermore, methods are

distinguished by whether they use a ‘fixed-level’ procedure or an ‘adaptive-level’ pro-

cedure1. Fixed-level approaches are generally used to estimate several points along

the psychometric function and require that a few thousand discrimination trials be

conducted to obtain statistically reliable results. In contrast, adaptive-level proce-

1The ‘level’ is the independent variable. The terms ‘fixed-level’ and ‘adaptive-level’ were first
employed in signal plus noise experiments in which case the ‘level’ was the amplitude of the signal
relative to the noise. In the present study, the ‘level’ is the order of the approximant, hence we could
use the terms ‘fixed-order’ and ‘adaptive-order.’ However, to be consist with the psychophysical
literature, we use the terms ‘fixed-level’ and ‘adaptive-level.’
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dures estimate one point in the psychometric function, that corresponds to a certain

level of discrimination performance, and only require that a few hundred trials be

conducted. However, in order to employ an adaptive-level procedure, the operating

range of the psychometric function must be known, and the shape of the function

must meet certain conditions (146; 147).

The first experiment estimates the psychometric functions of one listener, the

author, for ten stimulus conditions. The stimulus conditions vary the approximant

type, whether the HRTFs are individualized, and the consistency of the noise stim-

uli. By comparing the psychometric functions for different conditions, we assess the

significance of these experimental variables and use these results in the design of

Experiments 2 and 3.

4.1.1 Methods

Stimulus Conditions

Stimuli are constructed by filtering broadband noise bursts with either full-order

HRTFs or low-order approximants (either truncated FIR or state-space). The sam-

pling rate for all stimuli is 44.1 kHz. The monaural noise bursts are band-limited

from 100 Hz to 16 kHz. The duration of the noise burst is 50 ms, with 5 ms raised

cosine-squared ramps applied to the onset and offset of each burst2.

Ten stimulus conditions are tested. The stimulus variables are:

1. Type of noise source (either ‘identical’ or ‘independent’).

2. Type of HRTF dataset (either individualized or non-individualized).

2At 44.1 kHz, the 50ms noise burst consists of 2205 samples. Prior to filtering with the HRTFs,
an extra 1024 samples are appended to the end of the noise burst. Hence the total ‘duration’ of the
filtered noise burst is 73.2ms. 1024 are more than enough appended samples for the full-order HRTF
convolution. The extra samples are included only as a precaution: the state-space approximants do
not, in general, yield finite impulse responses. However, we have found in practice that the state-
space impulse responses reliably fall to zero quickly (< 0.00001 within 200 samples). In contrast,
we have found that some IIR filter designs yield impulse responses that fall to zero slowly.



91

Table 4.1: System orders N for the three approximant types.
Approximant Type Orders N

FIR 6 12 22 38 62 94 140
SIMO State-Space 6 12 20 30 42 56 72
MISO State-Space 6 12 20 28 38 48 62

3. Type of approximant (either FIR, SIMO state-space or MISO state-space).

Of the 2× 2× 3 = 12 possible variable combinations, two are eliminated; the MISO

architecture is not tested with individualized HRTFs. For the noise sources, identical

noises are generated for each trial by sampling a random noise generator once, and

using that instance of the noise process for every interval in the trial. Statistically in-

dependent noises are generated by sampling a random noise process for each interval

of the trial. Stimuli are generated using two distinct HRTF datasets, one measured

from the participant in the experiment (the author), and the other measured from a

different individual.

The full-order ‘standard’ stimuli are generated by convolving a noise burst with

the N = 255 minimum-phase impulse responses of the measured HRTFs. For the

FIR approximants, the ‘comparison’ stimuli are generated by convolving a noise

burst with a truncated minimum phase impulse response. For the state-space ap-

proximants, the ‘comparison’ stimuli are generated by processing a noise burst with

the low-order state-space system. State-space approximants are constructed using

Hankel-norm optimal approximation (HOA). Two state-space architectures are in-

cluded, SIMO and MISO. For all stimulus conditions, the psychometric functions are

estimated at seven points. The seven values of N for the three approximant types

are shown in table 4.1. These were chosen to span the range of the psychometric

function in approximately uniform steps.
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HRTF Collection

The approximants used to generate the comparison stimuli model D=50 HRTF

pairs. The collection is chosen randomly for each block such that the 50 directions

are distributed approximately uniformly around the head, subject to a constraint

that no left-right symmetry is allowed3. A sample collection of D =50 directions is

shown in Figure 3.1.

In the design of a practical binaural display, the choice of D=50 is a reasonable

compromise between flexibility and complexity. Interpolation and dynamic changes

are more smooth if the distance between neighboring HRTFs is small. On average,

with D = 50, each direction has neighbors at approximately 30◦ in all directions. In

this case, simple weighted-average interpolation can be used to render a wide variety

of acoustic phenomena. We have found that a more sparse collection of directions

is more prone to interpolation and dynamic artifacts4. On the other hand, a more

dense collection appears to offer little benefit and only adds to the complexity of the

system. Furthermore, in Chapter III we found that state-space systems offered the

greatest relative advantage for D ≈ 50, as can be seen in Figure 3.4. Accordingly, we

expect to see a clear advantage with the state-space approximants in discrimination

performance.

3This constraint is included so as to force the collection of directions to be as ‘diverse’ as possible
within the HRTF dataset. A decrease in the ‘diversity’ of the collection of HRTFs may improve
the performance of an state-space approximant, but not an array of independent filters. Allowing
symmetry in the collection may improve the relative performance of the state-space approximant.

4While the stimuli in the first two experiments are simple enough that interpolation and dy-
namics are not an issue, the third experiment considers complex moving sound sources. In the
interest of estimating order thresholds that can be used in practice, we fix the number of directions
at D = 50 for all three experiments.
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Figure 4.1: The timeline of each trial. The total duration of each observation interval
is 73.2 ms. The stimulus consists of 50 ms noise bursts, with 23.2 ms of
silence appended to the end of each burst prior to HRTF filtering.

Psychophysical Procedure

A four-interval, two-alternative forced-choice paradigm is used, in which the order

N remains fixed during the block of trials, similar to (64). The timeline of a trial is

shown in Figure 4.1. A trial consists of four intervals separated by 375 ms of silence.

For each trial, either the second or third interval is the ‘comparison’ stimulus that

is generated with the approximant, and the remaining three intervals are ‘standard’

stimuli that are generated with the full-order HRTFs. The interval for the comparison

is randomized across trials. Following the conclusion of the fourth interval, the

observer is asked to select which interval (either second or third) is most different

from the other three. The user responds by selecting the appropriate button in

the experiment’s graphical user interface (GUI). A screen-shot of the GUI is shown

in Figure 4.2. After the observer response, feedback is provided by lighting the

GUI button that corresponds to the comparison stimulus for 100 ms. During the

presentation of the trial, each observation interval is indicated by a light in the

appropriate button in the GUI. In addition to the four observation intervals, a ‘cue’

light is provided to inform the listener that a new trial is about to begin. After each

trial, there is a 2 s pause and the next trial begins automatically.
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Figure 4.2: Screen shot of the GUI used for experiments 1 and 2.

Trials are presented in blocks of 54. The first four trials of each block are practice:

the interval containing the approximant is indicated and the observer response is not

recorded. Observer responses are recorded for the last 50 trials. Each block takes

about 5 minutes to complete, and breaks are taken regularly after every 5-8 blocks.

The ten stimulus conditions are divided into four groups for testing based upon

the noise stimuli variable and the HRTF dataset variable. The first and second

groups use individualized HRTFs, and the first and third groups use identical noise

instances. Within each group, the order in which blocks are presented, across both

system type and system order, is randomized. For each stimulus condition and order,

a total of five blocks are presented. Hence each point in each psychometric function

is the result of 250 responses. The first two groups consist of 70 blocks each, and the

last two groups consist of 105 blocks each. In total, 350 blocks are presented, and

17,500 responses are recorded.

Participants

One observer with normal hearing, the author, participated in Experiment 1.

Individual HRTFs had been previously measured for the this observer. The entire

experiment required about 28 hours of listening time.
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Facility

Stimuli were presented over headphones with the participant seated in a double-

walled sound-proof booth (Acoustic Systems, model 19460A) before an LCD monitor,

keyboard and computer mouse. The booth is manufactured by Acoustic Systems,

model 19460A. The experiment was run in MATLAB on an Apple G5 desktop. The

observer indicated their responses by making button presses in the GUI using the

computer mouse. The computer chasis was housed outside the booth.

Stimuli were presented at a 44.1kHz sampling rate using an M-Audio FireWire410

interface for D/A conversion and headphone amplification. Beyer-Dynamic DT931

headphones were used throughout the experiments. Stimuli were not equalized for

the headphone transfer functions. All stimuli were presented at comfortable listening

levels.

4.1.2 Results

Figures 4.3 through 4.6 show the psychometric functions for the ten conditions

described above. In all cases, the psychometric functions that correspond to the ‘iden-

tical’ condition are shown with solid lines, and the functions that correspond to the

‘independent’ condition are shown with dashed lines. The FIR conditions are marked

with circles (•), the SIMO state-space conditions are marked with left-pointing tri-

angles (J), and the MISO state-space conditions are marked right-pointing trianlges

(I).

Each point of each psychometric function shows the fraction of the 250 trials for

which the observer made the correct decision. The error-bars for each point show the

standard error, which is given by the standard deviation of the observer responses

normalized by the square-root of the total number of trials. The standard error gives
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Figure 4.3: Psychometric functions for FIR approximants of both individualized and
non-individualized HRTFs as a function of filter order for ‘identical’ and
‘independent’ noise instances.

the 68% confidence interval of the discrimination performance5.

The psychometric functions for the truncated FIR approximants are shown in

Figure 4.3. The abscissa plots the system order (N) on a logarithmic scale, and the

ordinate plots the observer’s percentage correct. The individualized HRTF condi-

tions are shown with gray lines, and the non-individualized HRTF conditions are

shown with black lines. For both identical and independent noise stimuli, there

was no significant difference in discrimination performance for individualized versus

non-individualized HRTFs. In contrast, there was a significant difference in discrim-

ination performance for identical versus independent noise instances. For a wide

5If the experiment is repeated with the same number of trials, there is a 68% chance that the
discrimination performance would be within one standard error of the estimate.
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Figure 4.4: Psychometric functions for SIMO state-space approximants of both indi-
vidualized and non-individualized HRTFs as a function of system order
for identical and independent noise instances.

range of system orders, 12≤N ≤ 62, switching from identical to independent noise

stimuli caused the discrimination performance to drop from over 95% to about 85%.

However, for both noise stimuli, the psychometric functions did not fall to chance

until the order was increased to about 150.

The psychometric functions for the SIMO state-space approximants are shown

in Figure 4.4 using the same plotting convention as in Figure 4.3. As with the

FIR approximants, there was little difference between the individualized and non-

individualized HRTF conditions, although discrimination accuracy was slightly higher

for the non-individualized condition than for the individualized condition. The noise

stimuli affected the discrimination performance significantly. For both conditions,

the shapes of the psychometric functions were the same, and only differed by a shift
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Figure 4.5: Psychometric functions for FIR and SIMO state-space approximants of
non-individualized HRTFs as a function of net system cost.

in the independent variable, N . For the state-space approximants, the order at which

the psychometric functions fall to chance depended on the noise stimuli: for identi-

cal stimuli, discrimination fell to chance at N =56, whereas for independent stimuli,

discrimination fell to chance at N =42.

The discrimination performance of the FIR and state-space approximants can

be directly compared if the psychometric functions are plotted as functions of net

computational cost, rather than system order. The psychometric functions for the

non-individualized conditions in Figures 4.3 and 4.4 are shown in Figure 4.5 as a

function of computational cost. The cost for both systems is defined in Section 3.1.2.

In Figure 4.5, the abscissa gives the net computational cost C on a logarithmic scale.

It is clear that, for increasing computational cost, the discrimination performance

fell to chance more rapidly with state-space approximants than FIR approximants.
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Figure 4.6: Psychometric functions for SIMO and MISO state-space approximants of
non-individualized HRTFs as a function of net system cost for identical
and independent noise instances.

For example, in the case of independent noise stimuli, discrimination performance

fell below 60% for C >3500 for state-space approximants, and for C >8000 for FIR

approximants.

The psychometric functions for the SIMO and MISO state-space systems, for the

non-individualized condition only, are shown in Figure 4.6. The abscissa gives the net

computational cost C on a logarithmic scale. Overall, discrimination performance

was similar for both architectures for both noise stimuli. Discrimination accuracy

was 2-4 percent higher for the MISO architecture than the SIMO architecture, which

is in general agreement with the relative approximation errors shown in Figure 3.4.
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4.1.3 Discussion

Experiment 1 used a fixed-level psychophysical procedure. For every point esti-

mated along the psychometric function, a large number trials were required. Fortu-

nately, Experiment 1 revealed several trends that enable the design of an adaptive-

level experiment. All ten psychometric functions were reasonably smooth and mono-

tonic in the independent variable. Furthermore, in the transition region from 90%

correct to 60% correct, the psychometric functions were reasonably linear on a log-

arithmic scale. This is a convenient feature for an adaptive-level experiment, as

the adaptive system orders may be spaced logarithmically, allowing a wide range of

discrimination thresholds to be accurately and efficiently estimated.

Figures 4.3 and 4.4 demonstrate that discrimination performance was not de-

graded by the use of non-individualized HRTFs. There is no significant difference

in discrimination performance between individualized and non-individualized condi-

tions. Indeed, for the non-individualized HRTF condition, discrimination accuracy

is slightly higher than for the individualized condition. Measuring complete HRTF

datasets from multiple participants is costly and time-consuming. In lieu of in-

dividual HRTF measurements, we use the non-individualized HRTF dataset from

Experiment 1 in Experiments 2 and 3.

From Figure 4.6, it is clear that the choice of SIMO versus MISO architecture

had little impact on the discrimination performance, as a function of cost C. If the

MIMO architecture had been included, it is likely that discrimination accuracy would

have been significantly higher due to additional cues caused by the ITD smearing,

as discussed in Section 2.3.1 (9). Comparing the SIMO and MISO discrimination

performance, the MISO architecture yielded consistently higher discrimination accu-

racy, although the difference was small. This mirrors the approximation error results
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reported in Section 3.2.2, where the MISO architecture exhibited slightly higher

auditory L2 error.

