
Infinite Horizon Optimality Criteria for Equipment

Replacement under Technological Change∗

Irwin E. Schochetman
Mathematics and Statistics

Oakland University
Rochester, Michigan 48309

and

Robert L. Smith
Industrial and Operations Engineering

University of Michigan
Ann Arbor, Michigan 48109

April 29, 2005

Abstract

We consider the problem of optimally acquiring and retiring assets that are undergoing techno-
logical change over an unbounded horizon. The allowance for technological change prevents one
from adopting the classic repeated-plant assumption that future replacements will be identical
in costs to current asset contenders, thus confronting one with a non-stationary infinite horizon
problem to solve. In this paper, we explore several variants of optimality criteria in this case
where total costs diverge over the infinite horizon. In particular, we prove that under a mild
condition, efficient solutions (i.e. replacement schedules that are least-cost to every replacement
decision epoch) exist and are also average-cost optimal. Thus, the short-term optimality char-
acteristics of efficient solutions are accompanied by the long-term prospect of being average-cost
optimal as well. Moreover, in the case where discounted future per-period acquisition and main-
tenance costs go to zero, while total discounted costs diverge to infinity, we show that efficient
solutions are overtaking optimal and, in particular, an overtaking optimal solution exists.
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1 Introduction and Background

We consider the problem of optimally acquiring and retiring equipment over an infinite horizon in
the presence of technological change ([2,3, 6]). This equipment replacement problem, in the presence
of assets that can improve or degrade over time, is a challenging problem in several respects.

∗This paper was supported in part by the National Science Foundation under Grants DMI-0322114 and DMI-
9713723.
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One challenge is that the problem is, in principle, defined by a potentially infinite amount of data
describing the time-varying character of the anticipated technological changes that can unfold. An-
other is that a replacement schedule that cannot be expected to exhibit any recurring patterns,
also requires a potentially infinite amount of information to define. Both of these dilemmas are
addressed by a planning horizon approach that attempts to recursively define an optimal replace-
ment schedule by solving a sequence of finite horizon truncations of the problem in a rolling horizon
fashion (see for example [3]).
In this paper, we explore the challenge of formulating a notion of infinite horizon optimality in the
case where total costs diverge. In this case of non-stationary costs where one must seek in general
non-stationary strategies, an simply average cost optimal strategy can perform arbitrarily poorly
in the short run. In this paper, we establish conditions for the existence of replacement strategies
which are short-run optimal, in that they are total cost minimizing to each of their replacement
epochs, as well as long-run optimal as measured, for example, by average costs. The key property
we establish for equipment replacement problems is a bounded time reachability property among
the states of a dynamic programming formulation of the problem. In the case of discounted costs
where the rate of interest is insufficiently strong to render total costs finite, but is sufficient to drive
per-period costs to zero, we prove that efficient solutions (which always exist) are also overtaking
optimal, i.e. any efficient solution is eventually of lower cost than any competing replacement
strategy. Algorithms for computing efficient solutions are provided in [10].
We begin in section 2 with the mathematical model of the equipment replacement problem. In
section 3, we discuss several notions of state reachability, and establish conditions on our problem
data under which these reachability properties hold. Finally, in section 4, we establish conditions for
the existence of optimal replacement strategies which are strongly, weakly overtaking, overtaking,
efficient and average optimal.

2 The Mathematical Model

Suppose that we have a single piece of equipment in place at the beginning of period 1. At the
beginning of each period j (end of period j−1), we have the option of keeping the equipment in place
or replacing it by (a new piece of) one of mj alternative equipment types, ∀j = 1, 2, . . .. We denote
this set of possible decisions available at the beginning of period j by Yj = {0, 1, 2, . . . ,mj}, ∀j =
1, 2, . . . , where 0 denotes the decision to retain the current piece of equipment, and 1 ≤ k ≤ mj

denotes the decision to replace the current piece of equipment by one of technology type k. Hence,
action spaces are finite. Note that a piece of equipment of type i in period j may not be the same
type as a piece of equipment of type i in period k 6= j. For convenience, we assume that there exists
an upper bound on the number of different technologies, i.e., m ≡ supj mj < ∞, so that m ≥ 1. It
will also be convenient to let Y0 = {1} and m0 = 1, corresponding to the equipment type in place
at the beginning of period 1. The set Y of all infinite replacement schedules (feasible or not) is the
product of the Yj , i.e., Y =

