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Abstract

We consider a Hilbert space, an orthogonal projection onto a closed subspace and a sequence of
downwardly directed affine spaces. We give sufficient conditions for the projection of the intersection
of the affine spaces into the closed subspace to be equal to the intersection of their projections. Under
a closure assumption, one such (necessary and) sufficient condition is that summation and intersection
commute between the orthogonal complement of the closed subspace, and the subspaces corresponding
to the affine spaces. Another sufficient condition is that the cosines of the angles between the orthogonal
complement of the closed subspace, and the subspaces corresponding to the affine spaces, be bounded
away from one. Our results are then applied to a general infinite horizon, positive semi-definite, linear
quadratic, mathematical programming problem. Specifically, under suitable conditions, we show that
optimal solutions exist and, modulo those feasible solutions with zero objective value, they are limits of
optimal solutions to finite dimensional truncations of the original problem.

∗This author was supported in part by the National Science Foundation under Grant DMI-0322114.
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1 Introduction and Problem Formulation

Suppose H is a real Hilbert space with inner product 〈·, ·〉 and closed subspace K. Let K⊥ = H/K denote
the orthogonal complement of K in H, so that H = K ⊕K⊥, and let PK⊥ : H → K⊥ be the corresponding
orthogonal projection of H onto K⊥. For the sake of notational convenience and simplicity, we will suppress
the reference to K⊥and simply write P in place of PK⊥ , except in statements of results. If F is an affine
space in H of the form F = N + z, for N a closed subspace of H and z ∈ F , then P (F ) is convex, and it is
closed if and only if P (N) is.

We next define the angle θ(K, N) between the closed subspaces K and N , and its cosine c(K, N) [3].
Let

S(K, N) = {(x, y) : x ∈ K ∩ (K ∩N)⊥, y ∈ N ∩ (K ∩N)⊥, ‖x‖ ≤ 1, ‖y‖ ≤ 1},

so that S(K, N) = S(N,K). Let

c(K, N) = sup{|〈x, y〉| : (x, y) ∈ S(K, N)},

so that 0 ≤ c(K, N) = c(N,K) ≤ 1. Consequently, θ(K, N) is the unique angle in [0, π/2] such that
cos(θ(K, N)) = c(K, N). If K ⊆ N , then c(K, N) = 0. If N ∩K = {0}, then

(K ∩N)⊥ = H, N = N ∩ (K ∩N)⊥, K = K ∩ (N ∩K)⊥

and
S(K, N) = {(x, y) : x ∈ K, y ∈ N, ‖x‖ ≤ 1, ‖y‖ ≤ 1}.

If M is a closed subspace of H such that N ⊆ M and K ∩ M = {0}, then S(K, N) ⊆ S(K, M) and
c(K, N) ≤ c(K, M). Moreover, as we shall see in Theorem 1.1 below, if K +M is closed, then c(K, M) < 1,
so that c(K, N) < 1. If K⊥ and N⊥ are hyperplanes through the origin, then c(K, N) is the cosine of the
conventional angle between the one-dimensional subspaces K and N . If K or N is finite dimensional, then
c(K, N) < 1.

In [10], we were interested in finding conditions for P (F ) to be norm closed. Here, we are also interested
in finding conditions for P (F ) to be weakly closed and for c(K, N) to be strictly less than 1. In Theorem 4.1
of [10], we established the equivalence of (i) and (ii) in the following result. (See also Theorem 9.35 of [3].)

Theorem 1.1 The following are equivalent:

(i) PK⊥(F ) is closed in H;

(ii) K + N is closed in H;

(iii) PK⊥(F ) is weakly closed in H;

(iv) K + N is weakly closed in H;

(v) c(K, N) < 1.

Proof The proofs of the equivalence of (i) through (iv) follows immediately from the fact that, for convex
subsets of H, weak closure and norm closure are equivalent [4]. The remaining equivalence follows from
Theorem 9.35 of [3]. QED

Here, we further assume that {Fj}∞j=1 is a downwardly nested sequence of affine subspaces, i.e., Fj =
Nj + zj , where Nj is a closed subspace of H, zj ∈ Fj and Fj+1 ⊆ Fj , for each j. Of course, each P (Fj) is
convex, and closed if and only if K + Nj is closed. Let

N = ∩∞j=1Nj , F = ∩∞j=1Fj ,

and suppose F is non-empty.
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• Assume the zj are norm-bounded, i.e., ‖zj‖ ≤ b, ∀j, for some b > 0.

If each P (Fj) is closed, then it contains a unique minimum norm element ξj . Moreover, ∩∞j=1P (Fj)
is closed and convex, and thus also contains a unique minimum norm element ξ†. It follows from [11] that
ξj → ξ†, as j → ∞. Furthermore, if P (F ) is closed, then it also contains a unique minimum norm element
ξ∗. It is unclear if ξ† = ξ∗; if true, then ξj → ξ∗, as j →∞, which is what we want. This will be the case if,
for example,

P (∩∞j=1Fj) = ∩∞j=1P (Fj), i.e., P (F ) = ∩∞j=1P (Fj).

We wish to find sufficient conditions for this to be the case. Since the forward inclusion is automatically true,
the problem reduces to finding conditions for the reverse inclusion to hold. Example 2.6 below shows that
the reverse inclusion does not hold in general. In view of Theorem 1.1, it is also tempting to find sufficient
conditions for

K + N = K + (∩∞j=1Nj) = ∩∞j=1(K + Nj),

i.e., for intersection and summation to commute. Once again, since the forward inclusion is automatically
true, the problem reduces to finding conditions for the reverse inclusion to hold. Example 2.6 below also
shows that this reverse inclusion does not hold in general.