In Figure 4.5, contrasting trends can be observed in the change in psychomet-

ric function for identical and independent noise stimuli. In moving from identical

noises to independent noises, additional stimulus uncertainty was introduced. This

uncertainty reduced the reliability of timbral cues in performing discrimination. As

expected, in the absence of such reliable cues, the discrimination performance de-

graded, and the psychometric functions shifted to lower orders. This shift was differ-

ent for the state-space versus FIR approximants. For the state-space approximants,

independent noise instances caused the psychometric function to shift to lower or-

ders without changing the slope of the function. For the FIR approximants, however,

the psychometric function changed slope. For the identical condition, discrimination

accuracy was near 100% for N ≤ 62, whereas for the independent condition, dis-

crimination accuracy fell to the 80-90% range for 12 < N < 62. However, for both

conditions, the psychometric functions exhibited ‘knees’ near N =62. This suggests

that for a broad range of system orders, 12<N <62, for 20-40% of trials, discrimina-

tion was performed primarily using subtle timbral cues that were unavailable when

independent noise instances were used.

The observer noted subjectively that discrimination was performed using pri-

marily timbral cues and not spatial cues for N ≥ 12 for both state-space and FIR

approximants6. Indeed, the observer noted that the task was perceptually demand-

ing and required careful listening and concentration. For both FIR and state-space

approximants, the N = 6 comparison stimuli often were ‘collapsed inside the head’

6During the experiment itself, the observer did not know the order N for any block. However,
as the author was developing the experiment, numerous informal tests were conducted in which the
observer knew the system order.
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relative to the full-order stimuli. For N =12 both approximants yielded small spatial

distortion that aided in discrimination. This distortion was larger for FIR approx-

imants than for state-space approximants. For N > 12, both approximants yielded

perceived sources at the correct location, and were equally well-externalized and

well-focused.

In the next experiment, we utilize our results from Experiment 1 to design efficient

experimental procedures that allow us to estimate perceptual thresholds for several

conditions and listeners.

4.2 Experiment 2: Order Thresholds for Broadband Noise

Experiment 1 examined the relationship between perceptual fidelity and system

order by directly sampling the psychometric function at several fixed orders. As

can be seen from the experimental procedures, this required a very large number of

trials. Having discovered that the psychometric functions are monotonic and linear

allows us to use an adaptive-level stair-case procedure (146; 147) for Experiment

2. Furthermore, because Experiment 1 showed no difference in discrimination per-

formance with individualized and non-individualized HRTFs, we employ only non-

individualized HRTFs and recruit additional observers for Experiments 2 and 3. For

Experiment 2, rather than estimate complete psychometric functions, we estimate

one point on each psychometric function that corresponds to a fixed discrimination

performance.

Some of the stimulus conditions from Experiment 1 are replicated in Experiment

2, and new stimulus conditions are introduced as well. The stimulus conditions

vary the type of uncertainty of the stimulus. Two types of stimulus uncertainty are

varied: a timbral uncertainty and a spatial uncertainty. The manipulation of timbral



103

uncertainty is the same as found in the Experiment 1, through the use of statistically

identical versus statistically independent noise bursts. The manipulation of spatial

uncertainty in Experiment 2 is accomplished by the introduction of virtual reflections

in the stimulus. By manipulating two types of stimulus uncertainty we can assess

how robust the advantage of the state-space approach is, as well as compare the

relative trends between the two types of uncertainty.

4.2.1 Methods

Stimulus Conditions

Stimuli are constructed in the same manner as Experiment 1, with the exception

that some stimulus conditions include virtual acoustic reflections. Two types of

stimulus uncertainty are varied, timbral and spatial. The timbral uncertainty is the

same as in Experiment 1, ‘independent’ versus ‘identical’ noise bursts. The spatial

uncertainty is introduced by using the first-order images sources of a medium-sized

rectangular room (101) to model a simple ‘reflective’ environment, in contrast to the

‘anechoic’ environment that is effectively modeled by filtering the monaural noise

burst with a single HRTF pair. For all four stimulus designs, both FIR and state-

space approximants are tested. In total there are three experimental variables and

eight stimulus conditions.

The ‘anechoic’ condition is the same as in Experiment 1: for each trial, one of

the D = 50 directions is chosen, and the appropriate HRTF and approximant is

used to compute the binaural stimulus. The ‘reflective’ condition includes five first-

order acoustic reflections, along with the direct wave, which model a rigid-walled

rectangular enclosure. The image source model was used to calculate the first-order

reflections of a rectangular room of size 6m wide, 8m deep, and 4m tall. The reflection

coefficients are β =0.7 for the walls and ceiling and β =0 for the floor (101). Note that
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the lowest elevation included in the HRTF dataset used in this study is φ = −36◦. As

such, rendering reflections from the floor is not possible, hence the floor is modeled

as entirely absorptive. Figure 1.8 shows a sample arrangement of image sources for

a rectangular room.

The listener is positioned at the center of the room, and faces forward. For each

trial, a source location is chosen from anywhere in the room with uniform probability

subject to the constraints that the source not be within 1m of any boundary or the

listener, and that the elevation of the source relative to the listener is at least −36◦.

For a given source location, five image sources (excluding the image below the floor)

are computed, giving a total of six sources at various directions and distances7.

Nearest-neighbor interpolation is used, which is mathematically equivalent for first-

order image sources to tilting the walls of the room to be not perfectly rectangular.

Hence the stimulus presented to the listener is the sum of six scaled-and-delayed

binaural signals, where each binaural signal is the result of filtering the source noise

with either an HRTF pair (for the standard stimulus) or an approximant (for the

comparison stimulus). Note that only first-order reflections are included, and no

diffuse reverberation is included.

The inclusion of the virtual reflections introduces a sort of spatial uncertainty into

the stimulus. In most cases that included virtual reflections, the listener reported

that they perceived the source direction with reasonable accuracy, but that the dif-

fuseness of the sound was greater and the spatial cues are conflicted as compared

to the ‘anechoic’ condition. Given that most commonplace auditory scenes include

acoustic reflections, estimating discrimination thresholds for reflective environments

is an appropriate step in setting the design specifications for immersive and flexible

7The distance between the listener and each source (either direct or image) is given by the
distance between the source and the closer ear.
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binaural displays. However, it is unclear what, if any, effect the inclusion of virtual

reflections has on discrimination performance.

The SIMO architecture is used for all state-space approximants in Experiment 2.

The stimuli in Experiment 2 consist of a single virtual sound source, and depending

upon the stimulus condition, a collection of image sources. Recall that the draw-

back of the SIMO architecture is that only one source can be rendered, however for

the stimuli in Experiment 2 this is not a problem. In both Experiment 1 and the

empirical experiment in Chapter III, the SIMO architecture yield slightly better per-

formance than the MISO architecture. In the interest of showing a clear difference in

the threshold estimates for FIR and state-space approximants, we chose the SIMO

architecture for the state-space approximants. Nonetheless, the difference in perfor-

mance for the SIMO and MISO architectures was very small, hence we expect that

the results would be little changed if we had used the MISO architecture instead.

Furthermore, in Experiment 3 we consider stimuli that consist of multiple distinct

sound sources, hence the MISO architecture is required for Experiment 3.

Psychophysical Procedure

The observer performed a four-interval, two-alternative forced-choice task in

which the order of the approximant was adjusted according to their responses. A

“2 down, 1 up” stepping rule (146) was used in which the order of the approxi-

mant increases whenever the observer was correct on the previous two trials, and

decreases whenever the observer was incorrect on the previous trial8. The “2 down,

1 up” stepping rule has been shown to track the 70.7% correct point of the listener’s

8The name of the stepping rule derives from classical ‘signal + noise’ discrimination experiments.
In these experiments, ‘down’ refers to a decrease in the level of the ‘signal’ relative to the ‘noise’.
In the present experiment, the ‘signal’ is the distortion due to the filter approximation. Increasing
the approximant order corresponds to a ‘down’ step and decreases in the ‘signal’.
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psychometric function.

Each block, or run, of the adaptive-level experiment begins with an N = 6

approximant, and ends after the observer has made 12 reversals. A reversal occurs

on a given trial when the order update changes direction, either from increasing to

decreasing or vice versa. The first four reversals are ignored, and the approximant

order is estimated from the levels of the last eight reversals. The number of trials in

each block varied, but is usually 50-60 trials, and the duration of each block is about

5 minutes. The observer takes a break after every four blocks.

From Figures 4.3 and 4.4 it can be seen that the psychometric functions are ap-

proximately linear functions of the logarithm of N in the transition region from 90%

to 60% correct. Therefore a logarithmic spacing of approximant orders is appropri-

ate. Logarithmic spacing also allows for a wide range of thresholds to be accurately

measured. For the FIR approximants, the order increases in increments of 19%, and

for the state-space approximants, the order increases in increments of 16% (rounded

to the nearest integer). The increment sizes were chosen so that both approximants

included 5-7 steps in the transition region, and yield blocks with approximately the

same number of trials for all stimulus conditions. The specific system orders are

NFIR = [6, 7, 8, 9, 11, 13, 16, 19, 23, 27, 32, 39,

46, 55, 66, 79, 94, 112, 134, 159, 190, 226]

NSS = [6, 7, 8, 9, 10, 12, 14, 16, 18, 21,

24, 28, 32, 37, 42, 49, 56, 65, 74, 85, 98]

The standard “2 down, 1 up” stepping rule was modified to accommodate specific

features of the psychometric functions. We want the adaptive blocks to start near



107

100% discrimination accuracy, so that the observer almost always makes correct

responses for the first few trials. As such, we choose to begin each adaptive run

with order N = 6 for both FIR and state-space approximants. However, this slows

the convergence to the 70.7% discrimination point, as the psychometric functions

decrease slowly from 100% to 80%, but then rapidly from 80% to 60%. This trend

is strong for the FIR approximants in particular. Preliminary tests showed that

observers begin to make occasional errors for N >6, hence reversals begin while the

order is still far from the true 70.7% point. The order eventually converges to 70.7%,

but requires up to 50 trials to step into the 70.7% neighborhood using the “2 down,

1 up” rule as described above.

To speed the convergence, two modifications were made to the stepping rule prior

to the first two reversals. First, the step size is doubled. Second, a “2 down, 2 up” rule

is employed in which a reversal from ‘down’ to ‘up’ occurs only after the observer has

made two incorrect responses. This stepping rule converges at 50% discrimination,

hence the adaptive track would tend to overshoot the 70.7% threshold if this stepping

rule were used throughout the block. However, this rule is only applied to the first

pair of reversals. The standard “2 down, 1 up” rule is used for the last ten reversals,

and only the last eight reversal orders are recorded. We found that the adaptive

track occasionally overshot the 70.7% threshold prior to the first reversal, but that

this did not appear to bias the final eight reversals when comparing the author’s

results in Experiment 1 with preliminary results for Experiment 2.

A typical adaptive track is shown in Figure 4.7. Note that in trials 3 and 7 the

observer made an incorrect response, even though the order of the approximant is

much smaller than the 70.7% threshold. If the “2 down, 2 up” stepping rule had not

been used for the first pair of reversals, reversals would be recorded before the track
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Figure 4.7: A sample adaptive track with an FIR approximant. Correct responses
are marked with “+” signs, incorrect responses are marked by “×” signs,
and the recorded reversals are marked with gray circles.

converged on the 70.7% threshold. Of course, the “2 down, 2 up” stepping rule allows

the possibility of the observer stagnating, or plateauing, if the observer responds “one

correct, one incorrect, one correct...” However, in practice such instances were rare

during this experiment.

The eight stimulus conditions are divided into four groups of increasing net uncer-

tainty. The first two groups test identical noise instances (no timbral uncertainty),

and the first and third groups test anechoic environments (no spatial uncertainty).

For each group, blocks were chosen at random with either FIR or state-space ap-

proximants. Each participant completed enough blocks to have a total of five ‘stable’

blocks for each condition, as defined below. For each group, participants performed

fixed-level training prior to the adaptive tests. For the first group, participants

performed about 3 hours of fixed-level training, and for the remaining groups par-

ticipants performed about 1 hour of fixed-level training. The procedures for the
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fixed-level training follow those of Experiment 1.

Statistical Treatment

The last eight reversals of each block are recorded to estimate the order that

corresponds to 70.7% correct in the discrimination task. Because the approximant

orders are logarithmically spaced, the unbiased threshold estimate for each block

is computed by taking the geometric mean of the eight reversals. Each observer

performed enough adaptive blocks so as to have five ‘stable’ blocks for every stimulus

condition, where a ‘stable’ block is defined as a block for which the standard deviation

of the eight recorded reversals is less that 2 steps of the independent variable9. The

geometric mean of the five 70.7% order threshold estimate are reported below, along

with the standard deviation of the five estimates.

Participants

Five observers participated in the adaptive-level experiment, including the au-

thor. Four participants were recruited by email from the undergraduate program

in the the Department of Performing Arts Technology in the School of Music at

the University of Michigan, Ann Arbor. These four participants had experience with

sound engineering and headphone listening, although none had prior experience with

binaural listening or had participated in psychoacoustic studies. Among the partici-

pants, four were male, and one was female. All participants were between the ages of

19 and 30, and have ‘normal’ hearing as assessed by an audiogram measurement10.

The entire experiment required about 14 hours of listening time from each partici-

9Unstable blocks were usually blocks in which the observer did not step up to the 70.7% neigh-
borhood before reversals were recorded, in spite of the initial “2 down, 2 up” stepping rule. In such
cases the eight recorded orders drifted up significantly from start to finish. Overall, approximately
80% of the blocks were acceptable.

10All five participants had audiograms that were within 4 dB of the lab average between 500 Hz
and 4 kHz, and were within 10 dB of the lab average between 125 Hz and 16 kHz.
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pant, divided into 1.5-2 hour sessions. Observers performed one session per day, and

most sessions were performed on consecutive days.

4.2.2 Results

Figures 4.8 and 4.9 show the average N70.7 threshold estimates for the eight con-

ditions for each observer individually, and averaged across observers. The observers

are labeled “S1” through “S5” along the abscissa. Observer S1 is the author. FIR

thresholds are shown with light gray bars and state-space thresholds are shown with

dark gray bars. For the individual observer thresholds, the error bars indicate the

standard deviation of the five blocks. For the average thresholds, the error bars

indicate the standard deviation of the five observer averages.