∏∞
j=1 Yj . If y ∈ Y , then yj represents the type of equipment in place at

the start of period j, or the type of equipment installed at the start of period j. This is a compact
topological space which is metrizable.
Associated with each equipment type k acquired in period j is its physical life lj(k), which represents
its maximum useful economic life, so that for each j = 0, 1, 2, . . ., we have a function

lj : Yj\{0} → N, where Yj\{0} = {1, . . . ,mj}.

In particular, l0(1) is the maximum life of the initial piece of equipment. We assume that

sup
1≤j<∞

max
1≤k≤mj

lj(k) < ∞,
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i.e., any type of equipment in any period has a maximum useful life.
For each j = 1, 2, . . ., define the replacement function rj : Y → {0, 1, . . . , j} by

rj(y) =

{
max{i ≤ j : yi > 0}, if there exists 1 ≤ i ≤ j for which yi > 0,

0, if yi = 0, ∀i = 1, . . . , j,

for each y ∈ Y , so that rj(y) depends only on y1, . . . , yj . Thus, following strategy y, when rj(y)
is positive, it represents the period (at or before period j) at the start of which we last replaced
equipment. If it is zero, the equipment in place in period j is the original equipment we started
with at the beginning of the problem.
We turn next to describing the feasible replacement schedules X, i.e., those replacement schedules in
Y which can be implemented. Fix a replacement schedule y ∈ Y . Note that `rj(y)(yrj(y)) represents
the the maximum life, following strategy y, of the equipment type. Then y is feasible if, in every
period j, the age j − rj(y) of the current piece of equipment does not exceed the maximum life
`rj(y)(yrj(y)) of that piece of equipment. Thus, we have:

Lemma 1 The (infinite horizon) feasible region X is given by

X = {y ∈ Y : j − rj(y) ≤ `rj(y)(yrj(y)), ∀j = 1, 2, . . .}.

For each N = 1, 2, . . . , the finite horizon feasible region XN is determined analogously, ∀j =
1, . . . , N . Thus, XN+1 ⊆ XN and X = ∩∞N XN . In particular, X 6= ∅.

Proof Note that X 6= ∅ since (1, 1, . . .) ∈ X. QED

We next introduce the state spaces. At time 0, the age of the original piece of equipment is (for
convenience and without loss of generality) defined to be 1. Thus, the residual life of the original
piece of equipment at time 0 is l0(1)− 1. In period N , the state s = (k, h) will correspond to being
at the beginning of period N with a piece of equipment of type k that was acquired h periods ago,
so that, in particular, s0 = (1, 1). Thus, for each N = 1, 2, . . ., define

SN = {(k, h) ∈ N× N : 1 ≤ h ≤ `N−h+1(k), 1 ≤ k ≤ mN−h+1}.

Hence, state spaces are also finite. For convenience, let S0 = {s0} = {(1, 1)}. Note that `N−h+1(k)
denotes the physical life of a type k piece of equipment acquired in period N − h + 1. If y ∈ XN ,
then

sN (y) = (yrN (y), N − rN (y) + 1), ∀N = 1, 2, . . . .

Necessarily, if N = 1, 2, . . . and s = (k, h) ∈ SN , then

XN (k, h) = {y ∈ XN : sN (y) = (k, h)},

i.e.,
XN (k, h) = {y ∈ XN : rN (y) = N − h + 1, yN−h+1 = k}.

