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Abstract. We consider the general optimization problem (P ) of selecting a continuous function x over a
σ -compact Hausdorff space T to a metric space A, from a feasible region X of such functions, so as to
minimize a functional c on X. We require that X consist of a closed equicontinuous family of functions
lying in the product (over T ) of compact subsets Yt of A. (An important special case is the optimal control
problem of finding a continuous time control function x that minimizes its associated discounted cost c(x)
over the infinite horizon.) Relative to the uniform-on-compacta topology on the function space C(T, A)
of continuous functions from T to A, the feasible region X is compact. Thus optimal solutions x∗ to (P )
exist under the assumption that c is continuous. We wish to approximate such an x∗ by optimal solutions
to a net {Pi}, i ∈ I , of approximating problems of the form minx∈Xi ci (x) for each i ∈ I , where (1) the
net of sets {Xi}I converges to X in the sense of Kuratowski and (2) the net {ci}I of functions converges
to c uniformly on X. We show that for large i, any optimal solution x∗

i to the approximating problem (Pi)

arbitrarily well approximates some optimal solution x∗ to (P ). It follows that if (P ) is well-posed, i.e.,
lim supX∗

i
is a singleton {x∗}, then any net {x∗

i
}I of (Pi )-optimal solutions converges in C(T, A) to x∗.

For this case, we construct a finite algorithm with the following property: given any prespecified error δ and
any compact subset Q of T , our algorithm computes an i in I and an associated x∗

i in X∗
i which is within δ

of x∗ on Q. We illustrate the theory and algorithm with a problem in continuous time production control
over an infinite horizon.
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1. Introduction

Consider the abstract optimization problem

min
x∈X

c(x), (P )

where the feasible region X is a non-empty compact subset of a function space Y and the
objective function c is a real-valued continuous function over Y . The Weierstrass theo-
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rem assures us of the existence of an optimal solution x∗ ∈ X that attains the minimum
value c∗ of c over X. However, optimization problems in this class are difficult to nu-
merically solve in general, since there is seldom a concrete representation for solutions
in Y . In this paper, we explore general methods for approximating a solution to (P ) via
solutions to a net (Pi), i ∈ I , of simpler approximating problems, where (Pi) is given
by

min
x∈Xi

ci(x) (Pi)

for i ∈ I , ci is continuous on Y, limXi = X (Kuratowski) and ci → c uniformly on Y .
These approximating problems are typically finite dimensional (or special in other ways
that render them more easily solvable than the original problem (P )). For example, we
may choose to approximate an optimal solution to a continuous time infinite horizon
optimization problem (P ) by optimal solutions to discrete time finite horizon versions
(Pi), i ∈ N, where the time periods decrease to zero and the horizon increases to infinity
as i → ∞ (see, e.g., Schochetman and Smith [12,14,16], Bes and Sethi [3], Bean and
Smith [1,2]).

The emphasis in this paper is on the case where Y is an infinite dimensional func-
tion space. For example, problems in infinite horizon optimal control seek a control
function x from a space Y of continuous functions on R

+ that minimizes its associated
infinite horizon discounted cost. In this case, the feasible region X is specified through
a differential or integral equation that relates system state evolution to the control pol-
icy employed (see, e.g., Carlson et al. [4], Luenberger [11]). In fact, the special case
of a problem in infinite horizon production control is considered here in detail in sec-
tion 5. More generally, best approximation problems also fall within the framework
of (P ), where c(x) is a measure of the error of x from a fixed target function x0 (see,
e.g., Schochetman and Smith [13,15], Dontchev and Zolezzi [6]).

Since the objective functions and feasible regions of the approximating problems
(Pi)i∈I are also defined over the common space Y , it is important to endow Y with
a topology that is fine enough to allow for the error in solution approximation to be
suitably small, but at the same time, coarse enough for desirable properties like com-
pactness of X to hold. Toward this end, we begin by embedding Y within the set of all
functions from a σ -compact Hausdorff space T to a metric space A. By requiring X to
be a non-empty closed subset of equicontinuous functions from the product (over T ) of
compact subsets in A, the pointwise convergence and uniform convergence on compacta
topologies agree on X. If follows by the Tychonoff theorem that X remains compact in
the stronger topology of uniform convergence on compacta. It is this stronger topology
that appropriately measures solution error; roughly speaking, two solutions over T are
“close” when their difference is uniformly small over a compact subset Q of T . For ex-
ample, if T = N, and is discrete, then this reduces to actual agreement on finite subsets
of N and in particular on {1, . . . , n}. Moreover since T is σ -compact, it is the countable
union of such subsets, and the near agreement can thus be required over nearly all of T .
In fact, there exist compact Qi → T (Kuratowski), as i → ∞, where Qi = ⋃i

k=1 Q
′
k,

Q′
k compact for all k.
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We require only two properties of the approximating problems (Pi) in their relation
to (P ): (1) their feasible regions Xi → X (Kuratowski) and (2) their objective functions
ci → c (uniformly). Requirement 1) is a significant relaxation over assumptions com-
monly made in the literature. For example, in Schochetman and Smith [12], it is required
that Xi = X, for all i, while in Schochetman and Smith [14] and Semple [17], it is as-
sumed that Xi+1 ⊆ Xi , all i, and X = ⋂∞

i=1 Xi , so that Xi ↓ X in all cases. Also,
the action functions in these papers are defined within a discrete time framework where
T = {1, 2, . . .}.

In section 2, the class of optimization problems considered is formally defined,
as well as their associated nets of approximating problems. We prove optimal value
convergence, i.e., that the net of optimal values {c∗

i } to the approximating problems
converges to the optimal value c∗ of the original optimization problem. We also establish
the fundamental result that solutions to the approximating problems (Pi) become (for
large i) arbitrarily close to optimal solutions to the original problem (P ). Section 3
turns to establishing conditions under which optimal policy convergence takes place,
i.e., conditions under which optimal solutions of approximating problems converge to
an optimal solution of the original problem. Existence of a unique accumulation point
of approximating optima is established as a sufficient condition for this to take place.
Under this well-posedness condition, in section 4, an algorithm is provided, together
with stopping rule, that is guaranteed to finitely compute an approximating solution
within any prespecified error from the optimal solution. Finally, in section 5, we apply
the theory and algorithms developed in the preceding section to a problem in continuous-
time infinite horizon production control.

2. Problem formulation and value convergence

Let T be a σ -compact Hausdorff space (Dugundji [7, p. 240]) and A a metric space with
metric d. The space T is the space of the action index (e.g., time) and A is the space of
all possible actions. Let AT denote the set of all functions from T into A. An element y
of AT will be called an action strategy in A over T .

Next let C(T ,A) denote the set of continuous functions from T into A. Although
there are several natural Hausdorff topologies for C(T ,A), there is one which is of
particular interest to us, namely the topology of uniform convergence on compact sets
or more briefly, the uniform-on-compacta topology (Kelley [9]). Moreover, since T
is σ -compact, it follows (Dugundji [7, p. 272]) that this topological space C(T ,A) is
metrizable and hence, first countable. We next observe that the uniform-on-compacta
topology is a jointly continuous topology on C(T ,A); this is not true in general for the
topology of pointwise convergence (Kelley [9, p. 223]). It is primarily for this reason
that we adopt the topology of uniform convergence on compacta on C(T ,A).