Threshold estimates for identical noise instances are shown in Figure 4.8. The

top panel shows thresholds for the anechoic condition, and the bottom panel shows

thresholds for the reflective condition. Thresholds for the FIR approximants were

in the range 48 ≤ N70.7 ≤ 92, and thresholds for the state-space approximants were

in the range 16 ≤ N70.7 ≤ 32. Both approximant types yielded thresholds that vary

by a factor of two across observers. Nonetheless, it is clear that the state-space

approximants yielded significantly lower thresholds for each observer.

Threshold estimates for independent noise instances are shown in Figure 4.9,

for both the anechoic condition (top panel) and the reflective condition (bottom

panel). Thresholds for the FIR approximants were in the range 13 ≤ N70.7 ≤ 76, and

thresholds for the state-space approximants were in the range 9 ≤ N70.7 ≤ 23. For

each observer, the thresholds with state-space approximants were consistently lower

than those with FIR approximants.
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Figure 4.8: 70.7% thresholds for identical noise instances. Thresholds for all 5 partic-
ipants are shown, along with average thresholds to the far right. Thresh-
olds for the anechoic condition are given in the top panel, and for the
reflective condition in the bottom panel. Thresholds for the FIR approx-
imants are shown with light gray bars, and thresholds for the state-space
approximants are shown with dark gray bars. The standard deviation of
the five threshold estimates for each condition is indicated with errorbars.
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Figure 4.9: 70.7% thresholds for independent noise instances.

4.2.3 Discussion

The results above exhibit several interesting trends. The most obvious is that

the N70.7 thresholds for the state-space approximants are significantly lower than

those for the FIR approximants. This is clear for all observers and for all stimulus

conditions. Other significant trends are evident as well, but require additional inter-

pretation. A preliminary discussion of several important points is given below, while

a detailed analysis of the average N70.7 trends with respect to stimulus uncertainty

is postponed until section 4.4.
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Analysis of Variance

The statistical significance of the N70.7 threshold estimates was assessed with a

four-factor, repeated measures ANOVA. The four factors were: observer (S1-S5), ap-

proximant type (FIR and state-space), noise stimulus (identical and independent),

and stimulus environment (anechoic and reflective). The first three factors were

found to be clearly significant (p < 0.0001), but the environment factor was not

(p = 0.106). ANOVA was also performed separately for the FIR and state-space

conditions, in which case the environment factor was significant with state-space ap-

proximants (p<0.0001), but not with FIR approximants (p=0.433). This disparity

is discussed in greater detail in section 4.4. The p values change little if the observer

factor is removed from the ANOVA.

Individual Differences

Observer S1 was the author. Observer S1 yielded significantly higher thresh-

olds than the other observers for all stimulus conditions. This was likely due to the

extended training that this observer received while designing and performing Ex-

periment 1. Nonetheless, the relative trends for different stimulus conditions were

similar for S1 and the other observers.

The N70.7 estimates for observer S1 were in agreement with the psychometric

functions estimated in Experiment 1, indicating that the adaptive procedure used in

Experiment 2 was unbiased. For FIR approximants, observer S1 yielded N70.7 = 92

and N70.7 = 76 for identical and independent noise instances, respectively. Referring

to Figure 4.3, the psychometric functions cross the 70.7% point at approximately N =

94 and N = 70 for the corresponding conditions. For the state-space approximants,

observer S1 yielded N70.7 = 30 and N70.7 = 23 for identical and independent noise
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instances, respectively. Referring to Figure 4.4, the psychometric functions cross the

70.7% point at approximately N = 28 and N = 19 for the corresponding conditions.

Considering all five observers, the threshold estimates showed more observer vari-

ation with independent noise instances than with identical noise instances. This

suggest that the timbral uncertainty introduced in the independent noise condition

degraded the discrimination performance of some observers more than others. The

drop was greatest with observer S5, who exhibited higher thresholds than most other

observers in the identical condition, but exhibited the lowest thresholds among all

participants in the independent condition. Indeed, observer S5 reported subjectively

that the discrimination task with independent noise instances was difficult even with

very low-order approximants. Overall, the individual differences seen here are con-

sistent with studies in spectral-shape discrimination (148).

Subjective Observations

All five observers reported subjectively that the discrimination task was more

‘difficult’ with independent noise instances than identical noise instances. The ob-

servers were instructed to select the interval that was most different from the other

three. For the identical condition, this selection was essentially equivalent to select-

ing the interval that was simply different, as the other three intervals were physically

identical. In contrast, for the independent case, all four intervals were physically

different and the observer had to weigh the differences so as to select the interval

that was most different.

Furthermore, three observers reported subjectively that the discrimination task

was more ‘difficult’ with reflective stimuli than anechoic stimuli. No observers re-

ported that the discrimination task was easier with reflective stimuli. In the case
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of reflective stimuli, observers generally reported that the sound objects were better

externalized, but also more diffuse and ‘enveloping’ and that directional cues were

more ambiguous.

Order Versus Cost

Recall that, in general, there is a difference between the relative system orders

and the relative computational cost of the two approximant types. As defined in

Section 3.1.2, the total cost C of the FIR approximant is proportional to the order

N , whereas for the state-space approximants the relationship between C and N is

quadratic. Nonetheless, for the order thresholds N70.7 that were estimated in this

experiment, the relative advantage of the state-space approximants would change

little if expressed in terms of cost C70.7 instead.

Consider two systems that model D = 50 HRTF pairs, and FIR system and a

SIMO state-space system. Figure 4.10 shows the ratio of the computational cost of

the state-space system to that of the FIR array of equal order for 1≤N ≤ 50. For

N >50, a state-space system yields significantly higher cost than an equal-order FIR

array. However, the highest order threshold estimated for state-space approximants

in Experiment 2 was N70.7 = 32 < D, hence the C matrix dominates the compu-

tational cost of the state-space system and the A and B matrices contribute little

to the net cost. At N = 32, a SIMO state-space system yields a computational cost

that is about 15% larger than the cost of an FIR array of equal order. At N = 12,

a SIMO state-space system yields the same computational cost as an FIR array of

equal order.

To relate this back to the results presented in Figures 4.8 and 4.9, consider how

the relative differences between the FIR and state-space approximants would change
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Figure 4.10: Ratio of the computational cost of a SIMO state-space system to an
FIR array of equal order N . Both system model D = 50 HRTF pairs.

if the Figures showed C70.7 instead of N70.7. For example, the ratio of N70.7,FIR to

N70.7,SS for the “identical, anechoic” condition is 2.91, whereas the ratio of C70.7,FIR

to C70.7,SS is 2.60. This is the largest change of any of the conditions considered in

Experiment 2. For the “independent, reflective” condition, the ratio of orders is 2.67

whereas the ratio of costs is 2.55. Indeed, all of the relative trends evident in the

order thresholds can also be observed in the cost thresholds.

4.3 Experiment 3: Order Thresholds for Auditory Scenes

In Experiment 2, a variety of stimulus conditions were explored and a robust

procedure was used to estimate order thresholds N70.7. However, all conditions, even

those with increased stimulus uncertainty, consisted of individual wideband noise

bursts. Discrimination is relatively easy with such stimuli, hence the order thresh-

olds may be unduly pessimistic. In everyday listening, sound sources are spectrally

complex and temporally nonstationary, may be narrowband. Furthermore, typical

auditory scenes consist of many such sound sources acting simultaneously. In the
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final experiment we present listeners with auditory ‘scenes’ and determine the lowest

approximant order without causing a discriminable loss in perceptual fidelity.

Experiment 3 considers stimuli that are complex virtual auditory scenes (VAS)

consisting of commonplace sound sources. The objective adaptive-level procedure

employed in the previous experiment is replaced with a ’method-of-adjustment’

search for the threshold of subjective equality. The observer is given control of

the “Approximation Quality,” which is simply the order N of the approximant, and

instructed to find the poorest “Approximation Quality” that yields an “Approximate

VAS” that is identical to the “Ideal VAS.” The FIR reference approximant that was

used in the previous experiments is abandoned in Experiment 3 and only state-space

approximants of differing orders are considered below.

4.3.1 Methods

Stimulus Conditions

Three virtual auditory scenes were constructed by the author. Each VAS is 20-25s

in duration and consists of several sound sources, some of which occur simultane-

ously. The sound sources were culled from a Bang and Olufsen collection of anechoic

recordings (149), a CBS collection of field recordings (150), and field recordings made

by the author. Note that only the sounds from the Bang and Olufsen collection were

recorded in anechoic conditions. The other recordings include natural reverberation

and modest background noise.

The first VAS consisted of a short trumpet solo in front of the listener followed

by several independent applause sources surrounding the listener followed by three

firework whistles above the listener. The second VAS consists a speech source and a

percussion source on either side of the listener at 0◦ elevation, and a diffuse recording

of tropical birds above the listener. The third VAS consists of several animal sounds,
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from the bleat of a sheep to the buzz of a flying insect, presented in an overlapping

sequence. For the first and third scenes, the virtual listener is stationary within the

scene, and the sources move slowly with straight trajectories and constant speed

throughout the duration of the scene. For the second scene, the listener is rotating

slowly (with a 5s period) and the sources are stationary. Soundfiles of the three

virtual auditory scenes are available online11.

For each VAS, the virtual listener is positioned inside a 6m wide by 8m deep

rectangular enclosure. The virtual enclosure has no floor or ceiling, and the vertical

walls extend to infinity. For the first two auditory scenes, the reflection coefficient

of all four walls is β = 0.7, and for the third scene the walls to the front and right

have a reflection coefficient of β = 0.7, and for the remaining two walls β = 0.1.

Sound sources are positioned inside the room, and 1st- and 2nd-order reflections are

modeled with image sources. However, for sources located far above the listener,

such as passing birds, no reflections are included. Finally, no diffuse reverberation is

modeled, as reverberation is largely independent of the listener position and is best

rendered using a separate subsystem.

The auditory scene is constructed in overlapping 50 ms frames, with 5 ms raised-

cosine ramps applied to the beginning and end of each frame12. For each frame, the

location of the source relative to the listener is updated and the magnitude and delay

adjusted according the the distance to the nearer ear13. VBAP interpolation (86) is

used to map each source direction to the nearest three HRTF directions included in

the state-space model that surround the true source direction. In this way, D = 50

monaural signals are generated for both the left and right ears, including constant

11http://www-personal.umich.edu/ nhadams/auditoryScenes/index.html
12Note that the 50 ms frame period is small compared to the speed with which the sources move

relative to the listener, such that no source moves more than a few degrees within each frame.
13The radius of the virtual listener’s head is 8.75 cm.
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Figure 4.11: Screen shot of the GUI used for Experiment 3.

sample delays corresponding to the ITD. The 2×50 monaural signals are then filtered

with the appropriate full-order HRTFs, yielding the “Ideal VAS,” and are also filtered

with two order-N MISO state-space approximants, yielding the “Approximate VAS.”

The test stimulus that is presented to the listener is constructed by switching

between the “Ideal VAS” and the “Approximate VAS” every 2.4 s. For each switch,

non-overlapping 5 ms raised-cosine squared ramps are used. The brief gaps created

in the test stimulus due to the switches are obvious, but not distracting.

Psychophysical Procedure

The observer is instructed to use a variable-mapping slider that controls “Approx-

imation Quality” to find the poorest quality setting at which he or she perceives no

difference between the “Ideal VAS” and the “Approximate VAS.” The observer need

not recognize the “Ideal VAS” segments from the “Approximate VAS” segments in

deciding whether to increase the “Approximation Quality”, the observer need only

perceive a difference before and after any switch in the test stimulus. A screen-shot

of the GUI is shown in Figure 4.11.

Each block of the experiment begins with the observer listening to the full “Ideal

VAS” once. The observer then listens to and adjusts the test stimulus as many times

as he or she prefers until the poorest approximation is found that yields subjective
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equality. The observer is allowed to stop or restart the playback of the test stimulus

at anytime.

During each presentation of the test stimulus, the approximation quality of the

“Approximate VAS” is fixed. Between each playback of the test signal, the observer

may adjust the “Quality” of the “Approximate VAS,” which is simply the order N

of the two MISO systems. The order N is controlled by a slider that has a random

exponential warp14 applied to the mapping between slider position and N for each

block of the experiment. The collection of orders N is spaced logarithmically with a

step size of 20%. The full set of approximant orders N is

N = [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 17,

21, 25, 30, 36, 43, 51, 62, 74, 89]

The space of possible mappings between slider position and order N is shown in

Figure 4.12.

Each block begins with N = 1. The observer may take as much time with each

block as he or she prefers. When the observer decides that the “Approximate VAS”

is identical to the “Ideal VAS”, and the “Approximation Quality” slider is not higher

than necessary, the observer selects “Done,” the order Nse corresponding to this “Ap-

proximation Quality” is recorded, and a new block is initiated. The three auditory

scenes are presented once each in sequence, and the sequence is repeated five times.

For each observer a total of fifteen blocks are performed, with breaks taken after

every 4-6 blocks.

14The random warp is applied to discourage the listener from using a visual reference point to
aid the task.
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Figure 4.12: The range of possible mappings between slider position and order N .
The black lines show ten example mappings, all with equal probability.

Statistical Treatment

For each scene, and each observer, the geometric mean and standard deviation

of the five threshold estimates, Nse, are computed. The average threshold for each

scene is given by the geometric mean of the averages for each observer.

Participants

The five observers from the previous experiment participated in Experiment 3.

No training was performed prior to starting Experiment 3. The entire experiment

required about 1.5 hours of listening, and was completed in a single session.

4.3.2 Results

Figure 4.13 shows the average thresholds of subjective equality for the five ob-

servers and three auditory scenes. The top panels, and bottom left panel, show the

average thresholds for each observer. Error-bars indicate the standard deviation.

The bottom right panel shows the average thresholds for each VAS, and the error
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Figure 4.13: Discrimination thresholds for three virtual auditory scenes: 1. Trumpet
followed by applause and fireworks, 2. Revolving speech and percussion
with birds overhead, 3. Animal sounds. The bottom right panel shows
the average thresholds across the five observers.

bars show the standard deviation of the observer averages.

4.3.3 Discussion

For the first VAS the average threshold is Nse = 13, and for the other two scenes

the average threshold is Nse = 7. That the thresholds are significantly lower for the

second two scenes is likely due to the monaural source signals used to create the

scenes. The first VAS contains several recordings of diffuse applause in reverberant

environments. The applause signals are the most stationary and wideband of the

source signals included in the three scenes. As such, the first VAS provides more

consistent spectral cues that aid in discrimination and is most similar to the noise

bursts used in Experiment 2. Indeed, all five participants reported that they focused
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their attention upon the applause portion of the first VAS in performing the task.