Fix j ≥ 1 and sj−1 ∈ Sj−1. Then sj−1 = (k, h), where 1 ≤ h ≤ j, 1 ≤ k ≤ mj−h and h ≤ `j−h(k).
Then define Yj(sj−1) = Yj(k, h) as follows:

Yj(k, h) =

{
Yj , if h < lj−1(k),
Yj\{0}, if h ≥ lj−1(k).
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Lemma 2 Let j ≥ 1, η ∈ Yj and (k, h) ∈ N×N. Then ((k, h), η) ∈ Fj (as in section 2) if and only
if 1 ≤ h ≤ j, 1 ≤ k ≤ mj−h, h ≤ lj−h(k), and{

0 ≤ η ≤ mj , if h < lj−1(k),
1 ≤ η ≤ mj , if h ≥ lj−1(k).

Proof Omitted. QED

Now fix j ≥ 1. Define the state transition function fj : Fj → Sj as follows:

fj((k, h), η) =

{
(k, h + 1), if η = 0,

(η, 1), if η 6= 0,

for each ((k, h), η) ∈ Fj .
The cost of acquiring and operating a new piece of equipment in period j involves a) retiring the
current piece of equipment, b) receiving a salvage value, c) acquiring the replacement equipment
at a cost-to-purchase, and d) operating that equipment over the periods it is kept. In particular,
for j = 1, 2, . . ., let Ij = {0, 1, . . . , j} for convenience, and assume we are given the following data:

• pj(k) = the purchase price at the beginning of period j of one unit of a piece of equipment of
type k, ∀k = 1, 2, . . . ,mj , so that pj : Yj\{0} → R, with

‖pj‖ = max{pj(k) : k = 1, 2, . . . ,mj}, ∀j = 1, 2, . . . ;

• ωj(k, h) =



the j-th period cost of operating a piece of equipment of type k which was
acquired h periods ago, ∀k = 1, . . . ,mj−h, and ∀h = 0, . . . , j − 1;

the j-th period cost of operating the original piece of equipment,
for k = 1 and h = j,

so that ωj : Yj × Ij → R, with

‖ωj‖ = max{ωj(k, h) : h = 0, . . . , j; k = 1, . . . ,mj}, ∀j = 1, 2, . . . ;

and

• vj(k, h) =



the salvage value at the beginning of period j of a piece of equipment of type k

which was acquired h periods ago, ∀h = 0, . . . , j − 1, ∀k = 1, . . . ,mj−h;

the salvage value at the beginning of period j of the original piece of equipment,
for k = 1 and h = j,

so that vj : Yj × Ij → R, with

‖vj‖ = max{vj(k, h) : h = 0, . . . , j; k = 1, . . . ,mj}, ∀j = 1, 2, . . . ,

and vj ≤ pj , for all j, i.e., at any time, the salvage value does not exceed the purchase price. Note
that purchase prices, operating costs and salvage values may increase over time.
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We turn now to defining the cost functions cj . Fix j = 1, 2, . . .. For fixed y ∈ Xj , with sj−1(y) =
(k, h), let

cj(sj−1(y), yj) =

{
pj(yj) + ωj(yj , 0)− vj(sj−1(y)), if yj > 0,

ωj(sj−1(y) + (0, 1)), if yj = 0,

i.e.,

cj((k, h), yj) =

{
pj(yj) + ωj(yj , 0)− vj(k, h), if yj > 0,

ωj(k, h + 1), if yj = 0.

For each x ∈ X and discount factor α, define the N -horizon horizon total cost CN (x|α) by

CN (x|α) =
N∑

j=1

αj−1cj(sj−1(x), xj)

and the infinite horizon total cost C(x|α) by

C(x|α) =
∞∑

j=1

αj−1cj(sj−1(x), xj) = lim
N→∞

CN (x|α) = sup
N

CN (x|α),

so that 0 ≤ C(x|α) ≤ ∞, in general. Thus, the function C(�|α) : X → [0,∞] is both the pointwise
limit and the supremum of the continuous functions CN (�|α). Hence, C(�|α) is lower semi-continuous
on X, for each α. We will write C(x) for C(x|1). Thus,

0 ≤ C(x|α) ≤ C(x) ≤ ∞, ∀0 < α ≤ 1, ∀x ∈ X.