Lemma 2.1. The canonical mapping (y, t) → y(t) of C(T ,A) × T into A is contin-
uous. If T is discrete, then it is also continuous relative to the topology of pointwise
convergence on C(T ,A).
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Proof. This follows from the definitions of the relevant topologies, together with the
fact that T is locally compact. �

Let E be a non-empty, equicontinuous (Kelley [9, p. 223]) family of functions in
C(T ,A), i.e., for each t0 ∈ T and ε > 0, there exists a neighborhood U of t0 in T such
that

d
(
y(t), y(t0)

)
< ε, ∀t ∈ U, ∀y ∈ E.

For such a subspace E it follows (Kelley [9, p. 223]) that the relative topologies of
uniform convergence on compacta and pointwise convergence are equal. Note that a
sufficient condition for E to be equicontinuous is for E to be compact in C(T ,A) (Kel-
ley [9, p. 223]); if T is discrete, then it is sufficient for E to be merely pointwise-compact
(lemma 2.1).

SinceE is equicontinuous, its pointwise-closure inAT is also equicontinuous (Kel-
ley [9, p. 223]), as is its relative pointwise-closure in C(T ,A). Thus, there is no loss of
generality in also assuming that E is pointwise-closed in C(T ,A). Consequently, E is
closed in C(T ,A) as well.

In general, given t ∈ T , it is unlikely that all actions in A will be feasible for t .
Thus, we will let Yt denote the space of actions in A which are feasible at action in-
dex t, ∀t ∈ T . We assume that Yt is a non-empty, compact subset of A, ∀t ∈ T . Let

Y = E ∩
∏
t∈T

Yt = {
y ∈ E: y(t) ∈ Yt, ∀t ∈ T

}
,

so that Y ⊆ E ⊆ C(T ,A) ⊆ AT and Y ⊆ ∏
t∈T Yt ⊆ AT . Note that

∏
t∈T Yt is

not contained in C(T ,A) in general, unless T is discrete. (In fact, if T is discrete, we
could choose E = ∏

T Yt = Y .) Thus, our choice of Y is necessitated by the fact
that the decision index t need not be discrete. We assume Y �= ∅. The space Y will
play the role of the space of all possible strategies (feasible or not) over T with values
in the appropriate decision spaces Yt, ∀t ∈ T . Note that Y is an equicontinuous family
also, so that the restrictions to Y of the uniform-on-compacta and pointwise convergence
topologies agree. We will simply refer to these restrictions as the topology of Y . Finally,
note that Y being a subspace of C(T ,A) is also first countable.

The next result explains why we require E to be equicontinuous.

Lemma 2.2. The space Y is a non-empty compact Hausdorff space.

Proof. The space
∏

t∈T Yt is pointwise-compact by the Tychonoff theorem (Kelley [9]),
and contained in AT which is Hausdorff relative to pointwise convergence. Hence,∏

t∈T Yt is pointwise-closed in AT (Kelley [9]). Thus, Y is pointwise-closed in AT and
pointwise-closed in C(T ,A). Consequently, Y is closed in C(T ,A). Thus, the result
follows from Ascoli’s theorem (Kelley [9, p. 233]). �
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Example 2.3 (Discrete-time, discrete-action space). Let T be the positive integers N,
Yt = {0, 1, . . . , mt }, ∀t = 1, 2, . . . , and A = {0, 1, . . . , m}, where we assume

0 � mt � m, ∀t = 1, 2, . . . ,

and

d(x, y) = |x − y|, ∀x, y = 0, 1, . . . , m.

Then E = ∏∞
t=1 Yt is pointwise-compact and hence, equicontinuous (Kelley [9, p. 233])

and pointwise-closed. In this case, Y = ∏∞
t=1 Yt .

Example 2.4 (Discrete-time, continuous-action space). Let T = N and let Yt be a com-
pact subset of the Euclidean space R

nt of dimension nt , ∀t = 1, 2, . . . . Define A to be
the set of infinite sequences x = (xt ) of real vectors in the R

nt having the property that
xt = 0, for all but finitely many t = 1, 2, . . . . Then A is a metric space with metric given
by

d(x, y) =
( ∞∑
t=1

‖xt − yt‖2

)1/2

, ∀x, y ∈ A.

Note that the canonical restriction of d to R
nt yields the usual Euclidean metric,

∀t = 1, 2, . . . . Once again, E = ∏∞
t=1 Yt is pointwise-compact, equicontinuous (Kel-

ley [9, p. 233]) and pointwise-closed; Y = ∏∞
t=1 Yt also.

Example 2.5 (Continuous-time, continuous-action space). Now let T = R
+ (non-

negative reals) and A = R, so that AT is the set R
R

+
of real-valued functions on R

+. Fix
M > 0 and let

E = {
y ∈ R

R
+

: 0 � y(t)− y(s) � M(t − s), ∀0 � s � t
}
.

Note that the constant functions are contained in each such E. Thus, E is a
non-empty equicontinuous subset of C(R+,R). Moreover, it is pointwise-closed in
C(R+,R), and hence, uniform-on-compacta closed as well. Also let Yt denote the closed
interval [0,Mt], ∀t � 0. Note that the zero function is in both E and

∏
t�0 Yt , the non-

zero constant functions are in E, but not in
∏

t�0 Yt , and there exist non-continuous

functions in
∏

t�0 Yt , which are not in E. The set
∏

t�0 Yt is pointwise-closed in R
R

+

and thus, also closed. Therefore, Y = E ∩ ∏
t�0 Yt is also closed in C(R+,R), and

hence, compact by Ascoli’s theorem (Kelley [9, p. 233]). Also, note that y(0) = 0, for
each y ∈ Y ; in fact, y ∈ Y if and only if y ∈ E and y(0) = 0. More generally, let

F = {
y ∈ R

R
+

:
∣∣y(t)− y(s)

∣∣ � M|t − s|, ∀s, t � 0
}
,

i.e., F is the set of Lipschitz continuous functions with uniform Lipschitz constant M.
Accordingly, also let Yt = [−Mt,Mt], ∀t � 0. Then the previous claims are true for F
and Y = F ∩∏t�0 Yt as well.
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Note that the remaining case where T is continuous-time while A is a discrete-
action space is not considered, since the only continuous functions from a connected
space to a discrete space are the constant functions, a trivial family.

Returning to the general discussion preceding example 2.3, recall that Y is a com-
pact Hausdorff space. We will let K(Y ) denote the set of all closed (hence, compact),
non-empty subsets of Y . If we assume that K(Y ) is equipped with the relativized Vietoris
topology (Klein and Thompson [10, p. 8]), then K(Y ) is also a compact Hausdorff space
(Klein and Thompson [10, pp. 15–17]). Moreover, the convergence in K(Y ) underlying
this topology is precisely Kuratowski convergence (Klein and Thompson [10, p. 34])
which we describe next. Let {Si}I be a net of subsets of Y (with I directed by �) and
y ∈ Y . Define:

(i) y is a limit point of the net {Si}I if, for every neighborhood U of y in Y , there exists
iU ∈ I such that Si ∩U �= ∅, for all i ∈ I for which iU � i.

(ii) y is a cluster point of the net {Si}I if, for every neighborhood U of y in Y , and every
i ∈ I , there exists ji ∈ I such that i � ji and Sji ∩ U �= ∅.