Furthermore, the participants generally reported subjectively that the discrimination

of applause was primarily timbral rather than spatial.

The second two scenes yield lower thresholds. The standard deviation is larger

for the second VAS than the third VAS, however. The percussion source that is

included in the second VAS may have provided cues that aided in discrimination for

some blocks, but not consistently. The percussion signal provides sharp impulses

that are relatively wideband compared to the other source signals. However, the

percussion articulates a clear rhythmic pattern that is invariant to the approximation

quality. That is, the specific timbre of individual percussive hits may reveal subtle

timbral cues that improve discrimination, but only if the observer chooses to the

concentrate on such individual minutiae rather than the rhythmic performance. Thus

the listening strategy of the observer may have affected thresholds more for the second

VAS than the third VAS.

4.4 Stimulus Uncertainty

We now return to Experiment 2 and explore the dependence of N70.7 on stimulus

uncertainty in greater detail. Figure 4.14 shows the average threshold estimates for

all eight conditions. For each condition, the average threshold is given by the geo-

metric mean of the thresholds for each observer. State-space approximants yielded

lower N70.7 estimates than FIR approximants for all stimulus conditions. However,

the type of stimulus uncertainty affected thresholds for the two types of approx-

imants differently. The timbral uncertainty variable had a clear influence on the

N70.7 estimates for both approximants. For state-space approximants, thresholds fell

about 35% from identical to independent conditions, whereas thresholds fell about
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Figure 4.14: Average 70.7% thresholds. Error bars show the standard deviation of
the threshold estimates across observer.

50% for FIR approximants. In contrast, spatial uncertainty only affected the N70.7

estimates for state-space approximants. Where thresholds fell about 18% from ane-

choic to reflective conditions for the state-space approximants, thresholds did not

change significantly for the FIR approximants.

4.4.1 Auditory L2 Error Distribution

That the threshold estimates fall for the reflective condition with state-space

approximants, but not with FIR approximants was an unexpected result. This result

may be explained, in part, by considering the distribution of approximation error

across the collection of D = 50 directions modeled by each approximant.

Recall the auditory L2 error reported in Section 3.2.2. The distribution of this

error across the D=50 directions is different for FIR and state-space approximants.

Figure 4.15 shows average empirical distributions for two FIR approximants and two

state-space approximants. The orders of the approximants are given by the average

N70.7 estimates in the anechoic condition, as shown in Figure 4.14. The left panels
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of Figure 4.15 show the distributions for the identical noise condition, and the right

panels show the distributions for the independent noise condition. Specifically, the

orders of the FIR approximants are N = 67 and N = 34, and of the state-space

approximants are N =23 and N =15.

Consider a simple binary model for a listener’s ability to discriminate an HRTF

approximant from a full-order HRTF, in which for a given HRTF approximant at a

fixed direction, a listener is either always able to perform the discrimination task, or

never able to perform the task. Suppose the auditory L2 error of the approximant

is a sufficient statistic for whether or not a listener can perform the discrimination

task. That is, there exists a threshold, εL2 , such that a listener can discriminate the

approximant from the full-order HRTF if and only if the auditory L2 error of the

approximant is greater than εL2 . The 70.7% discrimination threshold is the point

at which the listener guesses for 2× (1−0.707) = 58.6% of the trials, and is able

to perform the task for the remaining 41.4% of the trials. Therefore, N70.7 is the

approximant order for which 58.6% of the auditory L2 error distribution is less than

εL2 , and 41.4% of the auditory L2 error distribution is greater than this threshold.

εL2 is shown by the vertical line in each panel of Figure 4.15. For both identical

and independent noise instances, εL2 is in general agreement for FIR and state-space

approximants. For the identical noise condition, εL2 = 2.91dB for FIR approximants

and εL2 = 2.35dB for state-space approximants. For the independent noise condition,

εL2 = 3.90dB for FIR approximants and εL2 = 4.00dB for state-space approximants.

For the reflective condition, the stimulus consists of six binaural signals summed

together: the direct wave plus five virtual reflections, where the reflections are iden-

tical to the direct wave except for having been attenuated, delayed, and processed

with a different HRTF pair. Suppose the listener aggregates the six distinct auditory
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Figure 4.15: Average empirical auditory L2 error distributions for two FIR approxi-
mants (top panels) and state-space approximants (bottom panels). The
orders of the FIR approximants are N = 67 (left) and N = 34 (right),
and of the state-space approximants are N = 23 and N = 15. The
vertical line in each panel indicates the error for which the cumulative
probability is 58.6%

L2 errors into a new sufficient statistic, and that if and only if the aggregate statistic

falls above εL2 , as shown in Figure 4.15, can the listener perform the discrimination

task.

The aggregation rule used by the listener is unknown, but there are several possi-

bilities. For example, if we assume due to precedence that the listener ignores the five

reflected waves entirely, then 41.4% of the trials would yield an aggregate statistic

above the error threshold and discrimination performance would be unchanged for

both approximants. On the other hand, if we assume that the aggregate statistic is

given by the maximum of the six errors, then 1 − 0.5866 = 96% of the trials would

yield a statistic above the threshold15. Indeed we can easily verify numerically that,

15Assuming that the six errors are independent random variables.
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for any of the empirical distributions shown in Figure 4.15, sampling six instances

from the distribution yields a maximum auditory L2 error that is greater than εL2

with probability 96%.

Suppose the aggregate statistic is given by a weighted combination of the six

individual auditory L2 errors, where the weights are given by the inverse of the rela-

tive distance from each image source to the listener. If the aggregate statistic is the

weighted linear mean of the six errors, then the fraction of trials in which aggregate

statistic falls above εL2 increases for all four approximants in Figure 4.15 to 45−49%.

However, if the aggregate statistic is the weighted geometric mean of the six errors,

then the fraction of trials for which the aggregate statistic exceeds εL2 differs for the

FIR and state-space approximants. For the FIR approximants, 44% of the trials ex-

ceed εL2 , whereas as only 34% of the trials exceed εL2 for state-space approximants.

Hence this model of discriminability predicts that, when virtual acoustic reflections

are added to the stimulus, N70.7 drops with state-space approximants, but not with

FIR approximants.

Unfortunately, this model of reflective stimulus discriminability does not accu-

rately predict the size of the drop in N70.7 with state-space approximants. That is,

if we consider the error distribution with approximant order given by N70.7 for the

reflective conditions (N = 19 and N = 12 for identical and independent conditions,

respectively), the aggregate statistics exceed εL2 , as computed from the distributions

in the anechoic condition, for 80− 90% of the trials, rather than the 41.4% that we

might expect. Furthermore, the author is unaware of any psychophysical rational for

this model. Nonetheless, this model predicts the direction of change in N70.7 even if

it does not predict the size of the change.
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Figure 4.16: Average decibel error as a function of frequency for FIR and state-space
approximants with order N = 34 and N = 15, respectively. The top
panel gives the average error, and the bottom panel gives the average
standard deviation of the error across the D = 50 directions.

4.4.2 Spectral Error Distribution

The different trends of N70.7 for FIR and state-space approximants can be further

explained by considering the distribution of error across the D = 50 directions as a

function of frequency. Figure 4.16 shows the average error in decibels (top panel) and

the average standard deviation of the error (bottom panel) for FIR approximants

with order N = 34 and state-space approximants with order N = 15. The orders

are given by the N70.7 estimates for the independent/anechoic condition. The error

is computed from the critical-band smoothed spectra of the measured HRTFs and

approximant responses.

The state-space approximants yield lower absolute error for 150-400 Hz and 3-

9 kHz, and yield similar error to the FIR approximants at all other frequencies.

However, the average standard deviation of the error is greater with the state-space

approximants at all frequencies. That is, the error of the FIR approximants is more
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consistent across the D = 50 directions than it is for the state-space approximants.

Therefore, if the stimulus consists of several directions added together, then the error

at each frequency with the FIR approximant is more likely to be reinforced than

with the state-space approximant. This would seem to be the case for the 150-400

Hz frequency range in particular, where the FIR approximant yields an average error

about 0.5 dB greater than the state-space approximant, and a standard deviation

about 1 dB lower than the state-space approximant.

Overall, the result above would seem to favor state-space approximants for the

display of reflective stimuli. However, the observation above also indicates that it

may be easier to apply a global corrective filter to the FIR approximants than to the

state-space approximants.

4.4.3 ‘Controlled’ versus ‘Everyday’ Uncertainty

Experiments 2 and 3 estimated different perceptual thresholds. Experiment 2

yielded thresholds in the range 12≤N70.7≤24, whereas Experiment 3 yielded thresh-

olds in the range 7≤Nse≤12. This is due, in part, to the psychophysical procedures.

The second experiment used an adaptive procedure to estimate the N70.7 threshold,

whereas the third experiment used a method-of-adjustment to estimate the threshold

of subjective equality, Nse. The latter is known to be subject to observer bias, since it

asks the observer to judge when “good” is good enough. Nonetheless, the differences

between the N70.7 and Nse estimates are likely dominated by the differences in the

stimulus between Experiments 2 and 3.

Experiment 3 considered everyday stimuli consisting of multiple complex sound

sources that were ‘nonstationary,’ both in the sense that the sources evolved over

time, and in the sense that the sources moved relative to the listener. With com-
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plex time-varying sound sources, listeners may tend to concentrate on ‘higher-level’

attributes of the sound objects, such as how the sound objects evolve over time,

rather than fine timbral detail. For example, when listening to a speech signal, the

listener may be distracted by what is said. This tendency is further evidenced by

the threshold estimates for individual observers.

In Experiment 2, the first observer, S1, yielded consistently higher thresholds than

the other observers. This disparity is not evident in Experiment 3. For Experiment

2, S1 performed significantly more fixed-level training than the other observers. For

Experiment 3, none of the observers had any training. S1 may have received a modest

amount of implicit training as he was developing Experiment 3, but he conducted

no training or testing prior to performing the experiment. From Figure 4.13 it can

be seen that S1 yields higher thresholds for the first VAS only. Due to the applause,

this VAS is perhaps most similar to the noise stimuli used in Experiment 2. This

implies that the higher discrimination thresholds evidenced by S1 in Experiment 2

are a result of the additional training that S1 performed with wideband noise stimuli.

That is, observer S1 may be less prone to focusing on the higher-level attributes of

the stimuli, and is relatively more focused on timbral detail.

4.5 Measures of Perceptual Fidelity

Different experimental methodologies have been employed to characterize the

perceptual fidelity of HRTF approximations. The methodology employed in the

present work was chosen because of the modest physical resources required, and the

guarantee that threshold estimates are perceptually sufficient for the binaural display

of a variety of virtual auditory scenes. For the worst-case scenario, in which the

timbral minutiae of broadband noise bursts must be accurately rendered, we found
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that the minimum order is approximately N = 24. For more pragmatic auditory

scenes with ‘real-world’ sources, in which a small amount of timbral distortion is

allowed, we found that the minimum order is approximately N =7.

Other studies of HRTF approximations employ different methodologies and con-

clude that vastly different minimum orders are required for adequate fidelity, ranging

from N =6 to N =100 (9; 60; 64). To a large extent, this broad range of minimum

orders reflects the specific psychophysical criteria used for assessing perceptual fi-

delity.

Many studies of HRTF approximations consider localization performance, rather

than discrimination performance. A common paradigm is to compare the directional

errors when HRTF approximations are used with the errors when full-order HRTFs

are used (9; 48). Timbral differences between the approximate and full-order HRTFs

are ignored so long as they do not affect the location estimates. This paradigm

is useful, for example, when searching for directional hearing cues. However, this

approach does not yield thresholds that guarantee no loss in fidelity. It is unclear

to what extent timbre influences the ‘immersiveness’ of the display. For example, a

virtual source may be heard at the correct direction, but may not be well externalized.

Furthermore, for some binaural display applications, such as concert hall modeling

and prediction, timbral accuracy is critical.

In contrast to localization performance, discrimination performance reveals

whether or not the listener hears any difference between the approximate and full-

order HRTFs. Such experiments may be divided into two broad groups: those with

a virtual reference condition (headphone display using full-order HRTFs) (64) versus

those with a physical reference condition (an appropriately positioned loudspeaker in

physical space) (69; 138; 151). The latter group requires a physical space, an array of
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loudspeakers, and sensitive measurement and equalization equipment. Furthermore,

a ‘physical space’ reference necessarily limits the variety of auditory scenes that may

be used as stimuli. In the interest of convenience and flexibility, we use a virtual

reference condition in the experiments below.

Some HRTF discrimination experiments attempt to force listeners to use only

spatial cues, and not timbral cues, by adopting a technique from auditory profile

analysis (152), in which a random amplitude rove is applied to each instance of

the stimulus16. Sometimes the rove is applied to the overall signal level (64), and

sometimes it is applied independently to each critical frequency band (48; 151).

Furthermore, some studies instruct the listener to only use spatial cues in performing

the discrimination task, and to ignore timbral cues (64). However, given that there

is no clear distinction between spatial cues and timbral cues17, any attempt to force

listeners to use only spatial cues may allow a significant loss in overall fidelity. In

particular, this may be case when non-individualized HRTFs are used, as a spatial

distortion with a listener’s own HRTFs may be perceived as a timbral distortion

when presented to a different listener. In the present study, no random roves are

employed and listeners are instructed to use any cue that aids in discrimination.

Another methodology that has been employed to evaluate HRTF approximations

is subjective similarity (10; 60). In this case, listeners are presented with a sequence of

binaural stimuli rendered using both the full-order HRTFs and approximate HRTFs,

and asked to quantify the similarity between the two renderings. Usually a scale from

16In studies of auditory profile analysis, a random rove is applied so as to force the listener to
integrate spectral shape across frequency channels, rather than simply detecting the level change
in any one channel. Of course, a change in level at any frequency is tantamount to a change in
spectral shape, but the listener can detect this change by either the absolute level at that frequency
or the change in spectral shape. In auditory spectral analysis it is important that the procedure
only measure detection based on the later cue

17For example, consider the median plane, where a change in source elevation is tantamount to
a change in timbre.
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one to five is used, with a five meaning ‘identical’, four meaning ‘very similar’ and so

forth. Clearly, this method is less formal, and there is no guarantee that any threshold

estimate is the true perceptual threshold and not the threshold where the listener

simply decides “close enough.” Furthermore, this method often yields results that

are noisey and difficult to interpret18. In Experiment 3 above, the listener was asked

to search for the poorest “Approximation Quality” that yields identical approximate

renderings. While this method only estimates subjective equality thresholds, the

listener does not quantify the subjective similarity of any rendering that he or she

feels is less than ‘identical’ to the “Ideal” rendering.