In section 2, we present the first of our main results, namely Theorem 2.4. We have that

P (F ) = ∩∞j=1P (Fj), if K + N = ∩∞j=1(K + Nj),

and each K + Nj is weakly closed in H. Conversely, if P (F ) = ∩∞j=1P (Fj), and each P (Fj) is weakly closed,
then K + N = ∩∞j=1(K + Nj). Thus, in this event, we have ξj → ξ∗ = ξ†, as desired.

Also in section 2, we establish our second main result (Theorem 2.7). We have

P (F ) = ∩∞j=1P (Fj), if sup
j

c(K, Nj) < 1.

Thus, in this event also, we have that ξj → ξ∗ = ξ†, as desired. (It is not clear whether the converse is true.)

We then establish a variant (Theorem 2.14) of the previous result in terms of (postulated) finite
dimensional subspaces Kj and Mj of K and Nj , respectively, for use in section 3. Recall that the cosines of
the angles between finite dimensional subspaces are automatically less than 1.

At the end of section 2, we apply the previous results in the context of ascending closed subspaces of
H - for example, increasing finite dimensional subspaces whose union is dense in the separable Hilbert space
H.

In section 3, we give an application of our main results to an infinite dimensional, positive semi-
definite, linear-quadratic programming problem (as in [8, 9]). Specifically, under appropriate conditions, we
show (Theorem 3.2) that optimal solutions exist. We also characterize them as limits, modulo solutions of
zero objective value, of optimal solutions to finite dimensional truncations of the original problem.

2 Main Results

In this section, we first give sufficient conditions for P (F ) = ∩∞j=1P (Fj). Before doing so, we establish some
useful preliminary results.

Lemma 2.1 There exists a subsequence of {zj}∞j=1 which converges weakly to some z ∈ F . Moreover, the
set F is affine, and F = N + z.

Proof Since {zj}∞j=1 is bounded, with zj ∈ Fj , ∀j, by the Hilbert-Banach Theorem, there exists z ∈ H
which we may assume (passing to a subsequence, if necessary) is the weak limit of the zj . Fix any integer k.
Then zj ∈ Fk, for all j ≥ k. It follows that z ∈ Fk. Since k is arbitrary, z ∈ ∩∞j=1Fk = F .
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For the second part, if w ∈ F , it follows that w ∈ Fj = Nj + zj , i.e., w = mj + zj , for mj ∈ Nj , ∀j.
Since z ∈ F , it follows that z ∈ Fj = N + zj , ∀j. Consequently, z = nj + zj , for nj ∈ Nj . ∀j. Then

z = nj + w −mj = nj −mj + w,

so that z − w ∈ Nj , ∀j. Hence, z − w ∈ N , i.e., w ∈ z −N = N + z.

Conversely, let w ∈ N + z. Then x− w ∈ Nj , i.e., x− zj −mj = nj , so that

x = nj + mj + zj ∈ Fj = Nj + zj , ∀j.

Thus, x ∈ F , which completes the proof. QED

Lemma 2.2 The sequence {Nj}∞j=1 is also nested downward, i.e., Nj+1 ⊆ Nj , ∀j.

Proof First observe that since zj+1 ∈ Fj+1 ⊆ Fj = Nj + zj , it follows that zj − zj+1 ∈ Nj , ∀j. Now let
nj+1 ∈ Nj+1 . Then

nj+1 + zj+1 ∈ Fj+1 ⊆ Fj = Nj + zj ,

so that nj+1 + zj+1 = nj + zj , i.e.,

nj+1 = nj + zj − zj+1 ∈ nj + Nj = Nj , ∀j.

QED

Remark 2.3 Observe that if {Fjk
}∞k=1 is any subsequence of {Fj}∞j=1, then

F = ∩∞k=1Fjk
= ∩∞j=1Fj ,

P (F ) = P (∩∞k=1Fjk
) = P (∩∞j=1Fj),

and
∩∞k=1P (Fjk

) = ∩∞j=1P (Fj).

Analogously, if {Njk
}∞k=1 is any subsequence of {Nj}∞j=1, then, in view of Lemma 2.2,

N = ∩∞k=1Njk
= ∩∞j=1Nj ,

K + N = K + ∩∞k=1Njk
= K + ∩∞j=1Nj ,

and
∩∞k=1(K + Njk

) = ∩∞j=1(K + Nj).

Therefore, for our purposes, it suffices to consider subsequences in what follows . In particular, in view of
Lemma 2.1, we may restrict attention to a subsequence {zjk

}∞k=1 of {zj}∞j=1 which converges weakly to z,
that is, zjk

⇀ z, as k →∞.

We next present our first main result.

Theorem 2.4 Suppose the results of Theorem 1.1 hold eventually for K and the Nj, i.e., there exists m such
that K + Nj is closed for all j ≥ m. Then K + N = ∩∞j=1(K + Nj) if and only if PK⊥(F ) = ∩∞j=1PK⊥(Fj).