Consequently, for given x ∈ X, if C(x) < ∞, then C(x|α) < ∞, for each α. However, for
0 < α < 1, if C(x) = ∞, it’s posssible that C(x|α) < ∞. Our total cost optimization problem is
then formulated as follows:

C∗(α) = inf
x∈X

C(x|α),

so that, in general, 0 ≤ C∗(α) ≤ ∞, and C∗(α) ≤ C∗(1), ∀0 < α ≤ 1. Note that C∗(α) < ∞
if and only if there exists at least one x ∈ X for which C(x|α) < ∞. If C∗(α) < ∞, since X is
compact and C(�|α) is lower semi-continuous, it follows that C∗(α) is attained. If C∗(α) = ∞, then
C(x|α) = ∞, ∀x ∈ X.
As is customary, we define the infinite horizon average cost (per-period) of x ∈ X to be

A(x|α) = lim sup
N

AN (x|α), ∀0 < α ≤ 1,

where AN (x|α) = CN (x|α)/N, ∀N = 1, 2, . . . . Our average cost optimization problem is then:

A∗(α) = inf
x∈X

A(x|α).

As before, A∗(α) < ∞ if and only if there exists x ∈ X such that A(x|α) < ∞, and A∗(α) = ∞
if and only if A(x|α) = ∞, ∀x ∈ X. In general, A∗(α) need not be attained. In particular,
Xa(α) = ∅ if A∗(α) = ∞, i.e., A(x|α) = ∞, ∀x ∈ X, or if A∗(α) < ∞ and is not attained.
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3 Optimal Replacement Strategies and Reachability Conditions

In this section, we recall several well-known notions of optimal replacement schedule for our in-
finite horizon equipment problem. These include efficient and average optima and, to a lesser
extent, strong, overtaking and weakly overtaking optima. We also consider certain additional
state-reachability conditions for our problem which will prove to be useful for comparing our opti-
mality criteria in the case C∗(α) = ∞. We refer the reader to [1, 4, 5, 7-9, 12-14] for information
regarding these criteria, related inclusions and reachability conditions.

Let Xs(α) denote the set of all strongly optimal replacement strategies, i.e.,

Xs(α) = {x ∈ X : C∗(α) = C(x|α) < ∞, C(x|α) ≤ C(y|α), ∀y ∈ X}.

If C∗(α) < ∞, then Xs(α) 6= ∅. It’s possible that C∗(α) = ∞, equivalently Xs(α) = ∅. For our
purposes here, this is the case of interest. Let Xo(α) denote the set of all overtaking replacement
strategies, i.e.,

Xo(α) = {x ∈ X : lim inf
N

[CN (y|α)− CN (x|α)] ≥ 0, ∀y ∈ X}

and Xw(α) denote the set of all weakly overtaking replacement strategies, i.e.,

Xw(α) = {x ∈ X : lim sup
N

[CN (y|α)− CN (x|α)] ≥ 0, ∀y ∈ X}.

Of course, Xo(α) ⊆ Xw(α). Let Xe(α) denote the set of all efficient replacement strategies, i.e.,

Xe(α) = {x ∈ X : CN (x|α) ≤ CN (y|α), ∀y ∈ X such that sN (x) = sN (y)}.

Finally, let Xe(α) denote the set of all average optimal replacement strategies, i.e.,

Xa(α) = {x ∈ X : A∗(α) = A(x|α) < ∞, A(x|α) ≤ A(y|α), ∀y ∈ X}.

In particular, Xa(α) = ∅ if A∗(x|α) = ∞, ∀x ∈ x, or if A∗(α) < ∞ and is not attained.
It is known [13], that, in general,

∅ ⊆ Xs(α) ⊆ Xo(α) ⊆ Xw(α) ⊆ Xa(α).

If, in addition, α is such that A∗(α) < ∞, then

∅ ⊆ Xs(α) ⊆ Xo(α) ⊆

{
Xw(α) ⊆ Xe(α),
Xa(α).