4.6 Summary

Three psychophysical experiments have been conducted to validate the state-

space methods proposed in previous chapters. Experiment 1 estimated psychometric

functions for several stimulus conditions for one observer. This experiment demon-

strated that an adaptive-level method is feasible with the discrimination task, and

answered several preliminary questions necessary for the design of an adaptive-level

experiment. For a wide range of system costs, C, and all stimulus conditions, the

FIR approximants were found to be significantly more discriminable than equal cost

state-space approximants. Further, it was found that the use of individualized versus

non-individualized HRTFs has little influence on discrimination performance. SIMO

state-space approximants were found to outperform equal-cost MISO state-space ap-

proximants by a small margin. SIMO state-space approximants were considered in

Experiment 2, and MISO state-space approximants were considered in Experiment

3.

18One such difficulty is ‘calibrating’ across listeners
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Experiment 2 estimated N70.7 order thresholds for several stimulus conditions and

five observers. The state-space approximants were found to yield significantly lower

thresholds that the FIR approximants for all stimulus conditions. The difference in

thresholds was largest for the “identical, reflective” condition; that is, the condition

with the greater timbral uncertainty and the lesser spatial uncertainty. Conversely,

the difference in the thresholds is smallest for the “independent, anechoic” condition;

that is, the condition with the the lesser timbral uncertainty and the greater spatial

uncertainty. This trend is explained, in part, by recognizing that the spectral mag-

nitude error is more consistent across direction with FIR approximants than with

state-space approximants. Thus, subtle timbral cues are more helpful in the dis-

crimination task for FIR approximants, where the “independent” condition reduced

the reliability of these cues. Furthermore, as virtual reflections are added to the

stimulus, the net spectral magnitude error is more likely to compound with the FIR

approximants. Overall, Experiment 2 showed that 12 ≤ N70.7 ≤ 24 for state-space

approximants depending upon stimulus uncertainty.

Experiment 3 introduced even more uncertainty into the stimulus. For Exper-

iment 3, the stimulus was a complex, non-stationary virtual auditory scene. The

thresholds, in terms of system order N , drop further. For two of the three scenes

used in Experiment 3, the average discrimination threshold was Nse = 7, and for the

other scene the threshold was somewhat higher, likely because fine timbral cues of

wideband applause were used to aid in discrimination.

We have shown that indiscriminable state-space approximants present a signifi-

cant cost savings over conventional HRTF implementations. For example, the total

cost of two MISO systems of order N =7 that model D=50 HRTF pairs is C =778

(34.3 MIPS). This is about one and a half orders of magnitude lower than the cost of
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convolving all 100 signals with full-order HRTFs, C =25, 600 (1129 MIPS). Clearly,

state-space approximants provide a low-cost and high-fidelity method of constructing

virtual auditory scenes for binaural display.



CHAPTER V

Summary Remarks and the Framework in Practice

The main contribution of this dissertation was the design and evaluation of state-

space approximants of collections of HRTFs, and how such approximants naturally fit

into a powerful framework for flexible and immersive binaural auditory display. The

next section summarizes the key results of this dissertation, as well as limitations and

avenues for future research. Section 5.2 outlines several informal synthesis recom-

mendations that the author developed while working with the proposed framework.

The final section discusses general implications of this framework and concludes the

dissertation.

5.1 Summary

Binaural auditory displays seek to immerse a listener in a virtual auditory scene.

Great progress towards this goal has been made throughout the last two decades.

Nonetheless, contemporary displays suffer from burdensome computational demands,

and are insufficiently flexible for the display of immersive scenes. This dissertation

addresses these shortcomings with a state-space approach that both reduces the

computational demands of the display, and improves the flexibility of the display.

136
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5.1.1 Binaural Display Framework

Chapter I introduced spatial hearing and the head-related transfer function (HRTF),

and described prior research on HRTF approximantion. HRTFs are the cornerstone

of binaural auditory displays. The HRTF for a particular direction models the acous-

tic interactions of a plane wave enroute to a listener’s two ears. However, individual

plane waves occur only in primitive auditory scenes. Such scenes are rarely expe-

rienced in everyday listening. As such, binaural displays that render sound sources

with a single HRTF pair often yield auditory scenes that lack presence, in which

the sources are not well-externalized and do not move appropriately relative to the

listener.

Typical everyday auditory scenes are complex. There are often multiple sound

sources, sources that are moving relative to the listener, as well as spatially-extended

sources. Commonplace environment cause acoustic reflections and diffuse reverbera-

tion, which further complicates the auditory scene. Many of this phenomena may be

easily modeled with a multi-HRTF framework. By choosing the HRTFs to surround

the listener with sufficient density then any plane-wave direction can reasonably be

presented by a linear combination of nearby directions included in the HRTF collec-

tion. In this case a source signal is rendered by filtering the source signal with the

full collection of D HRTF pairs, and the D binaural signals are combined so as to

display the auditory scene to the listener. However, this framework compounds an

already formidable computational load.

5.1.2 State-Space Formulation

Fortunately, collections of HRTFs exhibit much redundancy. Therefore a system

that models a collection of HRTFs may be able to accurately implement the entire
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collection with lower cost than a system that implements each HRTF independently.

One such system that can model multiple transfer functions simultaneously is a

state-space system. State-space systems are attractive for several reasons. Being a

pole-zero structure, state-space systems can efficiently model sharp spectral peaks

and notches. State-space systems are relatively simple to implement in hardware and

do not introduce latency. And finally, robust state-space order-reduction methods

exist that guarantee stability and causality and minimize spectral error in some

sense. Accordingly, we formulate the HRTF system in the state-space and describe

the design of efficient and accurate approximants in Chapter II.

Hankel Order-Reduction

It is straightforward to design a state-space system that models a collection of

HRTFs exactly. Such a system is high order and very costly, higher cost even than

implementing each HRTF individually with convolution. However, the state-space

form admits a convenient method for dramatically reducing the order of the system.

Two order-reduction techniques were explored, both of which are based on the

Hankel operator of the state-space system. The Hankel operator is similar to the

convolution operator except that it only considers the relationship between past

inputs to future outputs. The Hankel error lower bounds the maximum convolutional

error (the L∞ spectral error), and with the HRTF data under study the Hankel error

is found to be a fortuitously tight bound on the L∞ error.

The two order-reduction methods considered in this dissertation are Hankel-norm

optimal approximation (HOA) and balanced model truncation (BMT). On one hand,

the former method is optimal in the Hankel-error sense, whereas the later is not

optimal in any sense. On the other hand, the HOA approximants are relatively
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burdensome to compute, whereas BMT approximants are simple to compute.

State-Space Architectures

Three state-space architectures are considered. A MIMO architecture with D

inputs, one for each direction, and 2 outputs, one for each ear, is perhaps most

obvious. However, the performance of this architecture is found to suffer due to

interaural time delay. Modeling time delay in state-space is inefficient, we found

that attempts to reduce the order of such systems smeared the time-domain response

of the approximants, even for modest reductions in order. Due to the perceptual

sensitivity to ITD, the MIMO architecture was judged untenable.

If the arrangement of inputs and outputs is changed such that the system has

either one input or one output, then the ITD can be factored out of the state-space

system. In the case of the SIMO architecture, only one distinct sound source can

be rendered, and the room/motion model is applied after the state-space filtering.

Hence the SIMO architecture only solves a subset of the general binaural display

problem. In contrast, the MISO architecture allows the display of simultaneous

distinct sources. However, the MISO architecture requires two separate state-space

systems, one for each ear.

5.1.3 Empirical Evaluation

Chapter III characterized the performance of the two order-reduction methods

and three architectures, as well as an array of truncated FIR filters of equal net

cost. In order demonstrate that the state-space approximants are efficient it was

necessary to show that the approximants are simultaneously accurate and low cost.

Accordingly, the state-space systems were shown to be both more accurate and lower

cost than a reference approximant. We chose an array of truncated FIR filters as
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the reference system because HRTFs are nearly minimum-phase, and hence admit

an obvious and reasonably accurate FIR approximant for any order N . In order to

compare state-space and FIR approximants of equal net cost, the cost of each system

was defined to be the total number of filter coefficients in the system.

Aggregate Performance

The average approximation error was computed for both state-space and FIR ap-

proximants with a fixed computational cost. The cost bound was set to the total cost

of implementing eight HRTFs with convolution. The number of directions modeled

by the approximants was treated as an independent variable in the range 1≤D≤110.

Numerous error metrics were considered, including the Hankel error, L∞ error, and

auditory L2 error. For all metrics, the state-space approximants outperformed the

equal-cost FIR reference for D>10, and the double-cost FIR reference for D>20.

The MIMO architecture yielded favorable performance in terms of L∞ error, but

poor performance in terms of auditory L2 error. The poor auditory L2 performance

was found to be due to the ITD, with error concentrated in the contralateral HRTFs.

The SIMO and MISO architectures yielded similar performance overall, although the

SIMO architecture yielded slightly lower error.

Spectral Detail

Upon closer inspection, the state-space approximants were found to more accu-

rately model perceptually important features of the HRTFs, such as spectral notches.

The state-space approximants were also found to yield more accurate approximants

at low frequencies. Low frequency accuracy is often described as unimportant for

spatial hearing, although listeners are sensitive to timbrel distortions at low frequen-

cies.
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The two order-reduction methods, HOA and BMT, were found to yield similar

approximation quality overall. HOA was found to distribute error more uniformly

across frequency, whereas BMT was found to concentrate error near spectral notches.

However, this trend was slight and not likely to be perceptually significant in practice.

5.1.4 Psychophysical Evaluation

Having empirically characterized the efficacy of the state-space approach, Chap-

ter IV reported on a headphone listening experiment that estimated the minimum

order N required such that the listener could not tell the difference between the

approximant and the full-order HRTF. The threshold was estimated with a series

of discrimination experiments that considered varying types of stimulus uncertainty.

A preliminary experiment was conducted with one observer, the author. This was

a fixed-order experiment that directly estimated psychometric functions for several

conditions. The results of this experiment were used to design an adaptive-order

experiment in which five observers participated.

Both state-space and FIR approximants were included. Minimum order thresh-

olds were found to be consistently lower with state-space approximants than FIR

approximants, although the cost-savings with state-space approximants was found

to depend on stimulus uncertainty. All approximants considered in these experiments

modeled D = 50 HRTF pairs that surrounded the listener approximately uniformly.

Threshold Estimates

The second experiment estimated objective 70.7% discrimination thresholds. For

FIR approximants the average thresholds were within 32≤N70.7≤67, and for state-

space approximants the thresholds were within 12≤N70.7≤23. The highest thresh-

olds were estimated for the condition of least timbrel and spatial uncertainty. Tim-
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brel uncertainty caused the FIR thresholds to drop by 50%, whereas the state-space

thresholds dropped by 35%. The larger drop with FIR approximants implies that

subtle timbrel minutia were more apparent than they were for state-space approxi-

mants. In contrast, spatial uncertainty had no affect on the FIR thresholds, whereas

the state-space thresholds dropped by 18%. FIR approximants were found to yield

more consistent spectral error across the D = 50 directions. The reflective stimulus

condition, which corresponds to increased spatial uncertainty, was modeled with the

combination six binaural signals. The more diffuse stimulus impaired discrimination

with state-space approximants, causing the threshold to drop. With the FIR ap-

proximants however, the spectral error across the six directions was more likely to

be reinforced, and the thresholds were unchanged.

The final experiment estimated thresholds of subjective equality with complete

virtual auditory scenes used as stimulus. Only state-space approximants were consid-

ered. The average thresholds were within 7 ≤ Nse ≤ 12. The highest threshold, Nse,

was estimated for an auditory scene that contained diffuse, reverberant applause.

This stimulus provided reliable, wideband timbrel cues that aided the observer in

discrimination. The remaining two auditory scenes yielded thresholds of Nse = 7.

5.1.5 Contributions

This dissertation made several contributions to the research community. The

main contributions are listed below.

• A unified framework for the binaural display of a wide variety of virtual au-

ditory scenes was described. This framework is based on a model of a large

collection of HRTFs surrounding the listener. With this framework, a binaural

display can render auditory scenes that include multiple simultaneous sources,
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spatially-extended sources, acoustic reflections, and source and listener motion.

• A state-space model of collections of HRTFs was designed in order the re-

duce the cost of the entire collection. Order-reduction techniques based on the

Hankel-operator were applied to design low-order approximants.

• An empirical experiment was conducted in which low-order state-space systems

are compared to truncated min.-phase FIR arrays of equal net cost. Two

approximation errors were reported, the L∞ error and the auditory L2 error.

For a cost bound equal to implementing eight HRTFs directly, the state-space

systems yield lower error than the FIR arrays for D > 10. Furthermore, the

state-space systems yield lower error than double-cost FIR arrays for D>20.

• The modeling of ITD in the state-space was explored, but no computation-

ally efficient state-space solutions were found. This problem was solved by

using state-space architectures, SIMO and MISO, that allowed the ITD to be

implemented externally.

• Two state-space order reduction techniques, BMT and HOA, were compared

for large-scale systems. These two methods have previously been compared

for SISO filters, but few comparisons have been made for the MIMO case.

The relative differences between the two methods that were reported for SISO

filters were observed in MIMO approximants; BMT tends to concentrate error

in the vicinity of spectral notches and transition regions, whereas HOA spreads

the error more uniformly. However, in practice the two methods yield roughly

equivalent performance in approximating collections of HRTFs.

• Three psychoacoustic experiments were conducted to estimate minimum order
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thresholds for indiscriminable state-space approximants. The first experiment

was a fixed-level test that estimated the psychometric function for several con-

ditions. The main experiment showed that order thresholds for state-space

approximants are less than half those of FIR arrays for several stimulus con-

ditions. With broadband noise stimuli, state-space thresholds were found to

be 9 ≤ N70.7 ≤ 23. The final experiment considered stimuli that consisted of

complete dynamic auditory scenes with ‘real-world’ sound sources and acoustic

reflections. In this case, state-space thresholds were found to be 7 ≤ Nse ≤ 12.

5.1.6 Limitations and Future Work

The proposed multi-direction framework, couple with state-space approximants,

enables the binaural display of a wide variety of auditory scenes. The framework

has some disadvantages however. The framework is physically motivated rather

than perceptually motivated. From a perceptual viewpoint, acoustic reflections may

not need to be rendered as accurately as the direct wave. The computational cost

of the display may be reduced if a more perceptually efficient model of acoustic

reflections and reverberation is used. Nonetheless, the framework is convenient for

scene design precisely because it is a simple physical model, and the use of state-space

approximants keeps the computational cost of this framework within reason.