Proof =⇒ : By Remark 2.3, we may assume that m = 1. Since F = ∩∞j=1Fj , it suffices to show that
∩∞j=1P (Fj) ⊆ P (F ). Let x ∈ ∩∞j=1P (Fj). Then x ∈ K⊥ and, for each j, x = P (uj), for unique uj ∈ Fj , so
that x− uj = kj ∈ K. Also, for each j, uj = nj + zj , for nj ∈ Nj , so that x = kj + uj = kj + nj + zj , i.e.,
x− zj = kj + nj ∈ K + Nj . By hypothesis, each K + Nj is also weakly closed in H. Since the Nj are nested
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downward, this is also the case for the K + Nj . Moreover, for each j, the sequence {x− zi}i≥j is contained
in K + Ni ⊆ K + Nj and weakly converges to x− z, which belongs to K + Nj , ∀j. Thus,

x− z ∈ ∩∞j=1(K + Nj) = K + N,

by hypothesis. Hence, x− z = k + n, for k ∈ K and n ∈ N , so that

x = k + (n + z) ∈ K + F, i.e., x = P (x) = P (z + n) ∈ P (K + F ) = P (F ),

⇐= : It suffices to show that ∩∞j=1(K +Nj) ⊆ K +N . Let v ∈ ∩∞j=1(K +Nj). Then, for each j, v = kj +nj ,
for some kj ∈ K and nj ∈ Nj . Hence, v + zj = kj + nj + zj , ∀j. But

kj + nj + zj = v + zj ⇀ v + z, as j →∞,

where
kj + nj + zj ∈ K + Nj + zj = K + Fj , ∀j.

Therefore,
P (v + zj) = P (kj + nj + zj) = P (nj + zj) ∈ P (Fj), ∀j.

But P (v + zj) ⇀ P (v + z), as j → ∞, by Lemma 9.14 of [3]. Since the P (Fj) are weakly closed and
descending, we have that P (v + z) ∈ P (Fj), ∀j, i.e., P (v + z) ∈ ∩∞j=1P (Fj) = P (F ), by hypothesis. Thus,
v+z ∈ P−1(P (F )) = F +K, so that there exists k ∈ K such that v+z−k ∈ F , i.e., v+z ∈ F +k = N +z+k.
Hence, v ∈ N + k ⊆ N + K, which completes the proof. QED

The following corollary gives easily verified conditions for the results of Theorem 2.4 to hold. See
Corollary 3.4 for another such condition.

Corollary 2.5 The results of Theorem 2.4 hold under each of the following conditions. Eventually,

(i) K ⊆ Nj.

(ii) there exists m such that Nm ⊆ K.

(iii) the Nj are constant.

Proof By Remark 2.3, we may assume that each condition holds for all j.

(i) By hypothesis, K ⊆ N , so that K + N = N and K + Nj = Nj , i.e., K + Nj is closed, for all j. Thus,
∩∞j=1(K + Nj) = ∩∞j=1Nj = N = K + N . Now apply Theorem 2.4.

(ii) In this case, for m = 1, N ⊆ N1 ⊆ K, so that K + N = K and K + Nj = K, i.e., K + Nj is closed, for
all j. Hence, ∩∞j=1(K + Nj) = K = K + N . Apply Theorem 2.4.

(iii) By hypothesis K + Nj = K + N , which is closed, ∀j. Therefore, ∩∞j=1(K + Nj) = K + N , and the proof
is completed by Theorem 2.4. QED

Before continuing, we give an example which shows that P (∩∞j=1Fj) 6= ∩∞j=1P (Fj) and K + N 6=
∩∞j=1(K + Nj), in general.

Example 2.6 As in Example 2.2 of [10], let H = ⊕∞j=1R2,

K = {[xi1 xi2]∞i=1 ∈ H : xi2 = 0, ∀i},

and
N = {[xi1 xi2]∞i=1 ∈ H : xi1 = xi2

√
i2 − 1, ∀i}.

Clearly, K and N are closed subspaces of H with K ∩N = {0} and

K⊥ = {[xi1 xi2]∞i=1 ∈ H : xi1 = 0, ∀i}.
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For each j, let zj = 0 and

Nj = {[xi1 xi2]∞i=1 ∈ H : xi1 = xi2

√
i2 − 1, ∀i = 1, . . . , j},

so that Nj is a closed subspace of H, Fj = Nj , Nj+1 ⊆ Nj and

F = ∩∞j=1Fj = ∩∞j=1Nj = N.

It is not difficult to see that each P (Fj) is closed, so that ∩∞j=1P (Fj) is closed. However, it was shown in [10]
that P (F ) is not closed, so they can’t possibly be equal. More directly, we exhibit an element of ∩∞j=1P (Fj)
which does not belong to P (F ). Let ξ ∈ K⊥ be defined by

ξi = [0 1/i], for i = 1, 2, . . . .

Then ξ ∈ P (Nj), since ξ = P (xj), for xj ∈ Nj given by

xji =

{
[
√

i2 − 1/i 1/i], for i = 1, 2, . . . , j,

[0 1/i], for i = j + 1, j + 2, . . . .

Thus, ξ ∈ ∩∞j=1P (Fj). On the other hand, if ξ ∈ P (N), then there exists x ∈ N such that P (x) = ξ.
Necessarily,

xi = [
√

i2 − 1/i 1/i], for i = 1, 2, . . . .

Then

‖x‖2 =
∞∑

i=1

[
i2 − 1

i2
+

1
i2

]
= ∞,

i.e., x /∈ H. Hence, ξ /∈ P (N). It also follows that K + N is strictly contained in ∩∞j=1(K + Nj).