Then let lim infI Si (respectively lim supI Si) denote the set of limit (respectively cluster)
points of the {Si}I . If S ⊆ Y and S = lim infI Si = lim supI Si , we write limI Si = S.
In general, lim infI Si and lim supI Si are closed subsets of Y which may be empty, and
which satisfy lim infI Si ⊆ lim supI Si . Thus, limI Si = S if and only if lim supI Si ⊆ S

and S ⊆ lim infI Si .
We assume that our feasible region X is a given closed, non-empty subset of Y ,

i.e., X ∈ K(Y ). We also assume we are given a real-valued, continuous cost function c
defined on Y . Our optimization problem (P) is then defined as follows:

min
x∈X c(x). (P)

Since X is compact and c is continuous, it follows that the minimum is attained. We will
denote the set of optimal solutions to (P) by X∗ and the optimal cost by c∗. Of course,
X∗ is a non-empty, closed subset of X, i.e., X∗ ∈ K(Y ).

Our primary objective in this paper is to approximate the optimal solutions of (P)
by optimal solutions of problems which approximate (P). To this end, let {Xi}I be
any net in K(Y ) such that limI Xi = X. The directed set I (directed by �) is the
approximation index set.

Example 2.6 (Discrete, partially-ordered approximation index). Suppose that X can be
expressed as a countable intersection

⋂∞
n=1 Kn, where Kn ∈ K(Y ), ∀n = 1, 2, . . . .

For example, if the notation is as in example 2.4, and X is the region satisfying count-
ably infinitely many nonlinear constraints, then Kn could be the set of solutions in Y
which satisfy the n-th constraint, ∀n = 1, 2, . . . . Let I denote the collection of all finite
subsets of N, so that I is a countable set which is directed by ⊆. For each i ∈ I , let



SOLVING INFINITE DIMENSIONAL OPTIMIZATION PROBLEMS 125

Xi = ⋂
n∈i Kn. Then {Xi}I is a (countable) net in K(Y ) where i ⊆ j implies Xj ⊆ Xi .

Moreover, by Klein and Thompson [10, p. 28],

lim
I
Xi =

⋂
i∈I

Xi = X.

Example 2.7 (Continuous-time approximation index). Let the notation be as in exam-
ple 2.5, with (I,�) = (R+,�) also. Suppose we are given a function D : R

+ → R
+.

Define

X = {
y ∈ Y : y(t) � D(t), ∀t � 0

}
,

and suppose it is non-empty. Then X is pointwise-closed in Y , i.e., X ∈ K(Y ). For each
t � 0, define

Xt = {
y ∈ Y : y(s) � D(s), ∀0 � s � t

}
,

so that {Xt}t�0 is a net in K(Y ) for which s � t implies Xt ⊆ Xs , and

lim
t→∞Xt =

⋂
t�0

Xt = X.

We now return to our general situation. For each i ∈ I , let ci be a continuous,
real-valued function on Y . We assume that the net {ci}I converges uniformly to c on Y ,
i.e., given δ > 0, there exists iδ ∈ I such that∣∣c(y)− ci(y)

∣∣ < δ, ∀y ∈ Y,

for all i ∈ I such that iδ � i. For each i ∈ I , we define the i-th approximating problem
(Pi ) as follows:

min
x∈Xi

ci(x). (Pi)

(In the particular case where I = N, we have that the sequence of problems (Pi ) con-
verges in the sense of Fiacco [8] to the problem (P).) The optimal solution set X∗

i to
(Pi) is then a non-empty, closed subset of Y . Thus, X∗

i ∈ K(Y ), for all i ∈ I . We will
denote the optimal objective value to (Pi) by c∗

i , ∀i ∈ I.

Theorem 2.8 (Value convergence). The net {c∗
i }I of optimal values to the (Pi), i ∈ I ,

converges to the optimal value c∗ of (P ), i.e., limI c
∗
i = c∗.

Proof. We first show that lim infI c∗
i � c∗. By definition of lim infI c∗

i , there exists
a subnet {c∗

j }J of {c∗
i }I such that limJ c

∗
j = lim infI c∗

i . But c∗
j = cj (x

∗
j ), for some

x∗
j ∈ Xj, ∀j ∈ J . Hence, {x∗

j }J is a net in compact Y . Thus, there exists a subnet {x∗
k }K

of {x∗
j }J , with corresponding subnet {c∗

k}K of {c∗
j }J , and x ∈ Y such that limK x

∗
k = x

and limK c
∗
k = lim infI c∗

i . Since limI Xi = X, i.e., lim supI Xi ⊆ X and

x ∈ lim sup
j∈J

Xj ⊆ lim sup
i∈I

Xi ⊆ X
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(i.e., x is (P)-feasible), we have that

lim inf
i∈I

c∗
i = lim

k∈K
c∗
k = lim

k∈K
ck(x

∗
k ).

But limK ck(x
∗
k ) = c(x), since∣∣ck(x∗

k )− c(x)
∣∣ �

∣∣ck(x∗
k )− c(x∗

k )
∣∣+ ∣∣c(x∗

k )− c(x)
∣∣,

c is continuous at x and the subnet {ck}K converges uniformly to c on Y . Finally,
c(x) � c∗, which completes this part of the proof.

Next we show that lim supI c
∗
i � c∗. Let x∗ ∈ X∗, so that c∗ = c(x∗). Since

X ⊆ lim infI Xi , we have that x∗ ∈ lim infI Xi . Hence, there exists a net {xi}I such that
xi ∈ Xi, ∀i ∈ I , for which limI xi = x∗. By definition of lim supI c

∗
i , there exists a

subnet {c∗
j }J of {c∗

i }I such that limJ c
∗
j = lim supI c

∗
i . Necessarily, limJ xj = x∗ also.

Let c∗
j = cj (x

∗
j ), where x∗

j ∈ X∗
j ⊆ Xj , ∀j ∈ J . Then

c∗ = c(x∗) = lim
j∈J cj (xj ) � lim

j∈J c
∗
j = lim sup

i∈I
c∗
i ,

which completes the proof. �

Remarks. (i) Note that the second part of the previous proof does not require Y to be
compact.

(ii) The sequential version of this theorem can be established by invoking standard
results in epi-convergence theory. For example, see Dal Maso [5, p. 69] or Dontchev and
Zolezzi [6, p. 127].

It is not true in general that limI X
∗
i = X∗ (see Schochetman and Smith [14], for

example). However, we do have a partial result in this direction.

Theorem 2.9. Every accumulation point of optima drawn from the (Pi) is optimal
for (P ), i.e.,

lim sup
I

X∗
i ⊆ X∗.

Proof. Let x ∈ lim supI X
∗
i . Then there exists a subnet {Xj }J of {Xi}I and a cor-

responding net {x∗
j } such that x∗

j ∈ X∗
j , ∀j ∈ J , and limJ x

∗
j = x. Therefore,

x ∈ lim supI Xi by definition, so that x ∈ X by hypothesis, i.e., c∗ � c(x). Since
limJ x

∗
j = x, we have that

c(x) = lim
j∈J cj (x

∗
j ) = lim

j∈J c
∗
j = c∗,

by theorem 2.8, so that x ∈ X∗. �

Remark. For a sequential version of this result, see Dal Maso [5, pp. 79, 81], and
Dontchev and Zolezzi [6, p. 122].
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The following easy consequence of theorem 2.9 is a fundamental result. It states
that any optimal solution to an approximating problem (Pi) arbitrarily well approximates
some optimal solution to (P ) for sufficiently large i.

Theorem 2.10. Let Q be a compact subset of T and δ > 0. Then there exists i0 ∈ I

with the following property. For each i ∈ I with i0 � i, and for each x∗
i ∈ X∗

i , there
exists y∗ ∈ X∗ such that d(x∗

i (t), y
∗(t)) < δ, ∀t ∈ Q.