Diffuse reverberation was not considered in this dissertation. The acoustic re-

sponse of an enclosure is usually divided into early reflections and diffuse rever-

beration. Modeling individual reflections for the diffuse portion of room response

is both computationally untenable and prone to obvious distortions if modeled us-

ing standard linear acoustics. The diffuse portion of the room response should be

implemented as a separate module, perhaps using the HRTF filterbank, but not
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necessarily.

The image-source model often yields unnatural sounding virtual enclosures, and

is not easily generalized to enclosures with complex shape and diffusing surfaces. The

image-source model can be replaced with a ray-tracing procedure without increasing

the cost of the HRTF filterbank, although the ray-tracing procedure itself would be

more expensive. The advantage of ray-tracing would be greater generality, as well

as potentially more natural sounding virtual enclosures. In fact, any ray-based room

auralization system can be coupled with the proposed binaural display framework.

Not all methods of room auralization can be coupled with the proposed framework,

however. BEM and FEM are popular and powerful alternatives for auralization and

room prediction. These methods are based on a different structure, and the effect

of the room and the effect of the listener cannot be separated as with ray-based

methods. In this case the HRTF is incorporated into the model of the room and the

BEM/FEM directly computes the final signal at the listener’s ears.

From the perspective of hardware implementation, one obvious drawback to the

proposed framework is the necessity of a large number of parallel audio channels

for the HRTF filterbank. A large number of parallel channels inevitably increases

the manufacturing cost. On the other hand, the state-spate approximants require

no memory to work with all 2D signals, aside from a few memory cells to store the

state vector. The overall system may need to generate a large number of signals for

the HRTF filterbank, but these signals are immediately combined without requiring

additional storage or processing. The hardware costs of the proposed framework and

state-space implementation are by no means trivial, but they are within the reach of

contemporary embedded DSP systems.



146

5.2 Immersive Auditory Scene Design

Before concluding the dissertation, we wish to summarize several subjective ‘rules-

of-thumb’ that appear to improve the presence, or immersiveness, of virtual auditory

scenes synthesized using the methods developed in the previous chapters. In practice,

synthesizing an immersive virtual auditory scene requires more than accurate HRTF

filters. As discussed in Chapter I, the HRTF is based on strict acoustical assumptions

that are rarely experienced in everyday listening. The framework for binaural display

that was considered in this dissertation models a dynamic complex auditory scene

as a collection of static primitive point sources in free-space. Some scenes are easier

to model and more immersive than others when using this framework. A binaural

sound designer must be aware of what auditory scenes are simple to render and

perceptually convincing.

The recommendations below are the result of the author’s experience designing

several complete binaural auditory scenes for the experiment reported on in the pre-

vious chapter. These auditory scenes included multiple simultaneous sound sources,

source and listener motion, and acoustic reflections. Overall, the scenes are quite

compelling, given the simple physical model that they are based upon.

The recommendations concern the multi-HRTF framework, and not the HRTF

implementations. It is assumed that a collection of D HRTFs is available with

sufficient fidelity. The recommendations are both restrictions on the auditory scene

that generally yield the best sense of presence, as well as system parameters in the

rendering of the scene. The recommendations are divided into two groups. The first

group concerns static auditory scenes; the nature of the source signals, the number

of directions D, and the image-source model for room reflections. The second group
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concerns the incorporation of source and listener motion, and frame segmentation

issues that result.

5.2.1 Static Synthesis Recommendations

• The monaural source signals influence the presence of the scene, and the spatial

cues of the source should compliment the content of the source signal. We

found that everyday sounds, such as samples taken from field recordings, were

externalized more convincingly than synthetic sounds, such as broadband noise

bursts. The presence of the scene is further improved if the spatial cues of the

source compliment the listener’s expectation for where the source should be

positioned and move. For example, a monaural signal of a fly can be quite

effective if the virtual fly is located near the listener, but is unlikely to be

heard far from the listener1.

• The image-source model is only appropriate for certain environments. The orig-

inal authors of the method recommend the method for ‘small’ enclosures (101).

We found, in practice, that for large enclosures the early reflections predicted

by this model are perceived as shrill echoes that break down the percept of

a coherent acoustic environment. Furthermore, if higher-order image sources

are included the sound object acquires an unnatural ringing timbre2. Finally,

large reflection coefficients tend to compound the ringing/echoey quality of the

model. Thus we found that: reflection coefficients should be small, β < 0.5, in-

cluding reflections greater than second-order may introduce timbrel distortion,

1The percept of a fly buzzing nearby a listener can be further improved if the sound is brief and
fades in and out. A fly is not an omni-directional sources, its radiation pattern consists of a ‘flower’
of lobes that the listener would pass into and out of as the fly passes by.

2Ignoring the distinct HRTFs filters for each image-source, including all image-sources is tanta-
mount to an array of comb-filters, hence the ringing. Filtering each reflection with a distinct HRTF
tends to reduce the ringing, but this was still an obvious distortion.
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and no room dimension should be greater than about 10m.

• Low-frequency components (. 200 Hz) are common in everyday sounds, and

are important to the sense of presence, but can be problematic to include in

the binaural auditory scene. Low-frequency acoustic energy tends to be physi-

cally diffuse and contributes little to the percept of source direction. Measured

HRTFs are often attenuated at low frequencies due to limitations in the mea-

surement process. Nonetheless, removing low-frequency components from a

source signal yields a sound object that appears unnaturally thin and brittle.

Furthermore, low-frequency room modes are perceptually obvious. But mod-

eling room modes or rendering sources with much low-frequency energy some-

times yields virtual scenes that appear unnaturally bloated. Overall, it may

be preferable to render low-frequency content with a separate diffuse model,

analogous to the N.1 surround-sound formats.

• Including a large number of directions D in the display is a design convenience,

but not a perceptual necessity. In the experiments reported on the previous

chapter, all displays modeled D = 50 directions. For a fixed auditory scene,

we informally found that often 20 < D < 30 HRTFs spread uniformly around

the listener was adequate. However, larger D tended to reduce the frequency

and severity of the frame and motion artifacts described below.

5.2.2 Motion and Frame Segmentation

• Motion improves the externalization of a sound object. Virtual sources that

are stationary relative to the listener are usually perceived as being either on

or near the head. The sound object is focused and localized at the appropriate

direction, but is not localized in the far-field. The percept of an externalized
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source becomes more convincing if the virtual source moves relative to the

listener. This is true of both source motion and listener motion. Pure source

motion improves the externalization somewhat, although the improvement is

more dramatic with listener-controlled motion. For example, the moving source

demo described in Appendix A allows the user to move a virtual source within

a restricted area in real-time. Furthermore, a head-tracking device improves

the presence of the display significantly.

• Complementing motion in the binaural dimension improves the percept of

source motion in the other dimensions. Previous authors have observed that

purely front-back or up-down motion is often perceived as a change in timbre

rather than source motion (17). We have found that including acoustic reflec-

tions helps the listener resolve the “motion versus timbre change” ambiguity.

Nonetheless, including a binaural (left-right) component to the source motion

improves the percept of source motion significantly, even if this component is

small compared to the other components of the source motion.

• Motion must be slow relative to the frame duration. The rendering engine used

to generate the dynamic virtual auditory scenes in the listening experiments

was frame-based. Every 50ms the engine updated the spatial positions of the

sources and listener. As such, the motion of the sources had to be slow3 relative

to the 50ms interval. Including fast source or listener movements requires a

short frame duration. In the limiting case of a frame that is a single sample

period in duration, the only limitation on source motion is that a source move

slowly relative to the sample period and speed of sound. In this case even the

3The angular velocity relative to the listener must be slow. For example, a source that is moving
slowly along a straight-line trajectory may briefly have a large angular velocity it the trajectory
passes near to the listener.
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well-known doppler effect is accurately rendered.

• Frame boundaries can introduce glitches and other artifacts into the signal.

This is a common problem in any audio compression problem, and great care

is taken in the design of window shapes that minimize this distortion. In the

present application, we found that the coupling of source motion and acoustic

reflections will sometimes exacerbate frame boundary distortions. The changes

in the relative delays of each reflection at frame boundaries (due to source

motion) can cause distracting glitches to become audible. This artifact often

appears if a sharp transient occurs during a frame boundary and the source

is moving rapidly. In some instances this distortion can even cause the sound

object to momentarily jump between distinct spatial locations. We found the

slight adjustments to the source’s position and timing were usually sufficient

to remove such artifacts. Nonetheless, the potential for artifacts at frame

boundaries would seem to imply that the frame duration should not be shorter

than necessary.

Note that some of the recommendations above are essentially restrictions on the

design of the auditory scene itself. That is, some scenes can be more effectively

rendered than others. For many applications, such as video games and musical

composition, these restrictions and recommendations simply become part of the craft.

For example, a sound engineer that is synthesizing the binaural audio track for a film

would be primarily concerned with making the scene immersive and entertaining.

Hence, the exact positions of sound sources and reflecting surfaces can be shifted

from where these objects appear in the video if it yields a more compelling audio

track.
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For other applications however, these restrictions are untenable. In architectural

acoustics and concert hall prediction, the ability to accurately synthesize any arbi-

trary acoustic scene is paramount. Modifying any aspect of the scene would destroy

the legitimacy of the prediction. Nonetheless, the binaural display framework pro-

posed in this dissertation may still be suitable for room prediction if a sufficiently

accurate ray tracing procedure is used. The image-source model has well-known

limitations and was included in the present work primarily because of its simplicity.

5.3 Implications

Binaural auditory displays have many potential applications, from virtual-reality

entertainment to information display, from electroacoustic composition to sonar in-

terfaces. Binaural displays also have the potential to be a convenient tool for ana-

lyzing the human auditory system. The methods developed in this dissertation can

be applied to any of these applications.

The multi-direction framework is powerful, flexible and convenient. For example,

we can imagine a futuristic iPod that can not only play audio files, but can also

binaurally auralize a physical model of an acoustic scene. That is, the final mix-

down to a binaural signal occurs in the iPod itself depending upon the computational

resources of the device, and the audio file itself need only consist of the source signals

and physical model. Such an iPod could be customized to the individual listener,

and even incorporate a head-tracking device to improve realism and presence.

Surround sound techniques are becoming common in sound recording and repro-

duction, and are now employed by composers as well. Music produced in this manner

requires a multi-speaker reproduction system. Such systems are expensive, difficult

to setup, and still relatively uncommon compared with two-channel home stereos.
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Furthermore, such systems require a precise arrangement of the speakers within the

room in order for spatial cues to be properly reproduced. A flexible headphone-based

system could display the same scene without such elaborate hardware and installa-

tion. Indeed, Beyer-Dynamic has recently released a commercial headphone system

that binaurally simulates a 5.1 home theater, including a general room model and

head-tracking system (153).

Broadly speaking, headphones may become the dominant method of listening to

music in the future, either with iPod’s or personal computers. There is widespread

speculation about this on internet discussion boards and blogs, from casual listeners

to audiophiles. In an extreme example of this, Headphone Disco has recently been

introduced in Europe, where wireless headphones are used in dance clubs instead

of loudspeakers4. As binaural display technology improves in quality and drops in

price, it may fuel the dominance of headphone listening. It appears that binaural

technology may ultimately be a double-edged sword that, similar to other enter-

tainment and virtual-reality technologies, increases the enjoyment of media and the

accessibility of information, but also further isolates individuals from each other.

5.4 Conclusion

Headphone listening has become a prevalent part of everyday life, for both work

and play. Yet the sound stage perceived with conventional headphones is still con-

tained within the listener’s head. Binaural display technology promises to expand

this constrained sound stage to an unconstrained virtual stage. Many of the necessary

tools for such a headphone system are in place, but have they not been collected into

a single system and are too computationally burdensome to be widely distributed.

4http://www.headphonedisco.com/
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This dissertation considered a powerful and flexible, but potentially expensive,

framework for binaural display. We found that with state-space approximants the

cost of this framework could be reduced to approximately the same cost as direct

convolution with a single full-order HRTF pair. We validated the state-space ap-

proximants both empirically and psychoacoustically. For a wide variety of virtual

auditory scenes, only a small number of states are required to render the scenes indis-

criminably from full-order renderings. In conclusion, low-order state-space systems

may be the missing link that enables binaural displays to become flexible, perceptu-

ally convincing, and affordable.
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APPENDIX A

The Binaural Display of Clouds of Point Sources

The previous chapters of this dissertation considered a general framework that

renders a monaural signal at many locations surrounding the listener. This appendix

reports on a preliminary study in which special case of the multi-direction framework:

a system that filters a monaural signal with a collection of D nearby HRTFs, yielding

a ‘cloud’ of point sources (7).

There is interest within the binaural community in the design of binaural displays

that can render real acoustic environments, where sources may have spatial extent, be

in the near-field, be present in highly reflective environments, or be moving (1; 88; 3).

Using a single pair of head-related transfer functions (HRTF) is insufficient to render

a convincing and flexible sound object in this context. The computational burden,

along with filter interpolation and dynamic updating, presents a serious obstacle.

To mitigate these problems, we propose a binaural display in which a monaural

source is auralized at many locations simultaneously. Moving sources could then

be rendered through amplitude panning (5; 86), circumventing filter interpolation

and updating altogether. Acoustic reflections could easily be incorporated as well.

Furthermore, rendering clouds of point sources could ease problems associated with

individuation by providing relative cues and reducing the importance of fine spectral
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detail (139; 32; 28; 2).

Binaural displays typically render a monaural source, S(ω), by1

BL,R(ω) = HL,R(ω | θ, φ) · S(ω) (A.1)

where HL,R(ω | θ, φ) is the HRTF for left and right ears for azimuth θ and elevation

φ. This chapter explores the most primitive of spatially-extended sources, a cloud

of identical uniformly-spaced point sources that subtend some angle in space. A

monaural signal is rendered at D nearby points in space by

B1 L,R(ω) = H1 L,R(ω) · S(ω)

B2 L,R(ω) = H2 L,R(ω) · S(ω)

...

BD L,R(ω) = HD L,R(ω) · S(ω) (A.2)

where Hk L,R(ω) = HL,R(ω | θk, φk). The D binaural signals {B1 L,R(ω), · · ·BD L,R(ω)}

can then be combined or further filtered2 to achieve a wide range of spatially-extended

sound objects.