Next we turn to a study of the cosines c(K, Nj) relative to our problem of interest. Recall that the
sequence {zj}∞j=1 weakly converges to z ∈ F .

The following is our second main result.

Theorem 2.7 If the c(K, Nj) are bounded away from 1, i.e., there exists 0 < α < 1 such that c(K, Nj) ≤
α, ∀j, then

P (F ) = ∩∞j=1P (Fj).

Proof Let x ∈ ∩∞j=1P (Fj). Then for each j, there exists uj ∈ Fj such that x = P (uj). Clearly,

Nj = (K ∩Nj)⊕ [(K ∩Nj)⊥ ∩Nj ],

and
Fj = (K ∩Nj)⊕ [(K ∩Nj)⊥ ∩Nj ] + zj , ∀j.

Thus, uj = wj + yj + zj , where wj ∈ K ∩Nj and yj ∈ (K ∩Nj)⊥ ∩Nj , ∀j. Note that 〈wj , yj〉 = 0, for
each j.

Let vj = yj + zj ∈ Nj + zj = Fj , ∀j. Then, since wj ∈ K, P (wj) = 0, and

x = P (uj) = P (wj) + P (yj + zj) = P (vj),

so that ‖P (vj)‖ = ‖P (uj)‖ = ‖x‖, ∀j. Moreover,

‖P (yj)‖ = ‖P (vj − zj)‖ ≤ ‖P (vj)‖+ ‖P (zj)‖ ≤ ‖x‖+ b, ∀j,

i.e., the sequence {P (yj)}∞j=1 is bounded in K⊥.
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Now yj ∈ H = K ⊕K⊥ implies that there exists rj ∈ K for which yj = rj + P (yj), ∀j. But

K = (K ∩Nj)⊕ [(K ∩Nj)⊥ ∩K].

Hence, for each j, there exists sj ∈ K ∩Nj and tj ∈ (K ∩Nj)⊥ ∩K such that rj = sj + tj and 〈sj , yj〉 = 0.
Consider the vectors

yj

‖yj‖
∈ (K ∩Nj)⊥ ∩Nj and

rj

‖tj‖
∈ K.

Then ∣∣∣∣〈 rj

‖tj‖
,

yj

‖yj‖

〉∣∣∣∣ =
∣∣∣∣〈 sj

‖tj‖
+

tj
‖tj‖

,
yj

‖yj‖

〉∣∣∣∣
=

∣∣∣∣〈 sj

‖tj‖
,

yj

‖yj‖

〉
+

〈
tj
‖tj‖

,
yj

‖yj‖

〉∣∣∣∣
=

∣∣∣∣〈 tj
‖tj‖

,
yj

‖yj‖

〉∣∣∣∣
≤ c(K, Nj)
≤ α, ∀j,

since the last absolute value is of an inner product of a pair of unit vectors from S(K, Nj). Consequently,

|〈rj , yj〉| ≤ ‖tj‖ ‖yj‖α ≤ ‖rj‖ ‖yj‖α,

i.e., ∣∣∣∣〈 rj

‖rj‖
,

yj

‖yj‖

〉∣∣∣∣ ≤ α, ∀j.

Now let θj denote the angle between rj and yj in H, where rj ∈ K, yj ∈ Nj , P (yj) ∈ K⊥ and yj =
rj + P (yj) ∈ K ⊕K⊥. Then

| sin(θj)| =
‖P (yj)‖
‖yj‖

,

so that

‖yj‖ =
‖P (yj)‖
| sin(θj)|

,

where

| cos(θj)| =
∣∣∣∣〈 rj

‖rj‖
,

yj

‖yj‖

〉∣∣∣∣ ≤ α, ∀j.

Thus, cos2(θj) ≤ α2, so that 1− cos2(θj) ≥ 1− α2, i.e.,

1
1− cos2(θj)

≤ 1
1− α2

≤ 1√
1− α2

,

so that

‖yj‖ ≤ ‖x‖+ b

| sin(θj)|
=

‖x‖+ b√
1− cos2(θj)

≤ ‖x‖+ b√
1− α2

, ∀j.

Therefore, {yj}∞j=1 is a bounded sequence in H. This is the case also for the sequence {vj}∞j=1 since

‖vj‖ ≤ ‖yj + zj‖ ≤ ‖yj‖+ ‖zj‖ ≤ ‖x‖+ b√
1− α2

+ b, ∀j ≥ j0.

Since {vj}∞j=1 is bounded, with vj ∈ Fj , ∀j, by Lemma 2.1 there exists v ∈ F which is the weak limit of
the vj . We have x = P (vj), ∀j, {vj}∞j=1 converges weakly to v and P is weakly continuous (Theorem 9.14
of [3]). Hence, x is the weak limit of the P (vj), i.e., x = P (v). Thus, P (v) ∈ P (F ). QED
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Corollary 2.8 Suppose the c(K, Nj) are bounded away from 1. Then c(K, N) < 1.

Proof For each j, P (Fj) is closed in H since c(K, Nj) < 1 (Theorem 1.1). Therefore,

P (F ) = ∩∞j=1P (Fj)

is closed in H (Theorem 2.7) and c(K, N) < 1 by Theorem 1.1. QED

The following corollary gives a sufficient condition for the c(K, Nj) to be bounded away from 1.

Corollary 2.9 Suppose that there exists m such that K ∩Nm = {0} and K + Nm is closed, then

c(K, N) ≤ c(K, Nj) ≤ c(K, Nm) < 1, ∀j ≥ m.