Proof. Suppose not. Then, for each i ∈ I , there exists ki ∈ I such that i � ki ,
and there exists yi ∈ X∗

ki
with the following property. For each y∗ ∈ X∗, there exists

t0 ∈ Q (depending on y∗ and i) such that d(yi(t0), y∗(t0)) � δ. Now {yi}I is a net in
the compact space Y . Thus, there exists a subnet {yj }J of {yi}I and y ∈ Y such that
limJ yj = y in Y . Consequently, y ∈ lim supI X

∗
i ⊆ X∗. Moreover, by the topology

on Y , there exists j0 ∈ J such that d(yj (t), y(t)) < δ, ∀t ∈ Q, for all j � j0 in J . In
particular, d(yj0(t), y(t)) < δ, ∀t ∈ Q. But, for y∗ = y and i = j0, there exists t0 ∈ Q

such that d(yj0(t0), y(t0)) � δ. Contradiction. �

Example 2.11 (Discrete-time, continuous-action space with discrete-time approxima-
tion index). Let T = I = N, A = R, and let Yt be a non-empty compact subset
of R, ∀t ∈ N, with Y = E = ∏

N
Yt . For each y ∈ Y , let Kt(y) (respectively

Rt(y)) denote the cumulative cost (respectively revenue) attributed to y through time
t = 1, 2, . . . . We assume that for each y ∈ Y , the real functions (sequences) t → Kt(y)

and t → Rt(y) on N are non-negative, non-decreasing and uniformly bounded by some
exponential function, i.e., without loss of generality, there exist B > 0 and β > 1 such
that

max
(
Kt(y), Rt (y)

)
� Bβt , ∀y ∈ Y, ∀t = 1, 2, . . . .

For each y ∈ Y , also define Ct(y) = Kt(y) − Rt(y) to be the cumulative net cost of y
through time t = 1, 2, . . . . For each t , we assume that all costs and revenues incurred at
time t are discounted by the discount factor α = (1 + ρ)−1, where ρ > 0 is the interest
rate. Then, ct is defined by

ct (y) =
t∑

s=1

αs−1
[
Cs(y)− Cs−1(y)

]
, ∀y ∈ Y, ∀t = 1, 2, . . . .

Similarly for the t-horizon discounted cost kt (y) and revenue rt (y), i.e.,

kt(y) =
t∑

s=1

αs−1[Ks(y)−Ks−1(y)
]
, ∀y ∈ Y, ∀t = 1, 2, . . . ,

and

rt (y) =
t∑

s=1

αs−1
[
Rs(y)− Rs−1(y)

]
, ∀y ∈ Y, ∀t = 1, 2, . . . ,
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so that ct (y) = kt(y)− rt (y) in this case. Define the infinite horizon discounted net cost
to be

c(y) =
∞∑
s=1

αs−1[Cs(y)− Cs−1(y)
] = lim

t→∞ ct (y), ∀y ∈ Y,

provided this limit exists. We similarly define the infinite horizon discounted cumulative
cost and revenue functions k(y) and r(y), i.e.,

k(y) =
∞∑
s=1

αs−1
[
Ks(y)−Ks−1(y)

] = lim
t→∞ kt (y), ∀y ∈ Y,

and

r(y) =
∞∑
s=1

αs−1
[
Rs(y)− Rs−1(y)

] = lim
t→∞ rt (y), ∀y ∈ Y,

respectively. If ρ > β − 1, so that 0 < αβ < 1, then for each y ∈ Y , the quantities c(y),
k(y) and r(y) do exist and c(y) = k(y)− r(y). For each y ∈ Y , we also have that∣∣c(y)− ct (y)

∣∣ � at ,

where at is defined by

at = 4B

α(1 − αβ)
(αβ)t+1, ∀t = 1, 2, . . . .

(See 2.2–2.5 of Schochetman and Smith [12] for analogous results in the case where
T = R and β = eγ .) Consequently, the sequence {ct }N converges uniformly to c on Y .
The same is true for k and r, i.e., ∀t = 1, 2, . . . ,∣∣k(y)− kt (y)

∣∣ � at ,

and ∣∣r(y)− rt (y)
∣∣ � at .

Finally, c∗
t � c∗

s + as , for all s, t = 1, 2, . . . such that s � t . If, in addition, we assume
that for each t = 1, 2, . . . , the functions Kt, Rt , and hence Ct , are continuous real-
valued functions on Y , then for each t = 1, 2, . . . , the real-valued functions kt , rt , ct
are continuous on Y . Hence, the real-valued functions k, r, c are also continuous on Y .
(See 2.6–2.7 of Schochetman and Smith [12].)

Example 2.12 (Continuous-time, continuous-action space with a continuous-time ap-
proximation index). Let T = I = R

+ and A = R, as in examples 2.5 and 2.7. As in
Schochetman and Smith [12], let Kt(y) (respectively Rt(y)) denote the cumulative cost
(respectively revenue) attributed to y ∈ Y through time t � 0. We assume that, for
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each y ∈ Y , the functions t → Kt(y) and t → Rt(y) on R
+ are non-negative, non-

decreasing and uniformly bounded by some exponential function, i.e., without loss of
generality, there exist B, γ > 0 such that

max
(
Kt(y), Rt (y)

)
� B eγ t , ∀y ∈ Y, ∀t � 0.

Also define Ct(y) = Kt(y) − Rt(y) to be the cumulative net cost of y ∈ Y through
time t � 0. Then, for each y ∈ Y , the function t → Ct(y) is of locally bounded
variation on R

+. For each t � 0, we assume that all costs and revenues incurred at time
0 � s � t are continuously discounted by e−ρs , where ρ > 0 is the interest rate. Thus,
the t-horizon discounted net cost ct (y) for y ∈ Y is given by the Stieltjes integral (see
Widder [18])

ct (y) =
∫ t

0
e−ρs dCs(y), ∀t � 0.

The t-horizon discounted cost kt(y) and revenue rt (y) for y are obtained analogously,
i.e.,

kt (y) =
∫ t

0
e−ρs dKs(y), ∀t � 0,

and

rt (y) =
∫ t

0
e−ρs dRs(y), ∀t � 0.

Obviously, ct (y) = kt (y) − rt (y), ∀y ∈ Y and ∀t � 0. Define the infinite horizon
discounted net cost c(y) of y ∈ Y to be the Laplace–Stieltjes transform (see Widder [18])

c(y) =
∫ ∞

0
e−ρs dCs(y) = lim

t→∞ ct (y),

provided this limit exists. Similarly for the infinite horizon discounted cost and revenue
functions k(y) and r(y), respectively, i.e.,

k(y) =
∫ ∞

0
e−ρs dKs(y) = lim

t→∞ kt(y), ∀y ∈ Y,

and

r(y) =
∫ ∞

0
e−ρs dRs(y) = lim

t→∞ rt (y), ∀y ∈ Y.

If 0 < γ < ρ, then for each y ∈ Y , the quantities c(y), k(y) and r(y) exist, and
c(y) = k(y)− r(y). For each y ∈ Y , and for each t � 0, we have |c(y) − ct (y)| � at ,
where at is defined by

at = ρB e(γ−ρ)t

ρ − γ
, ∀t � 0.