Clearly, direct implementation of such a binaural display yields a computational

cost that scales linearly with cloud size. Given the high-order of measured head-

related impulse responses (HRIRs), such a binaural display exacerbates an already

formidable computational burden. Accordingly, we explore perceptual coding and

filter design techniques so as to reduce the computational cost to that of a binaural

display for a single point-source. We propose a cascade of two filters for each point

1For simplicity, we neglect the influence of the headphone-to-ear-canal transfer function (HpTF).
2A fundamental result of linear systems theory gives us that the order of linear filters is irrelevant.

Hence, not all points in a cloud need auralize the same signal. For example, a monaural signal could
be rendered for a cloud of nearby points, and then each cloud signal could be filtered to yield a
composite sound object in which the low-frequency components come from the bottom of the cloud
and the high-frequency components come from the top of the cloud, simulating the sound object
perceived from many home stereo speakers.
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in the cloud, in which the first filter is common to all spatial locations in the cloud

and the second filter provides the spectral cues for each point within the cloud. The

goal is to ensure that the net filter response for each point in the cloud is similar

to the measured HRTF, while shifting as much of the computational burden to the

first filter. We implement two filter-order reduction techniques, truncation of the

measured HRIRs, and balanced model truncation (BMT), for the design of low-

order IIR filters from the measured HRIRs (65; 66; 67). We verify the binaural

display using an objective perceptual metric (60), as well as two informal listening

tests.

The next section introduces the two-stage filter implementation for the auraliza-

tion of binaural clouds, as well as describes the filter designs in greater detail. We

evaluate the method numerically using several sets of measured HRTFs in § A.2 and

discuss observations from informal listening tests in § A.3.

A.1 Methods

We employ two approximation techniques to reduce the computational burden

of direct implementation of (A.2), a perceptual approximation for sound spatial-

ization coupled with filter order reduction. For simplicity, we focus on modeling

the magnitude response of the HRTFs, and implement our binaural display using

a minimum-phase reconstruction of the phase response plus a linear phase term for

the interaural time difference (ITD).

A.1.1 Perceptual Approximation

Rather than filter the monaural source with the measured HRIRs for every point

in space, we propose a two-stage filter bank. The two-stage model is motivated by the

observation that small perturbations in source location can be affected by relatively
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Figure A.1: The direct model for cloud rendering via HRTF filtering (left). The
proposed two-stage model (right).

low-order changes in the spectrum of the signal (139). For example, a spectral

notch might move a few hundred Hz, but otherwise the spectrum is unchanged.

Furthermore, from a perceptual standpoint, it not necessary to render each spatial

location in full detail, rather the cloud must be centered at the correct location,

and then given a degree of spatial extent. We found during informal listening tests,

that the precise spatial extent of a source is rarely perceived. The center, size, and

oblongness are perceived, but not the precise shape (for example, a diamond versus

a square).

Fig. A.1 shows two possible binaural display architectures. The one-stage archi-

tecture uses the measured HRTFs, H1···D L,R(ω), or some approximation thereof, to

render the monaural source for D nearby spatial locations. The two-stage architec-

ture first filters the monaural source with CL,R(ω), providing cues that localize the

center of the sound object, and then filters the output with P1···D L,R(ω), providing

cues that define the extent of the sound object.

We propose two implementations of CL,R(ω). The first is simply CL,R(ω) =

Hk L,R(ω) where location k is the center of the source. The second is the average of
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the log magnitude spectra,

log CL,R(ω) =
1

D

D∑

k=1

log Hk L,R(ω). (A.3)

For either case, the second filter is then given by

Pk L,R(ω) =
Hk L,R(ω)

CL,R(ω)
. (A.4)

The hope is that CL,R(ω) is sufficiently similar to Hk L,R(ω) so that the amount of

spectral detail that Pk L,R(ω) must model is reduced(67). This architecture provides

a framework for offloading the computational burden of rendering each cloud point

individually to the common filter CL,R(ω).

A.1.2 Filter Order Reduction

Measured HRTFs typically yield FIR filters on the order of hundreds of samples.

Many filter design techniques have been explored in the context of the binaural

displays (60). In the present chapter we employ one FIR and one IIR filter design. We

construct an N th-order FIR filter by simply truncating the minimum-phase impulse-

response derived from the measured HRTF, yielding the optimal L2 N th-order FIR

filter, in terms of spectral mismatch.

We construct an N th-order IIR filter via balanced model truncation (BMT) (65),

a convenient IIR filter design technique that has yielded promising results in the

context of binaural displays (66; 67). BMT converts the ideal filter into state space

form, where a transform is applied yielding an input-output equivalent filter with

balanced controllability and observability grammians. The state space representation

is then truncated to the N states with the largest Hankel singular values, yielding a

solution that is close to the Hankel-norm optimum, which lies between the L2 and

L∞ norms (125; 60). However, the transform matrix is often ill-conditioned, yielding
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Figure A.2: Spatial cloud distributions for D = (1, 3, 5, 9, 11, 15).

unstable filters. A simple algorithm for circumventing this problem in the case of

approximating FIR filters is given in (65).

A.2 Characterization

A.2.1 Filter Implementations

A total of nine binaural implementations are considered below. A direct system,

using the measured HRIRs to render each cloud point, provides an ‘ideal’ baseline for

comparison. The remaining eight systems either use low-order filters (N = 12 in the

case of FIR filters, and N = 6 in the case of IIR filters) exclusively, or a combination

of a high-order N = 256 FIR filters for CL,R(ω) and low-order (N ∈ {12, 6}) filters for

P1···D L,R(ω). Four architectures are implemented; a conventional one-stage system,

a two-stage system in which the first filter is given by a low-order approximation

to (A.3), a two-stage system in which the first filter is given by a high-order FIR

implementation of (A.3), and a two-stage system in which the first filter is given by

the HRIR of the center of the cloud. For each of the four architectures, the low-order

filters are implemented either by FIR or IIR filters, as described in § A.1.2, yielding

a total of eight different systems to compare to the baseline.
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Figure A.3: Composite RMSE for eight binaural implementations. Black curves give
the RMSE of 12th order FIR filters and grey curves give the RMSE of
6th order IIR filters designed via BMT.

A.2.2 Stimulus Conditions

We compare the eight systems described above to the baseline system for six

cloud sizes, D = (1, 3, 5, 9, 11, 15). The point-source locations are shown in Fig. A.2,

where the azimuthal separation between adjacent cloud points is 10◦, and the ele-

vation separation is 18◦. Clouds are rendered with azimuths from 0◦ to 160◦ in 20◦

increments, and elevations from −18◦ to 54◦ in 18◦ increments, for a total of 45 cloud

center locations.

A.2.3 Objective Evaluation

We use a perceptual RMS error metric based on the spectral mismatch between

the measured HRTF and the composite response of the one- or two-stage filters (60).

The metric is computed by warping the two spectra to a logarithmic frequency scale,

smoothing with a 0.2 octave filter, converting to a decibel scale, and computing the

RMS difference. Fig. A.3 gives the composite RMSE averaged across both ears,
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Figure A.4: Ratio of the computational cost of four binaural implementations to the
cost of a full-length one-stage implementation.

45 center locations, and eight HRTF sets. The abscissa represents the cloud size,

D, and the ordinate represents the composite RMSE. The parameter is the filter

architecture and type. FIR filter implementations are shown in black and BMT IIR

filter implementations in grey. The four architectures are indicated by marker shape.

The composite RMSE of the six two-stage implementations included in Fig. A.3

increase with cloud size, and the composite RMSE of the two one-stage implementa-

tions are constant with cloud size, as expected. The one-stage FIR implementation

yields the poorest performance, with a constant RMSE of about 5 dB. For the one-

stage implementation, the BMT IIR filter implementation yields a consistent 1.5

dB performance improvement. For the two-stage implementations however, there is

either little change in performance (for the low-order case), or substantially worse

performance (for the high-order case) when using BMT. This result is somewhat

unexpected and is discussed further below. The four implementations that use a

high-order implementation of CL,R(ω) yield the best performance. As the cloud
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Figure A.5: The ideal magnitude response (thin line), the low-order FIR response
(thick black line), and the low-order IIR response (grey line) for three
filter implementations.

size shrinks to one source, all four implementations reduce to realizing the single,

measured HRTF.

Fig. A.4 gives the computational savings of the eight filter implementations rel-

ative to a direct N = 256 implementation. Note that because N = 12 for the FIR

filters and N = 6 for the IIR filters, the net computational cost for the two is equiva-

lent. The one-stage and low-order two-stage implementations yield a computational

cost that is less than one tenth that of the direct implementation for all cloud sizes.
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The high-order two-stage implementations offer no computational savings for D = 1,

but as D increases, the computational savings improve, such that for D ≥ 9 the

computational cost is less than one fifth that of the direct implementation.

Let us return to the comparison between FIR and IIR filter designs. Fig. A.5

gives the log magnitude response of both low-order FIR and BMT IIR filter ap-

proximations for three ‘ideal’ filter responses. For each panel, magnitude responses

for three filters are shown: ideal (thin black), FIR approximation (thick black) and

IIR approximation (thick grey). The top panel gives the log magnitude HRTF for

(θ, φ) = (0◦, 36◦). In this case, the IIR filter clearly approximates the ‘ideal’ response

more accurately, particularly below 10 kHz. The middle panel shows the response

of the second stage of a two-stage implementation in which CL(ω) = HL(ω | 0◦, 18◦)

for cloud point (0◦, 36◦). The IIR filter again approximates the ideal response more

accurately, particularly the narrow spectral peaks and notches at 9, 10 and 12 kHz.

Indeed, BMT is well-suited to modeling HRTFs due to its ability to realize narrow

spectral peaks and notches even at low-order.

As the ideal response becomes more complicated, particularly in the contralateral

ear where measurement SNR is problematic, the BMT method begins to break down.

The bottom panel of Fig. A.5 gives one such case, showing the response of the

second stage of a two-stage implementation for the contralateral ear with CL(ω) =

HL(ω | 80◦,−18◦) for cloud point (80◦, 0◦). The ideal response, HL(ω | 80◦, 0◦)/

HL(ω | 80◦,−18◦) is quite noisy in this case. The BMT IIR accurately approximates

the narrow spectral peak at 8 kHz, but at the expense of the rest of the spectrum.

In this case, the FIR filter more accurately approximates the general shape of the

ideal response, especially at low frequency.
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A.3 Perceptual Observations

We have conducted two informal listening tests that verify the objective results

presented above. For both tests the stimulus was a 20ms burst of pink noise windowed

with the falling half of a Hanning window. Binaural clouds were created by filtering

the noise burst for each spatial location within the cloud, and then using a Poisson

process to determine each event’s occurrence time within a five-second observation

interval. The resulting source is that of a cloud of “popcorn pops” with a variable

number of events over the five-second period.

We first conducted a similarity test, in which a cloud rendered using a minimum-

phase reconstruction of the measured HRTFs was compared with one rendered using

one of the eight implementations described above. Similarity was measured on an

absolute scale from one to ten, with ten being the most similar. The four high-order

two-stage implementations yielded the best results for all cloud sizes and locations,

with similarity consistently between eight and ten. The FIR and IIR filter implemen-

tations generally yielded equivalent performance, although for some spatial locations

the IIR implementation created a quiet, yet noticeable, high-frequency ping. Of the

low-order implementations, both one- and two-stage, the worst performer was the

one-stage FIR design (similarity ∼ 4) and the best performer was the one-stage IIR

design (similarity ∼ 8).

We also conducted an informal stimulus sample discrimination task (SSD) and

found that the high-order two-stage designs were difficult to distinguishable from

the direct N = 256 implementation, whereas the other designs were easily discrimi-

nated. These results were observed when using identical noise bursts for rendering

each cloud. We also conducted a listening test in which a new instantiation of the
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noise burst was used for each cloud. In this case, detecting the use of low-order

approximations essentially fell to chance. This suggests that the spectral coloration

obtained as a result of errors in the low-order filter approximation is on the same

order as the spectral variation across different instantiations of the noise process.

A.4 Sample Application: Moving Sound Source

Auralizing clouds of ‘popcorn pops’ is not the only application of this binaural

display. The system is also well suited to the auralization of moving sound sources.

By auralizing a monaural signal for several nearby locations in space, we can display

a moving sound source by taking a time-varying linear combination of the binaural

signals output by the system. The weights used in the linear combinations can

be computed using VBAP (86; 67). Let the desired source location in rectangular

coordinates be given by d = [dx, dy, dz]
′. Let the three closest HRTF sample locations

that form a triangle around d be given by p1 = [p1,x, p1,y, p1,z]
′. The weights for the

three binaural signals to combine are then given by

w = d′ · [p1,p2,p3]
−1 (A.5)

and normalized by,

w′ =
w

‖w‖p

(A.6)

where 1 ≤ p ≤ 2 is an adjustable parameter dependent upon the degree of coherence

between the combined binaural signals.

Using this method, a realtime moving-source binaural display was implemented

in MATLAB. A screen shot of the GUI is shown in figure A.6. The display filters a

monaural audio file for 15 nearby spatial locations off-line. The user can drag the

blue circle around the region of space supported by the 15 sampled locations. The
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Figure A.6: Screen shot of a MATLAB GUI that auralizes a monaural audio file with
user-controlled position in realtime.

perceived sound object moves smoothly through space with the blue circle. Informal

listening tests verify that the sound object moves smoothly through virtual space

with modest system latency3.

The HRTF filtering is performed off-line in the current implementation. The

filtering could be incorporated into the realtime engine, but the MATLAB imple-

mentation places tight computational limits on the number of operations per audio

sample. Nonetheless, a preliminary investigation indicates that a low-order filtering

can be performed in realtime. Another limitation of the current implementation is

the incorporation of ITD. The ITD is added independently to all 15 binaural signals.

This gives the final interpolated signal a more diffuse quality than it would other-

wise have if the ITD was interpolated separately (67). Nonetheless, this application

demonstrates the utility of filtering a monaural signal for multiple points in space in

3The latency for this MIATLAB GUI is about 100 ms, and is due to the requirement that the
audio buffer never empty. The maximum rate at which MATLAB (running on an IBM ThinkPad
T30) can sample the GUI state and output a frame of audio data appears to be about ten times per
second. Wenzel has found that latencies up to 100 ms are relatively benign for dynamic binaural
auditory displays (136).
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order to facilitate realtime moving sound source auralization.