Proof By hypothesis,

{0} ⊆ K + N ⊆ K + Nj ⊆ K + Nm = {0}, ∀j ≥ m.

Hence,
S(K, N) ⊆ S(K, Nj) ⊆ S(K, Nm), ∀j ≥ m,

and
c(K, N) ≤ c(K, Nj) ≤ c(K, Nm) < 1, ∀j ≥ m,

by Theorem 1.1.

Remark 2.10 Parts (i) and (ii) of Corollary 2.5 are special cases of Theorem 2.7, since c(K, Nj) = 0, ∀j.
Moreover, c(K, N) = 0, in this case. For part (iii) of Corollary 2.5, if K + N is closed, we have c(K, Nj) =
c(K, N) < 1, ∀j. Obviously, the c(K, Nj) of Example 2.6 are not bounded away from 1.

For the purposes of section 3, it is desirable to have a finite dimensional version of Theorem 2.7. To
this end, in view of the definition of c(K, N), we require some results relating intersection and orthogonal
complement of closed subspaces of H. Accordingly, let T be a closed subspace of H, so that H = T ⊕ T⊥.
Next, let U and W be closed subspaces of T and V a closed subspace of T⊥. Set K = U⊕V and N = W⊕T⊥.
Thus, T = U ⊕ (U⊥ ∩ T ) and T⊥ = V ⊕ (V ⊥ ∩ T⊥). In particular, it T is finite dimensional, then so are U
and W .

Theorem 2.11 We have the following:

(i) K ∩N = (U ∩W )⊕ V .

(ii) (K ∩N)⊥ =
[
(U ∩W )⊥ ∩ T

]
⊕ (V ⊥ ∩ T⊥).

(iii) (K ∩N)⊥ ∩N = [(U ∩W )⊥ ∩W ]⊕ (V ⊥ ∩ T⊥).

(iv) (K ∩N)⊥ ∩K = (U ∩W )⊥ ∩ U .

Proof (i) We have

K ∩N = (U ⊕ V ) ∩ (W ⊕ T⊥) = (U ∩W )⊕ (V ∩ T⊥) = (U ∩W )⊕ V.

(ii) By (i), we have

(K ∩N)⊥ = ((U ∩W )⊕ V )⊥ =
[
(U ∩W )⊥ ∩ T

]
⊕ (V ⊥ ∩ T⊥).
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(iii) By (ii), we have

(K ∩N)⊥ ∩N =
{[

(U ∩W )⊥ ∩ T
]
⊕ (V ⊥ ∩ T⊥)

}
∩ (W ⊕ T⊥)

= [(U ∩W )⊥ ∩W ]⊕ (V ⊥ ∩ T⊥).

(iv) By (ii), we have

(K ∩N)⊥ ∩K =
{[

(U ∩W )⊥ ∩ T
]
⊕ (V ⊥ ∩ T⊥)

]}
∩ (U ⊕ V )

= [(U ∩W )⊥ ∩ U ]⊕ (V ⊥ ∩ V )
= [(U ∩W )⊥ ∩ U ]⊕ {0}
= (U ∩W )⊥ ∩ U.

QED

The following result relates the cosine c(K, N) for K and N with the cosine c(U,W ) of their respective
subspaces U and W .

Theorem 2.12 Let K and N be as in Theorem 2.11. Then c(K, N) = c(U,W ).

Proof Let (x, y) ∈ S(K, N). Then x ∈ K ∩ (K ∩ N)⊥ with ‖x‖ = 1. By part (iv) of Theorem 2.11,
x ∈ (U ∩ W )⊥ ∩ U . On the other hand, y ∈ N ∩ (K ∩ N)⊥ with ‖y‖ = 1. By part (iii) of Theorem 2.11,
y ∈ [(U ∩W )⊥ ∩U ⊕ (V ⊥ ∩ T⊥) with ‖y‖ = 1. Hence, y = w + r, for w ∈ (U ∩W )⊥ and r ∈ V ⊥ ∩ T⊥, and

〈x, y〉 = 〈x, w + r〉 = 〈x, w〉+ 〈x, r〉 = 〈x, w〉,

with ‖w‖ ≤ 1, since r ∈ T⊥ and x ∈ U ⊆ T . If w = 0, then 〈x, y〉 = 0. If w 6= 0, then the corresponding
unit vector w′ belongs to (U ∩W )⊥ ∩W and

c(U,W ) ≥ |〈x,w′〉| ≥ 1
‖w‖

|〈x,w′〉| ≥ |〈x, y〉|, ∀(x, y) ∈ S(K, N).

Consequently, c(K, N) ≤ c(U,W ).

Conversely, let (u, w) ∈ S(U,W ). By Theorem 2.11, it follows that (u, w) ∈ S(K, N). Hence,
c(K, N) ≥ c(U,W ), and the proof is complete. QED

Remark 2.13 The usefulness of the previous result is illustrated by the following. Suppose T is finite
dimensional. In general, K and N are infinite dimensional. Thus, Theorem 2.12 equates c(K, N) with
c(U,W ), where c(U,W ) < 1 automatically, since U and W are finite dimensional.

To make use of the previous results, we assume the following in addition.