130 SCHOCHETMAN AND SMITH

(See 2.2–2.5 of Schochetman and Smith [12].) Consequently, the net {ct }t�0 of finite
horizon net cost functions converges uniformly to the infinite horizon net cost function
c on Y . The same is true for k and r. If, for each t � 0, the functions Kt, Rt , and hence
Ct , are continuous real-valued functions on Y , then the real-valued functions kt , rt , ct
are also continuous on Y . Thus, the real-valued functions k, r, c are likewise continuous
on Y . (See 2.6–2.7 of Schochetman and Smith [12].) Moreover, the net {c∗

t }t�0 of opti-
mal costs satisfies c∗

t � c∗
s + as, ∀0 � s � t and c∗ = lim c∗

t (see 3.2 of Schochetman
and Smith [12]).

3. Approximation algorithms and policy convergence

The problems (Pi ), ∀i ∈ I , are viewed as approximating problems to (P). In general,
the directed set I is not countable. However, it is intuitively the case that an approxima-
tion algorithm for solving (P) should be sequential in nature. (For example, consider
the situation where an infinite horizon continuous-time optimization problem is being
approximated by a sequence of finite horizon subproblems whose horizons are increas-
ing without bound.) Consequently, for the remainder of this paper, we assume that N is
a countable subset of the directed set I which is order-isomorphic to the positive integers
and satisfies the property that for each i ∈ I , there exists ni ∈ N such that i � ni , i.e.,
N is a subnet (Kelley [9, p. 70]) of I . Formally, we are assuming that there exists an
order-preserving, one-to-one mapping φ of (N,�) into (I,�) which satisfies: for each
i ∈ I , there exists ni ∈ N such that if m ∈ N is such that ni � m, then i � φ(m). We
then have N = φ(N). For convenience, on N , we will use � and � interchangeably.

Example 3.1. Let (I,�) be the positive reals (R+,�) and N the positive integers N.
(More generally, N could be a strictly monotone sequence in R

+ which is unbounded.)
Alternately, let I denote the uncountable set of all finite subsets of N (with � given by
⊆) with N the subset of I given by N = {{1, 2, . . . , n}: n ∈ N}.

In general, for each n ∈ N , let A∗
n be a closed, non-empty set of (Pn)-optimal

solutions, i.e., ∅ �= A∗
n ⊆ X∗

n, so that c∗
n = cn(x), ∀x ∈ A∗

n and A∗
n ∈ K(Y ), ∀n ∈ N .

Define

A∗
∞ = lim sup

n∈N
A∗
n,

which is necessarily a closed subset of X (Klein and Thompson [10, p. 28]). It is also
non-empty, i.e., A∗∞ ∈ K(Y ), since the A∗

n are non-empty and Y is compact. Since
A∗
n ⊆ X∗

n, for all n ∈ N , we have that

A∗
∞ = lim sup

n∈N
A∗
n ⊆ lim sup

n∈N
X∗
n ⊆ lim sup

i∈I
X∗
i ⊆ X∗,

by theorem 2.12, i.e., the elements of A∗∞ are optimal for (P). In this context, as in
Schochetman and Smith [12], we define an approximation algorithm A∗ for (P) to be
such a sequence {A∗

n}N , for some choice of N as above. If A∗ is an approximation
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algorithm, then the elements of A∗∞ will be called A∗-algorithmically optimal solutions.
The algorithm A∗ cannot approximate the other elements of X∗. We will also say that
the approximation algorithm A∗ converges if

lim inf
n∈N

A∗
n = lim sup

n∈N
A∗
n,

in Y , i.e., if

lim
n∈N

A∗
n = A∗

∞,

in K(Y ).

Proposition 3.2. Suppose A∗ is an approximation algorithm for (P) which admits a
unique A∗-algorithmically optimal solution, i.e., A∗∞ = {x∗}, for some x∗ ∈ X∗. Then:

(i) The algorithm A∗ converges to {x∗} in K(Y ), i.e., limN A∗
n = {x∗}.

(ii) Every selection from the A∗
n converges to x∗, i.e., if xn is any element of A∗

n, ∀n ∈ N ,
then limN xn = x∗ in Y .

Proof. Both parts follow from corollary 2.2 of Schochetman and Smith [13]. �

Remark. If (P) admits a unique optimal solution, i.e., if X∗ = {x∗}, then ∅ �= A∗∞ ⊆
{x∗}, so that A∗∞ = {x∗}. Such optimization problems are said to be well-posed
(Dontchev and Zolezzi [6]).

Example 3.3 (Strictly convex programs). Consider the particular case where A is also
a (real) topological vector space, X is a closed, non-empty, convex feasible region and c
is a strictly convex objective function. In this case, (P) is well-known to admit a unique
solution.

Recall that our fundamental notion of nearness of solutions in Y can be described as
near agreement over a compact subset of T . This guides our definition of neighborhoods
of Y . Toward this end, let Q be a compact subset of T , x ∈ Y and δ > 0. Define

UQ(x, δ) = {
y ∈ Y : d

(
x(t), y(t)

)
< δ, ∀t ∈ Q

}
and

UQ(G, δ) =
⋃
x∈G

UQ(x, δ),

forG ⊆ Y . Note that UQ(x, δ) is a basic open neighborhood of x in the relative topology
of Y , so that UQ(G, δ) is open in Y . In this context, we are able to give necessary and
sufficient conditions for A∗∞ to be a singleton.

Theorem 3.4. The following are equivalent for an approximation algorithm A∗ =
{A∗

n}N :
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(i) A∗∞ is a singleton {x∗}.
(ii) Solution indices exist for A∗, i.e., there exists x∗ ∈ A∗∞ such that, for each compact

Q ⊆ T and δ > 0, there exists n0 ∈ N satisfying

A∗
n ⊆ UQ(x

∗, δ),

for all n ∈ N such that n � n0.

(iii) Policy convergence takes place for all approximate solution subsequences gener-
ated by A∗, i.e., there exists x∗ ∈ A∗∞, such that for all subsequences {A∗

nj
} of

{A∗
n}, and corresponding sequences {xj } for which xj ∈ A∗

nj
, ∀j = 1, 2 . . . , we

have lim xj = x∗ in Y .

Proof. (i) ⇒ (ii). Suppose A∗∞ = {x∗}. Then limN A∗
n = {x∗} in K(Y ) by proposi-

tion 3.2. Suppose (ii) is false for x∗. Then, there exist Q and δ as in (ii) such that for
each n ∈ N , there exists jn ∈ N such that jn � n and A∗

jn
�⊆ UQ(x

∗, δ), i.e., the inter-
section of A∗

jn
with the complement of UQ(x

∗, δ) in Y is non-empty. Thus, there exists a
subsequence {A∗

jn
} of {A∗

n}N , and a corresponding sequence {yn}N , such that yn ∈ A∗
jn

,
but yn /∈ UQ(x

∗, δ), ∀n ∈ N . Since UQ(x
∗, δ) is open, its complement is closed and

hence, compact. Hence, passing to a subsequence if necessary, we may assume that
limN yn = y, for some y /∈ UQ(x

∗, δ). In particular, y �= x∗. But yn ∈ A∗
jn
, ∀n ∈ N , so

that y ∈ lim supN A∗
n = A∗∞, i.e., y = x∗, by hypothesis. Contradiction.