A.5 Conclusion

We have described a binaural display that renders clouds of nearby point sources

by filtering a monaural source with multiple HRTF pairs. We argued that such

a display can create more convincing and flexible virtual sound objects, by allevi-

ating HRTF individuation and facilitating moving sources via the phantom source

technique. We proposed a two-stage filter implementation in which the first filter

is common to all spatial locations in the cloud, and the second filter provides the

spectral cues unique to each location within the cloud. We found that much of the

computational burden can be shifted to the first filter, in which case the net com-

putational complexity of the display is reduces to that of a conventional binaural

display.
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APPENDIX B

Order Reduction Algorithms

Algorithms have been previously published for both Balanced Model Truncation

(BMT) (116; 9) and Hankel-norm Optimal Approximation (HOA) (117; 154)1. In

the interest of completeness and reproducibility the algorithms have been adapted

to the binaural display application and are described below in detail. In particular,

the HOA algorithm is somewhat involved. Published HOA algorithms typically only

provide a broad overview that does not describe several difficult steps. Each step

of the HOA method is described below, with additional references for individual

sub-algorithms as necessary.

The principal step in BMT is the computation of the SVD of Hankel matrix

H. This computation is straightforward, but H is often a large matrix and memory

consumption may be an issue. In contrast, HOA operates entirely on the system

matrices, hence memory consumption is not an issue. However, HOA may be more

time consuming to compute, as solving Lyapunov equations and stable projections

are computationally intensive steps for large systems.

1Both algorithms are included in the Robust Controls Toolbox, an extension of the Controls
Toolbox, which is itself an extension of the MATLAB software package.
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B.1 Balanced Model Truncation

Balanced Model Truncation (BMT) is a state-space model reduction technique

that operates by discarding all but the N largest singular values of a balanced sys-

tem (116). If the original system is given in state-space form, then it is balanced

before truncation. For HRTF modeling, this is not necessary as the original system

is a collection of transfer functions. In this case the Hankel matrix H is given by the

block impulse response of the HRTFs. A balanced system is then constructed from

the SVD of H (116).

The BMT algorithm described below constructs an order N state-space system

from a collection of measured HRIRs of order N0. Both the originial HRIR filter

array and the reduced-order state-space system have M inputs and P outputs.

1. Prepend a single zero to the beginning of each HRIR, as the state-space system

in (2.1) has no feed-through path (116; 9). For the MIMO architecture, the

time-delay of the contralateral HRIRs must be included, but is removed for

the SIMO and MISO architectures. In all other respects, the BMT algorithm

is independent of system architecture.

2. Arrange the HRIRs into the desired matrix impulse response, h[n=0, 1, · · · N0+

1], where h[n] is P ×M , and construct the finite Hankel matrix H

H =




h[1] h[2] h[3] . . . h[N0+ 1]

h[2] h[3] h[4] . . . 0

h[3] h[4] h[5] . . . 0

...
...

...
. . .

...

h[N0+ 1] 0 0 . . . 0




(B.1)
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The size of H is P (N0+1)×M(N0+1)2.

3. Compute the singular value decomposition (SVD) of H

H = USVT (B.2)

where U and V are unitary matrices with dimensions P (N0+1) × P (N0+1)

and M(N0 +1) × M(N0 +1), respectively, and S is a diagonal matrix of size

P (N0+1)×M(N0+1) with the singular values, (σ1 ≥ σ2 ≥ · · · ≥ σR), arranged

along the main diagonal, where R = min
(
P (N0+1),M(N0+1)

)
.

4. Weight the singular vectors, given by the rows of U and V, with the square

root of the singular values3: Ũ = US1/2 and ṼT = S1/2VT . Ũ and Ṽ both

have dimensions P (N0 + 1) ×M(N0 + 1). Hence H = ŨṼT , where Ũ and Ṽ

are orthogonal but not orthnomornal.

5. Partition the SVD so as to retain only the N largest singular values4

Ũ =




Ũ1 . . .

Ũ2 . . .

Ũ3 . . .




, Ṽ =




Ṽ1 . . .

...
. . .


 (B.3)

where Ũ1 and Ũ3 have dimension P × N , Ũ2 has dimension P (N0 − 1) × N ,

and Ṽ1 has dimension M ×N .

2H may be very large depending upon (P, M, N0), and computing its singular value decompo-
sition may require a prohibitive amount of memory. However, almost half of H is zero, and given
that the HRIRs are minimum-phase, most of the energy in H is contained in the upper-left corner.
We found that the results are not affected substantially if only the upper-left quarter of H is used
for BMT. All results given in the present study are computed using the full Hankel matrix.

3The square-root operation is ‘element-wise,’ as S is not necessarily square.
4The SVD is the most computation-intensive part of the BMT algorithm. Because only the

N largest singular values are used to construct the final state-space system, there is no need to
compute the entire SVD. Only the N largest singular values, along with their singular vectors, need
to be computed.
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6. Construct an order N state-space system from Ũ and Ṽ. The system matrices

(
Â, B̂, Ĉ

)
are given by

Â =







Ũ1

Ũ2




T 


Ũ1

Ũ2







−1 


Ũ1

Ũ2




T 


Ũ2

Ũ3




B̂ = ṼT
1 , Ĉ = Ũ1 (B.4)

where Â is N ×N , B̂ is N ×M , and Ĉ is P ×N .

B.2 Hankel-Norm Optimal Approximation

The Hankel-norm Optimal Approximation (HOA) algorithm also designs a low-

order system by discarding all but the N largest singular values of the original system,

albeit in such a way as to minimize the Hankel error of the resulting system. For

the SISO case, closed-form HOA algorithms have been published (123; 125). These

studies use HOA to construct low-order IIR filters from FIR filters. For the MIMO

case the algorithm is considerably more dense. The HOA algorithm is further com-

plicated if the original system contains repeated singular values. This complication

is neglected in the algorithm below, as measured HRIRs invariably contain suffi-

cient white observation noise to preclude any repeated singular values (119). The

observation noise also ensures that the system is minimal.

The HOA algorithm described below constructs an order N state-space system

from a collection of measured HRIRs of order N0. Both the original HRIR filter

array and the reduced-order state-space system have M inputs and P outputs.

1. Prepend a single zero to the beginning of each HRIR, as in the BMT algorithm.

In addition to removing the need for a feed-through path in the state-space
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system, prepending a zero also transforms the transfer functions so as to be

strictly proper, a requirement for HOA (117). For the MIMO architecture, the

time-delay in the contralateral HRIRs must be included, but is removed for the

SIMO and MISO architectures.

2. Construct a high-order state-space system that implements the measured HRIRs

exactly. The HOA algorithm operates directly on the system matrices (A,B,C),

hence it is necessary to realize the HRIR filter array as a state-space system

prior to performing order reduction. This is readily accomplished with the

controller canonical form (155). Without loss of generality, consider a system

with more outputs than inputs5, P ≥ M . The controller canonical realization

of this filter array is an order M(N0 +1) state-space system. The A0 matrix is

M(N0 + 1)×M(N0 + 1), the B0 matrix is M(N0 + 1)×M , and both matrices

are block diagonal

A0 =




I′ 0 . . . 0

0 I′ . . . 0

...
...

. . .
...

0 0 . . . I′




B0 =




1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1




(B.5)

where

I′ =




0 0 0 0 ·

1 0 0 ·

0 1 · 0

0 · 0 0

· 1 0 0

· 0 0 1 0




1 =




1

0

...

0




(B.6)

5If M > P , swap inputs with outputs, perform HOA, and swap back when done: Â = AT ,
B̂ = CT , Ĉ = BT .
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I′ has dimension (N0 + 1)× (N0 + 1), and 1 has dimension (N0 + 1)× 1. The

C0 matrix is P ×M(N0 + 1) and is constructed from the measured HRIRs

C0 =




h11[1] h11[2] . . . h11[N0 + 1]

h21[1] h21[2] . . . h21[N0 + 1]

...
...

. . .
...

hP1[1] hP1[2] . . . hP1[N0 + 1]

. . .

h12[1] h12[2] . . . h1M [N0 + 1]

h22[1] h22[2] . . . h2M [N0 + 1]

...
...

. . .
...

hP2[1] hP2[2] . . . hPM [N0 + 1]




(B.7)

where hpm[n] is the impulse response between input m and output p.

3. Convert the discrete-time system above to continuous-time. The HOA algo-

rithm is simpler in continuous-time, and it is common even when designing

low-order discrete-time systems to convert the original system to continuous-

time using a bilinear transform, and then convert back to discrete-time after

performing HOA (117; 119; 156). A discrete-time HOA algorithm is given

in (154), although it is more dense than the algorithm below. The bilinear

transform to continuous-time is

Ac =
(
I + A0

)−1 (
A0 − I

)

Bc =
√

2
(
I + A0

)−1
B0

Cc =
√

2C0

(
I + A0

)−1
(B.8)

4. The controllability and observability Gramians, P andQ, of the system (Ac,Bc,Cc)
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are defined as

P ,
∫ ∞

0

eAct Bc B
∗
c eA∗ct dt

Q ,
∫ ∞

0

eA∗ct C∗
c Cc eAct dt (B.9)

Both Gramians are size M(N0+1)×M(N0+1). The system (Ac,Bc,Cc) is stable,

and the eigenvalues of Ac are strictly in the left half of the complex plane.

Hence the integrals above converge. However, this is a numerically prohibitive

integral to evaluate. The Gramians are typically computed by considering the

corresponding matrix differential equations, which yield the following linear

equations, known as the Lyapunov equations

AcP + PA∗
c + BcB

∗
c = 0

A∗
cQ+QAc + C∗

cCc = 0 (B.10)

An efficient algorithm for solving matrix equations of this form is given in (157).

Because the system (A0,B0,C0) is in controller canonical form, the controlla-

bility Gramian is simply the identity matrix, and this simplifies the computa-

tion of a balancing transform somewhat (117). The observability Gramian Q

must be computed by solving the Lyapunov equation.

5. Find a balancing transform T from the observability Gramian Q. There

are many balancing transforms, however care must be taken in choosing a

transform, as they may be ill-conditioned (65). The transform below is well-

conditioned for all of the HRTF data used in the present study (126).

Compute the SVD of Q

Q = VSVT (B.11)
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where V is a unitary matrix and the singular values of Q, (σ1 > σ2 > · · · >

σM(N0+1)), are arranged along the diagonal of S. The symmetry of the SVD in

this case is due to the symmetry of the Q. Let

U = VS1/4 (B.12)

The matrix UT is itself a balancing transform. However, we seek to isolate the

state that corresponds to the (N +1)th largest singular value. We move this

state to the end of the state-vector by permuting the columns of the transform

matrix

Ũ =
[
u 1 · · · uN , uN+2 · · · uM(N0+1), uN+1

]
(B.13)

where uk is the kth column of U. The balancing transform is then given by

T = ŨT .

6. Balance the system using similarity transform T

Ab = T Ac T
−1

Bb = T Bc

Cb = Cc T
−1 (B.14)

7. Partition the matrices so as to isolate the state corresponding to the (N+ 1)th

singular value

Ab =




A11 A12

A 21 A22


 Bb =




B1

B 2


 CT

b =




CT
1

CT
2


 (B.15)

where A11 has dimensions
(
M(N0+1)−1

)×(
M(N0+1)−1

)
, A12 and A 21 are

vectors, and A22 is a scalar. Matrix B1 has dimensions
(
M(N0 + 1)− 1

)×M ,

matrix C1 has dimensions P × (
M(N0 + 1)− 1

)
, and B 2 and C 2 are vectors.
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8. Let Γ = Σ1 − σN+1I, where

Σ1 = diag
(
σ1 · · · σN , σN+2 · · · σP (N0+1)

)
(B.16)

and σk is the kth singular value ofQ. Also let W = (CT
2)
†B 2, where † represents

the Moore-Penrose pseudoinverse6.

9. Construct the following order M(N0 + 1)− 1 system

Ã = Γ−1
(
A11σN+1 + Σ1A11Σ1 + σN+1C

T
1 WBT

1

)

B̃ = Γ−1
(
Σ1B1 −√σN+1C

T
1 W

)

C̃ = C1Σ1 −√σN+1WBT
1 (B.17)

which is referred to as an all pass dilation of
(
Ab,Bb,Cb

)
, as the spectral error

between the two systems is constant

σmax

(
Tb(jω)− T̃(jω)

)
=
√

σN+1 (B.18)

where Tb(jω) and T̃(jω) are the matrix transfer functions for the two systems.

10. The system
(
Ã, B̃, C̃

)
is not stable. Of the M(N0 + 1)− 1 eigenvalues in this

system, exactly N are stable. It is necessary to extract the stable order N

subsystem from
(
Ã, B̃, C̃

)
. There are several methods for accomplishing this.

The most direct method is to compute the modal decomposition of Ã (134),

and constructing a diagonal Âc from the N eigenvalues with negative real

part. The N corresponding eigenvectors similarly transform B̃ and C̃. A more

involved method that yields real system matrices is described below (117; 158).

6This step is commonly stated as: find a unitary matrix W that satisfies CT
2W = B 2. The

pseudoinverse provides one possible solution (117; 158).
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(a) Compute the complex Schur decomposition of Ã. Find a unitary matrix

U such that U∗ÃU = Ãt is a triangular matrix with diagonal elements

given by the eigenvalues of Ã.

(b) It is necessary to transform Ãt such that the N stable eigenvalues appear

as the first N diagonal elements. This can be accomplished by applying

a sequence of Givens rotations to the Ãt and U matrices (135), yielding

a new unitary transform matrix Ũ

Ũ∗ÃŨ = Ãp =




Ã11 Ã12

0 Ã22


 (B.19)

where Ãp is real and Ã11 is N ×N .

(c) Find a matrix X that satisfies

Ã11X−XÃ22 + Ã12 = 0 (B.20)

This is similar to solving the continuous-time Lyapunov equations, and

the algorithm in (157) can be used.

(d) The system matrices of an order N HOA continuous-time system are given

by

Âc = Ã11

B̂c =
[
I, −X

]
Ũ∗ B̃

Ĉc = C̃ Ũ




I

0


 (B.21)

where I is N ×N .

11. The system matrices of the final order N discrete-time system are given by the
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bilinear transformation of the continuous-time solution

Â =
(
I + Âc

) (
I− Âc

)−1

B̂ =
√

2
(
I− Âc

)−1
B̂c

Ĉ =
√

2 Ĉc

(
I− Âc

)−1
(B.22)
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