• Suppose that:

(i) {Hj}∞j=1 is a sequence of closed subspaces of H such that Hj ⊆ Hj+1 and ∪∞j=1Hj is dense in H;

(ii) {Kj}∞j=1 is a sequence of closed subspaces of K such that Kj ⊆ Kj+1, Kj ⊆ Hj and ∪∞j=1Kj is dense in
K;

(iii) {Nj}∞j=1 is a sequence of closed subspaces of H such that Nj+1 ⊆ Nj and ∩∞j=1Nj = N ;

(iv) z is an element of H with the property that z − zj ∈ Nj , where zj is the projection of z in Hj , so that
‖zj‖ ≤ ‖z‖, ∀j;

(v) Fj is the affine subspace Nj + zj of H, ∀j;

(vi) F is the affine subspace N + z of H.

Note that consequently, the Fj are nested downward with F = ∩∞j=1Fj . The following is our finite dimensional
version of Theorem 2.7.
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Theorem 2.14 Suppose each Nj is of the form Mj ⊕ (Hj)⊥, for Mj a closed subspace of Hj. Suppose also
that (i) each Kj is finite dimensional or finite codimensional or (ii) each Mj is finite dimensional or finite
codimensional. If the c(Kj ,Mj) are bounded away from 1, then P (F ) = ∩∞j=1P (Fj).

Proof By (i) or (ii), Kj + Mj is closed in H, ∀j (Corollary 9.37 of [3]). By Theorem 1.1 applied to Kj and
Mj , we have that c(Kj ,Mj) < 1, ∀j. But c(K, Nj) = c(Kj ,Mj), ∀j, by Theorem 2.12. Consequently, by
hypothesis, the c(K, Nj) are bounded away from 1 and P (F ) = ∩∞j=1P (Fj) by Theorem 2.7. QED

Remark 2.15 Although each 0 ≤ c(Kj ,Mj) < 1, the upper bound 1 might be an accumulation point of
the c(Kj ,Mj), j = 1, 2, . . ..

Before leaving this section, it’s worth recalling that the hypotheses of the previous results need be
satisfied only for subsequences.

3 An Application

In this section, we give the motivation for our main results. Let H and G be (separable) real Hilbert spaces,
with A : H → G a bounded linear operator and Q : H → H a self-adjoint, positive semi-definite, bounded
linear operator. Recall that Q is positive semi-definite if 〈x,Q(x)〉 ≥ 0, ∀x ∈ H. Consider the following
positive semi-definite, linear quadratic programming problem (L) given by

min 〈x,Q(x)〉

subject to
A(x) = b,

x ∈ H,

where b ∈ G. Particular applications include the infinite horizon linear quadratic regulator and tracker
problems in optimal control theory.

Now let K denote the kernel of Q in H, with orthogonal complement K⊥. Consequently, H = K⊕K⊥.
Note that

K = {η ∈ H : Q(η) = 0} = {η ∈ H : 〈η, Q(η)〉 = 0}.

To see this, since Q is positive semi-definite and self-adjoint, it admits a square root operator Q1/2 with the
same properties, so that Q = Q1/2Q1/2 . If η ∈ H is such that 〈η, Q(η)〉 = 0, then

0 = 〈η, Q1/2Q1/2(η)〉 = 〈Q1/2(η), Q1/2(η)〉 = ‖Q1/2(η)‖2,

which implies that η is in the kernel of Q1/2. However, Q1/2(η) = 0 implies that Q(η) = Q1/2Q1/2(η) = 0,
i.e., the kernel of Q1/2 is contained in K. Thus, η ∈ K. The reverse inclusion is obvious.

Since Q is self-adjoint, it follows that K and K⊥ are invariant under Q. Hence, the restriction operator
Q|K⊥ = R maps K⊥ into itself. Note that R is a positive definite, bounded linear operator on K⊥ which
need not be strictly positive definite. It will be if the positive spectrum of Q is bounded away from 0 [9].
Note also that if x = η ⊕ ξ uniquely, for x ∈ H, η ∈ K, ξ ∈ K⊥, then

〈x,Q(x)〉 = 〈η ⊕ ξ,Q(η⊕, ξ)〉 = 〈η, Q(η)〉+ 〈ξ, Q(ξ)〉 = 〈ξ, Q(ξ)〉 = 〈ξ,R(ξ)〉.

Assume that the feasible region F for problem (L), which is the closed affine space

F = {x ∈ H : A(x) = b},
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is non-empty, i.e., b is in the range of A. Then, F = N + z, ∀z ∈ F , where N is the kernel of A in H.
Under our additional assumptions, problem (L) has the more compact form

min
x∈F

〈x, Q(x)〉.

Let F ∗ denote the set of optimal solutions to (L) (possibly empty). (It follows from [1] that F ∗ is affine.)
In the event that F ∗ 6= ∅, our objective is to describe the elements of F ∗, and approximate them by optimal
solutions to finite dimensional truncations of (L) - to the extent possible.

Let P = PK⊥ denote the orthogonal projection of H onto K⊥ as in section 1. Since F ⊆ H, we have
that the image P (F ) of F under P is given by

P (F ) = {ξ ∈ K⊥ : η ⊕ ξ ∈ F, for some η ∈ K}.

It is non-empty and affine in K⊥, since this is the case for F in H. Although F is closed in H, P (F ) need
not be closed in K⊥. It will be if K + N is closed in H (Theorem 1.1).