(ii) ⇒ (iii). Suppose x∗ is as in (ii). Let {A∗
j}J be a subsequence of {A∗

n}N and {xj }J
a corresponding sequence satisfying xj ∈ A∗

j , ∀j ∈ J . Let Q be a compact subset
of T and δ > 0. By (ii), there exists n0 ∈ N such that A∗

n ⊆ UQ(x
∗, δ), for all n ∈ N

satisfying n � n0. By definition of subsequence, there exists j0 ∈ J such that whenever
j ∈ J and j � j0, the image of j in N is at least n0. Consequently, for j � j0 we
have

d
(
xj (t), x

∗(t)
)
< δ, ∀t ∈ Q,

so that xj ∈ UQ(x
∗, δ), ∀j � j0, i.e., limJ xj = x∗.

(iii) ⇒ (i). By hypothesis, {x∗} ⊆ A∗∞. Suppose y∗ in A∗∞. Then there exists a sub-
sequence {A∗

j }J of {A∗
n}N and a corresponding sequence {xj }J such that xj ∈ A∗

j ,∀j ∈ J , and limJ yj = y∗. By (iii), limJ yj = x∗. Since Y is Hausdorff, it follows
that y∗ = x∗. �

4. Stopping Rule for a finite algorithm

Let A∗ be an approximation algorithm for (P) as in section 3. In this section, under
suitable additional assumptions, we present a Stopping Rule for this algorithm, as well
as sufficient conditions for this Stopping Rule to be satisfied at some m ∈ N , given
compact Q ⊆ Y and δ > 0. To do this, we require some additional notation and ideas.
For the remainder of the paper, we adopt the following assumptions.
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Assumptions.

(1) The Xn are nested downward, i.e., if n � j in N , then Xn ⊆ Xj . Note that since
limN Xn = X, we also have that X = ⋂

N Xn (Klein and Thompson [10, p. 28]).

(2) Costs are monotonically increasing, i.e., if n � j in N , then cn(y) � cj (y), ∀y ∈ Xn,
where Xn ⊆ Xj by (1).

Example 4.1. In examples 2.11 and 2.12, simply set R = 0 in order to satisfy both of
these assumptions.

Lemma 4.2. The sequence {c∗
n}N is monotonically non-decreasing and bounded above

by c∗, i.e., c∗
n ↑ c∗, as n → ∞.

Proof. For n � j in N , let x∗
n ∈ X∗

n, so that c∗
n = cn(x

∗
n), i.e., c∗

n � cj (x
∗
n), by

assumption (2). Since x∗
n ∈ Xj by assumption (1), it follows that cj (x∗

n) � c∗
j , which

proves the first part. For the second part, recall theorem 2.8. �

Let {an}N be a sequence of real numbers satisfying an � c∗ − c∗
n, so that an � 0,

∀n ∈ N . Note that in general, the sequence {an}N need not converge.

Example 4.3. If we know some b � c∗, then we can let an = b − c∗
n, ∀n ∈ N . As

an example, set b = c(x), for any x ∈ X. Thus, there exist many such sequences. In
particular, recall examples 2.11 and 2.12.

Our next lemma establishes upper and lower bounds on the optimal costs c∗
n as we

increase n.

Lemma 4.4. For j � n in N , we have

c∗
j � c∗

n � c∗
j + aj .

Proof. By the previous lemma,

c∗
j � c∗

n � c∗ = (c∗ − c∗
j )+ c∗

j � aj + c∗
j ,

by the choice of aj . �

We next define a measure of error in value from optimal associated with solutions
close to optimal for problem (Pm). Define

MQ(δ,m) = inf
{
cm(x): x ∈ Xm \ UQ(A∗

m, δ)
}
,

where the slash denotes set difference (in Y ). Since UQ(A∗
m, δ) is an open subset of Y ,

it follows that Xm \ UQ(A∗
m, δ) is a closed (hence, compact) subset of Y , because it is
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equal to the intersection of Xm and the complement of UQ(A∗
m, δ) in Y . Thus, MQ(δ,m)

is attained, since cm is continuous. Recall that c∗
m = cm(x), ∀x ∈ A∗

m.

Stopping Rule. Fix compact Q ⊆ T and δ > 0. Let m ∈ N . Then stop at m if
(Policy Criterion)

d
(
x(t), y(t)

)
< δ/3, ∀t ∈ Q, ∀x, y ∈ A∗

m,

and
(Value Criterion)

MQ(δ/3,m)− c∗
m > 2am.

We will say that the algorithm A∗ terminates at m if the Policy and Value Criteria are
satisfied for m, which we will call a solution index of tolerance δ and support Q.

Solution Index Algorithm

1. Choose compact Q ⊆ T , δ > 0 and set m = 1.

2. Solve (Pm) to get A∗
m and c∗

m, which is equal to cm(x), for any x ∈ A∗
m.

3. If the Stopping Rule is not satisfied, set m = m+ 1 and go to step 2.

4. Otherwise, stop. In this event, m is a solution index of tolerance δ and support Q.

Lemma 4.5. If A∗ terminates at m, then for all n � m, we have X∗
n ⊆ UQ(A∗

m, δ/3).

Proof. If not, then there exists n � m such that X∗
n is not a subset of UQ(A∗

m, δ/3).
Hence, there exists x∗ ∈ X∗

n \ UQ(A∗
m, δ/3). Then, since the Xn are nested downward,

X∗
n ⊆ Xn ⊆ Xm

and

x∗ ∈ Xm \ UQ(A∗
m, δ/3).

Thus, by definition,

MQ(δ/3,m) � cm(x
∗).

Also,

cm(x
∗)− c∗

m � MQ(δ/3,m)− c∗
m > 2am,

by the Value Criterion, i.e.,

cm(x
∗)− c∗

m > 2am.

On the other hand,

c∗
n = cn(x

∗) � cm(x
∗) � cm(x

∗)− am,
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by assumption (2). Consequently, adding the previous two inequalities together, we
obtain that

c∗
n − c∗

m > am,

i.e.,

c∗
n > c∗

m + am.

By lemma 4.4, this is a contradiction. Therefore, X∗
n ⊆ UQ(A∗

m, δ/3), ∀n � m. �

Theorem 4.6. If A∗ terminates at m, then for each x∗ ∈ A∗∞, and each n � m, A∗
n ⊆

UQ(x
∗, δ), i.e., for each x ∈ A∗

n, we have

d
(
x(t), x∗(t)

)
< δ, ∀t ∈ Q.

Proof. Fix x∗ ∈ A∗∞ and ε > 0. Note that UQ(x
∗, ε) is an open neighborhood of x∗ in

the topology of Y . By definition of A∗∞ (Klein and Thompson [10, p. 24]), there exists
n � m such that A∗

n ∩UQ(x
∗, ε) �= ∅, i.e., there exists xn ∈ A∗

n such that

d
(
xn(t), x

∗(t)
)
< ε, ∀t ∈ Q.

Consequently, x∗ ∈ UQ(xn, ε). We have

xn ∈ A∗
n ⊆ UQ(A∗

m, δ/3),

by lemma 4.5. Therefore, there exists xm ∈ A∗
m such that xn ∈ UQ(xm, δ/3), i.e.,

d
(
xn(t), xm(t)

)
< δ/3, ∀t ∈ Q.

Hence, by the triangle inequality,

d
(
x∗(t), xm(t)

)
< δ/3 + ε, ∀t ∈ Q,

so that

x∗ ∈ UQ(xm, δ/3 + ε), ∀ε > 0.

We next show that there exists y ∈ A∗
m such that

d
(
y(t), x∗(t)

)
� δ/3, ∀t ∈ Q.