Remarks. Observe that if C∗(α) < ∞, then

∅ 6= Xs(α) = Xo(α) = Xw(α) ⊆

{
Xe(α),
Xa(α),

so that strongly optimal strategies exist and have all the other properties. However, if C∗(α) = ∞,
then Xs(α) = ∅, and the remaining optimality criteria become important, particularly efficiency,
since such optima exist in our model. Needless to say, the strong emphasis here is on the case
C∗(α) = ∞.
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We next turn to the state-reachability conditions. These conditions are controllability notions. A
very strong version of such a notion in the literature is complete reachability, which requires that
the system be able to transition from any state in any period to any state in the very next period.
Another strong controllability notion requires that transition from any state at any time to any
future state be accomplished by a feasible stationary strategy. Our state-reachability conditions
are considerably weaker than these.

Recall that our equipment replacement problem has the Bounded Time Reachability (BTR)
property if there exists a positive integer R such that for each 1 ≤ K < ∞ and each x, y ∈ X,
there exists K ≤ L ≤ K + R and z ∈ XL (depending on K, x, y) for which sK(z) = sK(y) and
sL(z) = sL(x). Note that property (BTR) is independent of the cost structure and the discount
factor. Consequently, we introduce two other notions of state-reachability which do depend on these
data. Our problem has the Total Cost Reachability (TCR|||ααα) if, for all x, y ∈ X, 0 < α ≤ 1
and ε > 0, there exists a positive integer M (depending on ε), such that for all N ≥ M , there
exists 0 ≤ K ≤ N and z ∈ X (depending on N) such that sK(z) = sK(y), sN (z) = sN (x) and
CN (z|α)−CK(z|α) < ε. Thus, given ε > 0, for sufficiently large N , there exists an earlier period K
and a strategy z which steers state sK(y) at time K to state sN (x) at time N with cost less than ε.
Our problem has the Average Cost Reachability (ACR|||ααα) if for all x, y ∈ X and ε > 0, there
exists a positive integer M such that for all N ≥ M , there exists 0 ≤ K ≤ N and z ∈ X such that
sK(z) = sK(y), sN (z) = sN (x) and CN (z|α) − CK(z|α) < Nε. If, in addition, A∗(α) < ∞, then
efficient implies average optimal, i.e., [13]

Xs(α) ⊆ Xo(α) ⊆ Xw(α) ⊆ Xe(α) ⊆ Xa(α).

Note that (TCR|α) implies (ACR|α), ∀0 < α ≤ 1. The converse is false, in general. For fixed α,
if property (TCR|α) is satisfied, then every efficient strategy is overtaking optimal, i.e.,

Xs(α) ⊆ Xo(α) = Xw(α) = Xe(α).

If, in addition, A∗(α) < ∞, then [13]

Xs(α) ⊆ Xo(α) = Xw(α) = Xe(α) ⊆ Xa(α).

4 Reachability Properties and Optimality

Next, we establish sufficient conditions for the previous reachability conditions to hold in our equip-
ment replacement problem. As consequences, we obtain additional inclusions for our optimality
criteria. The following is our first main result.

Theorem 1 We have the following reachability results.
(i) For the previous problem data, property (BTR) holds without any additional assumptions.

(ii) If α is such that

lim
j→∞

αj−1‖pj‖
j

= lim
j→∞

αj−1‖wj‖
j

= lim
j→∞

αj−1‖vj‖
j

= 0,

then property (ACR|α) holds. In particular, if

lim
j→∞

‖pj‖
j

= lim
j→∞

‖wj‖
j

= lim
j→∞

‖vj‖
j

= 0,
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then property (ACR|α) holds for all 0 < α ≤ 1.

(iii) If α is such that

lim
j→∞

αj−1‖pj‖ = lim
j→∞

αj−1‖wj‖ = lim
j→∞

αj−1‖vj‖ = 0,

then property (TCR|α) holds.