Consider the problem (P (L)) given by

min
ξ∈P (F )

〈ξ, R(ξ)〉,

where R is positive definite and P (F ) is non-empty and affine. As in [9], solving (P (L)) is equivalent to solving
(L) in the following sense. If ξ ∈ P (F ) is optimal for (P (L)), i.e., ξ ∈ P (F )∗, then there exists η ∈ K (not
necessarily unique) such that x = η⊕ ξ is in F , and is necessarily optimal for (L) since 〈x, Q(x)〉 = 〈ξ,R(ξ)〉.
Conversely, if x ∈ F is optimal for (L), then x = η ⊕ ξ uniquely, for η ∈ K, and ξ ∈ P (F ), where ξ is
necessarily optimal for (P (L)). Consequently,

F ∗ = P−1(P (F )∗) ∩ F.

We next turn to the question of optimal solution existence for (L). By the previous discussion, we
see that this question is linked to the same question for (P (L)). Note that even if K + N , i.e., P (F ), is
closed in K⊥, (P (L)) need not admit an optimal solution - even though R is positive definite. (See [8] for a
counter-example.)

• Assume that P (F ) is closed, i.e., K + N is closed, in H. (Recall Theorem 1.1.)

• Assume R is strictly positive definite, i.e., there exists γ > 0 such that γ‖ξ‖2 ≤ 〈ξ, R(ξ)〉, ∀ξ ∈ K⊥.

Hence, as is well-known in this case, 〈�, R(�)〉 defines a new inner product 〈�,� 〉R on K⊥, with associated
norm ‖�‖R given by ‖ξ‖2R = 〈ξ,R(ξ)〉, ∀ξ ∈ K⊥. Thus, in this case, problem (P (L)) may be reformulated
as

min
ξ∈P (F )

‖ξ‖2R.

The feasible region P (F ) is closed, affine and non-empty. Consequently, an optimal solution to (P (L)) is
simply a best approximation in P (F ) to the zero element of K⊥ relative to ‖�‖R, i.e., a minimum norm
element of P (F ) relative to ‖�‖R. It is well-known that there exists a unique optimal solution ξ∗ to (P (L))
in K⊥, so that P (F )∗ = {ξ∗} and F ∗ = P−1(ξ∗) ∩ F 6= ∅, in this case.

Next, we approximate ξ∗ by optimal solutions to finite dimensional truncations to the original problem
- modulo solutions of zero objective value. Let {Hj}∞j=1 be a sequence of closed subspaces of H such that
each Hj is invariant under Q, Hj+1 ⊇ Hj and ∪∞j=1Hj is dense in H (H is separable). Let Qj denote the
restriction of Q to Hj and Kj the kernel of Qj in Hj . For notational convenience in this discussion, let Lj

denote the relative complement Hj/Kj of Kj in Hj . Then Hj = Kj ⊕Lj , ∀j. Let Dj : H → Hj denote the
orthogonal projection onto Hj . Note that limj→∞Dj(x) = x, ∀x ∈ H. Define Aj = A|Hj . Similarly, let Gj
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be a finite dimensional subspace of G such that Gj+1 ⊇ Gj , ∪∞j=1Gj is dense in G and Aj(Hj) ⊆ Gj , ∀j.
Let Ej : G → Gj denote the orthogonal projection onto Gj and bj = Ej(b). Then Ej ◦ A = Aj ◦Dj . It is
not difficult to see that limj→∞ bj = b in G.

Define
Φj = {x ∈ Hj : A(x) = bj},

which is non-empty affine and closed since Hj is finite dimensional. Note that

F = {x ∈ H : Dj(x) ∈ Φj , ∀j}.

Consider the corresponding programming problem (Λj) given by

min
x∈Φj

〈x,Q(x)〉.

We may consider the positive definite version (P (Λj)) of (Λj) given by

min
ξ∈Sj(Φj)

〈ξ, R(ξ)〉,

where Sj : Hj → Lj is the orthogonal projection. As above, the space Sj(Φj) is not only affine, it is also
closed in Lj (finite-dimensional). Since Q|Lj is automatically strictly positive definite, there exists a unique
optimal solution ξj to (P (Λj)) in Sj(Φj), i.e., Sj(Φj)∗ = {ξj}. As was the case for (L) and (P (L)), solving
(Λj) is equivalent to solving (P (Λj)). In fact, since (P (Λj)) has a unique optimal solution, the (non-empty)
optimal solution set for (Λj) is given by

(Φj)∗ = Φj ∩ S−1
j (Sj(Φj)∗) = Φj ∩ S−1

j (ξj), ∀j.

Next, for each j, consider the following extension (Lj) of (Λj) to a problem in H which approximates
(L). Let (Lj) be the problem given by

min 〈Dj(x), Q(Dj(x))〉

subject to
A(Dj(x)) = bj ,

x ∈ H.

Note that (Lj) is essentially finite-dimensional since the objective and constraint functions depend only on
Hj , and the feasible region consists of those square-summable extensions of the elements of Hj which satisfy
the constraint, i.e., the square-summable extensions of the elements of Φj . Let

Fj = {x ∈ H : A(Dj(x)) = bj}

denote the feasible region for (Lj), Mj the kernel of Aj in Hj , where Aj : Hj → Gj , and Nj = Mj ⊕H⊥
j , so

that Nj is the kernel of Aj ⊕Oj , where Oj : H⊥
j → G⊥

j is the zero operator. Then

Φj = Mj + zj , ∀zj ∈ Φj ,

i.e., Mj is the subspace of Hj corresponding to Φj , and

Fj = Φj ⊕H⊥
j = Mj ⊕H⊥

j + z = Nj + z, ∀z ∈ Fj ,

with corresponding subspace of H equal to Nj . Moreover, Nj+1 ⊆ Nj and Fj+1 ⊆ Fj , for all j. It then
follows that {Fj} is a sequence of closed affine subspaces of H, {Nj} is a sequence of closed subspaces of H,
N = ∩∞j=1Nj and F = ∩∞j=1Fj .