For each positive integer k, by the previous argument, there exists yk ∈ A∗
m such that

x∗ ∈ UQ(yk, δ/3 + 1/k). Then {yk} is a sequence in A∗
m which is compact. Hence,

there exists an accumulation point y of this sequence in A∗
m. This point y∗ must have the

property that

d
(
y(t), x∗(t)

)
� δ/3, ∀t ∈ Q.

Now let n � m and x ∈ A∗
n. By lemma 4.5, x ∈ UQ(A∗

m, δ/3). Hence, there exists
xm ∈ A∗

m such that x ∈ UQ(xm, δ/3), i.e.,

d
(
x(t), xm(t)

)
< δ/3, ∀t ∈ Q.
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By the Policy Criterion,

d
(
xm(t), y(t)

)
< δ/3, ∀t ∈ Q.

Thus, by the triangle inequality,

d
(
x(t), x∗(t)

)
< d

(
x(t), xm(t)

)+ d
(
xm(t), y(t)

) + d
(
y(t), x∗(t)

)
< δ, ∀t ∈ Q,

which implies that x ∈ UQ(x
∗, δ), so that A∗

n ⊆ UQ(x
∗, δ), ∀n � m. This completes

the proof. �

Remark. The conclusion of theorem 4.6 is true for all of X∗
n. However, we are assuming

that our algorithm A∗ yields only that portion of X∗
n given by A∗

n ⊆ X∗
n.

We next give sufficient conditions for the algorithm A∗ to terminate.

Theorem 4.7. Suppose X∗ = {x∗} and the an can be chosen so that limN an = 0. Then
for each compact Q ⊆ T , and for each δ > 0, the algorithm A∗ terminates at some
m ∈ N (which depends on Q and δ).

Proof. Let Q and δ be as above.
(Policy Criterion.) Since X∗ = {x∗} and ∅ �= A∗∞ ⊆ X∗, we have that

lim sup
N

A∗
n = lim

N
A∗
n = A∗

∞ = {x∗},

by (i) of proposition 3.2. Thus, by theorem 3.4, there exists n0 sufficiently large such
that for n � n0, we have A∗

n ⊆ UQ(x
∗, δ/6), i.e.,

d
(
xn(t), x

∗(t)
)
< δ/6, ∀t ∈ Q,

and for all xn ∈ A∗
n. Therefore, for each n � n0 and each xn, yn ∈ A∗

n, we have by the
triangle inequality that

d
(
xn(t), yn(t)

)
� d

(
xn(t), x

∗(t)
)+ d

(
x∗(t), yn(t)

)
< δ/3, ∀t ∈ Q.

This establishes the Policy Criterion for every n ∈ N satisfying n � n0.
(Value Criterion.) Given Q and δ, we obtain n0 as above. Hence, for each n � n0,

x∗ ∈ UQ(xn, δ/6), ∀xn ∈ A∗
n,

because

d
(
xn(t), x

∗(t)
)
< δ/6), ∀t ∈ Q.

Since A∗
n �= ∅, ∀n, we have that

x∗ ∈ UQ

(
A∗
n, δ/6

)
, ∀n � n0. (∗)

Therefore, if, for some m � n0, we have that

MQ(δ/3,m)− c∗
m > 2am,
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then the Value Criterion is satisfied at m, as is the Policy Criterion, i.e., A∗ terminates at
m.

Thus, suppose that for each n � n0, the Value Criterion does not hold, i.e.,

MQ(δ/3, n)− c∗
n � 2an,

for such n. Since MQ(δ/3, n) is attained, for each n � n0, there exists xn ∈
Xn \ UQ(A∗

n, δ/3) such that cn(xn) = MQ(δ/3, n). Hence,

0 � cn
(
xn
)− c∗

n � 2an,

for all n � n0. But {xn} is a sequence in compact Y . Thus, there exists (Kelley [9,
p. 138]) a subsequence {xnk } of {xn} and x ∈ Y such that limk x

nk = x. Necessarily,

0 � cnk
(
xnk
)− c∗

nk
� 2ank ,

for all k sufficiently large such that nk � n0. Let k0 be sufficiently large so that k � k0

implies nk � n0, and hence,

0 � cnk
(
xnk
)− c∗

nk
� 2ank .

Since limk ank = 0, we have that

lim cnk
(
xnk
) = lim c∗

nk
= c∗,

by theorem 2.9. Now limk x
nk = x and xn ∈ Xn, ∀n, so that x ∈ lim supn Xn = limn Xn,

i.e., x ∈ X. But, by the triangle inequality,∣∣cnk(xnk)− c(x)
∣∣ �

∣∣cnk(xnk )− c
(
xnk
)∣∣+ ∣∣c(xnk )− c(x)

∣∣, ∀k � k0,

which converges to 0, since the function c is continuous and the cnk converge uniformly
to c on Y . Therefore, we have that c(x) = c∗, so that x is optimal. Since X∗ = {x∗}, it
must be that x = x∗.

Now let 0 < ε < δ/6. Since, limk x
nk = x∗ in Y , there exists k1 (which we may

assume is at least k0) such that for k � k1,

d
(
xnk (t), x∗(t)

)
< ε < δ/6, ∀t ∈ Q,

i.e.,

xnk ∈ UQ(x
∗, ε) ⊆ UQ(x

∗, δ/6).

Moreover, recall that x∗ ∈ UQ(A∗
n, δ/6), for n � n0, by (∗) above. Then, for each

k � k1 (so that nk � n0), there exists xnk ∈ A∗
nk

for which

d
(
x∗(t), xnk (t)

)
< δ/6, ∀t ∈ Q.

Thus, by the triangle inequality, for k � k1,

d
(
xnk (t), xnk (t)

)
� d

(
xnk (t), x∗(t)

)+ d
(
x∗(t), xnk (t)

)
< δ/3, ∀t ∈ Q,



138 SCHOCHETMAN AND SMITH

i.e., xnk ∈ UQ(Ank , δ/3). However, k � k1 � k0 implies nk � n0, so that MQ(δ/3, nk)
is attained as cnk (x

nk ) at

xnk ∈ Xnk \ UQ(Ank , δ/3),

i.e.,

xnk /∈ UQ(Ank , δ/3).

Contradiction. Consequently, there exists n � n0 for which the Value Criterion holds. �

In the next section, we present an application where the hypotheses of theorem 4.7
hold.

5. An application to production control

Consider a production facility which produces one product over continuous time subject
to a maximum production rate M > 0. Suppose that at any time t � 0, the cumulative
demand through time t is given by D(t), where the demand function D : R

+ → R
+ is

non-decreasing (therefore Riemann integrable over any bounded interval) and satisfies
D(0) = 0.

Let T = R
+ and A = R, so that AT is the set R

R
+

of all functions from R
+

to R and C(T ,A) is the set of all such functions which are continuous (we view R
R

+

as a topological vector space of functions under pointwise operations and convergence).
Define E and Y as in example 2.5, with Yt = [0, Mt], ∀t � 0, so that Y = E∩∏t�0 Yt ,
i.e., y ∈ Y if and only if y : R

+ → R, y(0) = 0 and y ∈ E, that is,

0 � y(t)− y(s) � M(t − s), ∀0 � s � t.

Recall that Y is compact in C(R+,R).
For each y ∈ Y , y(t) denotes the cumulative production through time t � 0.

The non-empty, compact Hausdorff space Y is also an equicontinuous family of real-
valued functions on R

+. In practical terms, Y consists of all (non-decreasing) cumulative
production functions which do not exceed the maximum production rate M, and which
reflect the fact that production begins at time t = 0. Also, let K(Y ) be as in section 2.