Proof (i) Let R be a positive integer such that

R ≥ sup
1≤j<∞

max
1≤k≤mj

`j(k)

(which we have assumed to be finite). Let 1 ≤ K < ∞ and x, y ∈ X. Denote sK(y) = (k, h) and
sN (x) = (uN , tN ), ∀N = 1, 2, . . . . Let L = K +R. To choose z ∈ XL, observe that 1 ≤ tK+R ≤ R,
so that

K + R− tK+R + 1 ≥ K + 1,

where the quantity on the left is the time at which the piece of type uK+R equipment (in place in
period K + R) was installed. Define z ∈ Y as follows:

zj =



yj , j = 1, . . . ,K,

1, j = K + 1, . . . ,K + R− tK+R,

uK+R, j = K + R− tK+R + 1,

0, j = K + R− tK+R + 2, . . . ,K + R,

arb., j = K + R + 1, . . . ,∞.

Then z ∈ XL because we have chosen a piece of equipment of the type available and its physical
life has not been exceeded. Moreover, it is clear that sK(z) = (k, h) = sK(y), and

sL(z) = (uK+R, tK+R) = sL(x) = sK+R(x).

To complete the proof of part (i), see [12].
For part (ii), observe that

‖cj‖ ≤ ‖pj‖+ ‖wj‖+ ‖vj‖, ∀j ≥ 1.

By hypothesis,

lim
j→∞

αj−1‖cj‖
j

= 0.

Thus, given x, y ∈ X and ε > 0, let J be sufficiently large such that

αj−1‖cj‖
j

< ε/R, ∀j ≥ J.

Let M = J + R and N ≥ M . Set K = N − R ≥ J . Since property (BTR) holds (part (i)), there
exists L such that

N −R = K ≤ L ≤ K + R = N,

and w ∈ XL such that sK(w) = sK(y) and sL(w) = sL(x). Let z = (w |L x) so that sK(z) =
sK(w) = sK(y) and sN (z) = sN (x). Also,

CN (z|α)− CK(z|α) =
∑N

j=K+1 αj−1cj(sj−1(z), zj)
≤

∑N
j=K+1 αj−1‖cj‖

≤ ε/R
∑N

j=K+1 j

≤ N(N −K)ε/R
= εN.
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Thus, property (ACR|α) holds. The proof of part (iii) is similar and is left to the interested reader.
QED
It’s worth noting that, for each 0 < α ≤ 1, it can happen that the hyptheses of Theorem 4.1 hold,
together with the property that C∗(α) = ∞. (For example, if α = 1, suppose ‖pj‖ = B/3j, ‖wj‖ =
B/3j, and ‖vj‖ = B/3j). The following is our second main result.

Theorem 2 We have the following additional optima inclusions for our equipment replacement
problem.

(i) Efficient optimal replacement strategies exist, i.e., Xe(α) 6= ∅.

(ii) If A∗(α) < ∞ and the functions pj, wj, vj satisfy part (ii) of Theorem 4.1, then

Xs(α) ⊆ Xo(α) ⊆ Xw(α) ⊆ Xe(α) ⊆ Xa(α),

and, in particular, there exist efficient optima which are also average optimal.

(iii) If A∗(α) < ∞ and the functions pj, wj, vj satisfy part (iii) of Theorem 4.1, then

Xs(α) ⊆ Xo(α) = Xw(α) = Xe(α) ⊆ Xa(α),

and, in particular, there exist efficient optima which are also overtaking, weakly overtaking and
average optimal.

Proof This follows from Theorem 4.1, reference [12] and the previous discussion. QED

Theorem 4.2 assures us that in the case where discounted future per-period acquisition and mainte-
nance costs go to zero (a condition one would normally expect) while total discounted costs diverge
to infinity (so that the discounted cost criterion is completely underselective), an overtaking opti-
mal solution exists and is in fact efficient. This is a very strong notion of optimality and moreover
since it is an efficient solution as well, we can find it by a forward dynamic programming procedure
developed in [12].
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