Next, for each j, consider the positive definite version (P (Lj)) of (Lj), namely

min
ξ∈P (Fj)

‖ξ‖2R = min
ξ∈P (Fj)

〈ξ, R(ξ)〉
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where, for K⊥/Lj the relative orthogonal complement of Hj/Kj in K⊥, the set

P (Fj) = Sj(Φj)⊕K⊥/Lj

is closed and affine. Let Tj : K⊥ → Lj be the orthogonal projection.Then

P (Fj)∗ = (Tj)−1(ξj) ∩ P (Fj).

Also, P (Fj+1) ⊆ P (Fj), and
ξ∗ ∈ P (F ) ⊆ ∩∞j=1P (Fj).

As above, solving (Lj) is equivalent to solving (P (Lj)), i.e.,

F ∗
j = P−1(ξj) ∩ Fj .

As we shall see, it is unfortunate we cannot conclude that, in general,

P (F ) = ∩∞j=1P (Fj).

Observe that, for each j, ξj is the unique optimal solution for (P (Lj)), i.e., ξj is the unique minimum
norm element of P (Fj), since ‖ξj‖R ≤ ‖ζ‖R, ∀ζ ∈ P (Fj). The set ∩∞j=1P (Fj) is closed and affine. Thus,
the problem

min
ξ∈∩∞j=1P (Fj)

〈ξ,R(ξ)〉 = min
ξ∈∩∞j=1P (Fj)

‖ξ‖2R,

admits a unique solution ξ†, which is the minimum norm element of ∩∞j=1P (Fj) relative to the norm ‖ � ‖R.
It follows from Semple [11] that ξj → ξ†, as j → ∞. We would like it to be the case that ξj → ξ∗, as well.
Thus, ξ∗ and ξ† are both minimum norm elements relative to ‖�‖R from P (F ) = P (∩∞j=1Fj) and ∩∞j=1P (Fj),
respectively, where P (F ) ⊆ ∩∞j=1P (Fj), so that ‖ξ†‖R ≤ ‖ξ∗‖R, in general. Since ξ∗ and ξ† are possibly
unequal, we next consider the question of when ξ∗ = ξ†. Recall the pertinent results in section 2 for sufficient
conditions under which ξ∗ = ξ† in general.

Lemma 3.1 For each j, K + Nj = (Kj + Mj)⊕H⊥
j . Thus, K + Nj is a closed subspace, i.e., PK⊥(Fj) =

P (Fj) is a closed, affine space. Moreover, K + Nj is weakly closed and PK⊥(Fj) is weakly closed, ∀j.

Proof We have K + Nj = (Kj ⊕K/Kj) + (Mj ⊕H⊥
j ). We leave it to the interested reader to verify that

(Kj ⊕K/Kj) + (Mj ⊕H⊥
j ) = (Kj + Mj)⊕ (K/Kj + H⊥

j ).

Hence, K + Nj = (Kj + Mj) ⊕H⊥
j , so that K + Nj is closed, since Kj + Mj is closed, ∀j (both are finite

dimensional). Now apply Theorem 1.1. QED

Theorem 3.2 Suppose (i) K +∩∞j=1Nj = ∩∞j=1(K +Nj), or (ii) the c(Kj ,Mj) are eventually bounded away
from 1. Then PK⊥(F ) = ∩∞j=1PK⊥(Fj), so that K + N is closed, ξ∗ = ξ†, limj→∞ ξj = ξ∗ and

F ∗ = P−1
K⊥

(ξ∗) ∩ F = P−1
K⊥

(ξ†) ∩ F.

Proof Apply the results of section 2, particularly Theorems 2.4 and 2.7. QED

Remark 3.3 Of course, it need not be that PK⊥(F ) = ∩∞j=1PK⊥(Fj) in order for ξ† = ξ∗, or for

F ∗ = P−1
K⊥

(ξ∗) ∩ F = P−1
K⊥

(ξ†) ∩ F.

The following corollary gives a sufficient condition for the hypotheses of Theorem 3.2 to hold in terms
of the problem data and the finite dimensional subspaces.
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Corollary 3.4 If there exists a subsequence of the c(Kj ,Mj) consisting of finitely many distinct values, then
the hypotheses of Theorem 3.2 hold.

Under the previous assumptions, there exists w in F ∗ such that P (w) = ξ∗. Also, under the hypotheses
of Theorem 3.2, ξj → ξ∗ = ξ†. But the optimal solutions F ∗

j to (Lj) satisfy F ∗
j = P−1(ξj)∩Fj , a non-empty

subset of Fj . Thus, for each j, and for each wj ∈ F ∗
j , we have P (wj) = ξj . If we could choose the wj

so that they converge to w, then we would be able to approximate an optimal solution to (L) by optimal
solutions of the (Lj), which are “finite dimensional” truncations of (Lj). In order to do this, the sequence
(wj)∞j=1 has to be a convergent selection from the sets F ∗

j = Fj ∩ P−1(ξj) which converges to an element of
F ∗ = F ∩P−1(ξ∗). (See [6, 7] for construction of such selections.) This will be the subject of future research.
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and corrections.
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