In order to ensure that it is possible to satisfy demand at all times, we must assume
that the demand function D and the production rate M are such that D(t) � Mt , ∀t � 0.
Consequently, as in example 2.7, the feasible region X is then the convex subset of R

R
+

given by

X = {
y ∈ Y : y(t) � D(t), ∀t � 0

}
.

(If D(t0) > Mt0, for some t0 � 0, then X = ∅.) Since the function y(t) = Mt is
in X, it is non-empty. Moreover, X is pointwise-closed in Y , so that X is compact, i.e.,
X ∈ K(Y ). Also as in example 2.7, let (I,�) = (R+,�) and define

Xt = {
y ∈ Y : y(s) � D(s), ∀0 � s � t

}
, ∀t � 0,
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so that {Xt}t�0 is a net in K(Y ) which is nested downward and satisfies

lim
t→∞Xt =

⋂
t�0

Xt = X.

In order to introduce the cost structure, for t � 0, let:

h(t) = the unit holding cost at time t ,
p(t) = the unit production cost at time t , and
q(t) = the unit revenue at time t .

We assume that the functions h, p, q : R
+ → R

+ are continuous and bounded, i.e.,

sup
t�0

{
h(t), p(t), q(t)

}
< ∞.

Thus, for any choice of γ > 0, there exists B > 0 sufficiently large such that

max
{
h(t), p(t), q(t)

}
� B eγ t , ∀t � 0.

Given this data, we will construct an infinite horizon optimization model for production
control along the lines we have developed in sections 2 and 3.

Before we can specify the cost structure, we need to define the inventory and sales
functions θ and σ , respectively. Let θ, σ :Y × R

+ → R
+ be given by

θ(y, t) = max
{
y(t)−D(t), 0

}
, ∀y ∈ Y, ∀t � 0,

and

σ (y, t) = min
{
y(t),D(t)

}
, ∀y ∈ Y, ∀t � 0.

Thus, if we follow production strategy y ∈ Y over all time, then θ(y, t) represents the
inventory on hand at time t , and σ (y, t) represents the cumulative sales through time t .
It is not difficult to verify that for any production strategy y in Y , the inventory at time t
is equal to total production through time t , less cumulative sales through time t , i.e.,

θ(y, t) = y(t) − σ (y, t), ∀y ∈ Y, ∀t � 0.

In particular, if y ∈ X, then

σ (y, t) = D(t), ∀t � 0,

so that σ (y, t) is independent of y. Thus, for y ∈ X, we have

θ(y, t) = y(t)−D(t), ∀t � 0.

The following additional properties of θ and σ will be required in what follows.

(i) For all t � 0 and y ∈ Y , we have 0 � θ(y, t), σ (y, t) � Mt .

(ii) For all t � 0 and x, y ∈ Y , we have∣∣θ(x, t)− θ(y, t)
∣∣, ∣∣σ (x, t)− σ (y, t)

∣∣ �
∣∣x(t) − y(t)

∣∣.
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(iii) For each y ∈ Y , the function t → θ(y, t) is Riemann integrable in t .

(iv) For each y ∈ Y , the function t → σ (y, t) is non-decreasing in t .

We are now ready to introduce a cost structure as in example 2.12. Let 0 < ρ < ∞
be a specified interest rate and choose 0 < γ < ρ. Define the holding cost, production
cost and revenue functions (respectively)

H,P,R :Y × R
+ → R

+

as follows. For each y ∈ Y and t � 0, let:

Ht(y) =
∫ t

0
h(s)θ(y, s)λ ds

for any fixed λ > 1,

Pt(y) =
∫ t

0
p(s) dy(s)

and

Rt(y) =
∫ t

0
q(s) dσ (y, s).

Then Ht(y) represents the cumulative holding cost for production strategy y through
time t . Similarly for the cumulative production cost Pt(y) and the cumulative revenue
Rt(y). Note that for y ∈ X, Rt is independent of y, i.e., it is constant on X. The reason
for taking the λ-th power of θ in the definition of Ht(y) will become clear shortly.

Also define the cumulative cost function K :Y×R
+ → R

+ by K = H+P , so that
the cumulative net cost function C :Y×R

+ → R
+ is given by C = K−R = H+P−R.

Then Kt(y), Rt(y) and Ct(y) are as in example 2.12. We leave it to the interested reader
to verify that, for each y ∈ Y , the functions t → Kt(y) and t → Rt(y) are non-
negative, non-decreasing and uniformly bounded by an exponential function, as required
in example 2.12. Furthermore, for each t � 0, the functions y → Kt(y) and y → Rt(y),
and hence, y → Ct(y), are continuous in y. Thus, our model satisfies the hypotheses of
examples 2.5, 2.7 and 2.11. Consequently, we obtain a net {ct}t�0 of continuous cost
functions and a continuous cost function c such that

lim
t→∞ ct = c

uniformly on Y , where, for t � 0,

ct (y) =
∫ t

0
e−ρs dCs(y), ∀y ∈ Y,

and

c(y) =
∫ ∞

0
e−ρs dCs(y) = lim

t→∞ ct (y), ∀y ∈ Y.
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Similarly for ht(y), pt(y), rt (y) and h(y), p(y), r(y), so that ct = ht+pt−rt , ∀t � 0,
and c = h + p − r, where c is a strictly convex function because of our choice of λ in
the definition of Ht(y). Furthermore,∣∣c(y)− ct (y)

∣∣ � ρB e(γ−ρ)t/(ρ − γ ) = at , ∀y ∈ Y, ∀t � 0,

so that

lim
t→∞ at = 0.

Thus, (P) is given by minx∈X c(x), and for each t � 0, (Pt ) is given by minx∈Xt ct (x).
Consequently, X∗ and X∗

t are non-empty, closed subsets of Y , i.e., X∗ ∈ K(Y ), X∗
t ∈

K(Y ), ∀t � 0, and

lim sup
t�0

Xt ⊆ X∗.

Note that X∗ is a singleton {x∗}, since c is strictly convex as in example 3.3. Moreover,
the optimal solution values c∗ and c∗

t , ∀t � 0, satisfy

c∗
t � c∗

s + as, ∀0 � s � t,

and c∗ = limt→∞ c∗
t .

From the remark following proposition 3.2, we have that A∗∞ = {x∗} for all ap-
proximating algorithms A∗. Then by proposition 3.2(ii), x∗

t → x∗ as t → ∞, for all
t-horizon optima x∗

t , t = 1, 2, 3, . . . , since N is a linearly ordered subset of R
+. In

particular, by (ii) of theorem 3.4, we conclude that for all times τ < ∞ and positive
numbers δ, there exists a t ∈ N satisfying |x∗

u(s)− x∗(s)| < δ, for all 0 � s � τ , and for
all u > t, u ∈ N. That is, given τ , all sufficiently distant finite horizon optima uniformly
well approximate all components of the unique infinite horizon optimum x∗ over [0, τ ].

Turning to how large the horizon must be to approximate x∗ for a given component
error δ and given interval [0, τ ], we need to assume R = 0 to conclude that the optimal
costs Ct are monotonically increasing in t , so that assumptions 1 and 2 in section 4
are satisfied as well (see example 4.1). We can now invoke the stopping criterion in
section 4 to finitely terminate the forward procedure of solving the problem for horizons
T = 1, 2, 3, . . . . We are guaranteed by theorem 4.7 that the corresponding algorithm
finitely converges.
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