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Abstract.

We consider the problem of solving a nonhomogeneous infinite horizon Markov Decision Process (MDP) problem
in the general case of potentially multiple optimal first period policies. More precisely, we seek an algorithm that,
given a finite subset of the problem’s potentially infinite data set, delivers an optimal first period policy. Such an
algorithm can thus recursively generate, within a rolling horizon procedure, an infinite horizon optimal solution to
the original infinite horizon problem. However it can happen that for a given problem no such algorithm exists. In
this case, it is impossible to solve the problem with a finite amount of data. We say such problems fail to be well-

posed. Under the assumption of increasing marginal returns in actions (with respect to states) and stochastically
increasing states into which the system transitions (with respect to actions), we provide an algorithm that is

guaranteed to solve the corresponding nonhomogeneous MDP whenever the problem is well-posed. The algorithm
proceeds by discovering, in finite time, a forecast horizon for which an optimal solution delivers an optimal first
period policy to the infinite horizon problem. In particular, we show by construction, the existence of a forecast
horizon (and hence, a solution horizon) for all such well-posed problems. We illustrate the theory and algorithms
developed by solving every well-posed instance of the time-varying version of the classic asset selling problem.
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1. Introduction and Preliminaries

From a mathematical modeling perspective, the class of infinite horizon nonhomogeneous MDP’s is general
enough to encompass a wide variety of applications. We are interested primarily in problems which are truly
nonhomogeneous, as opposed to problems in which there are predictable trends in the data limited to a finite
set of parameters. Much research effort has been devoted to determining when (and how) it is possible to
solve an infinite horizon nonhomogeneous MDP by making use of only a finite amount of data. In practice,
a class of algorithms, known as “rolling (or receding) horizon” algorithms, is typically the tool of choice
when solving infinite horizon nonhomogeneous MDP’s. Intuitively, these algorithms rely on the premise that
“early” optimal decisions are effectively decoupled from the infinite “tail” of problem data. Much of the
published research on this issue has indeed confirmed that this intuitive premise underlying rolling horizon
algorithms holds, if there is a unique infinite horizon optimal solution. (See Cruz-Suarez at el [2004] for
conditions for uniqueness in the context of MDP problems.) Formally, uniqueness ensures the existence of
a “solution” horizon, i.e. a finite horizon such that the first period optimal decision of the finite horizon
problem is arbitrarily close to the infinite horizon first period optimal decision. Even though the existence
of a solution horizon means only finite computation is called for when solving for the first period optimal
decision of the underlying infinite nonhomogeneous MDP, an infinite forecast of data may be necessary
to discover such a horizon. This is the motivation for the stronger notion of a “forecast horizon,” which
is a horizon sufficiently distant that data beyond it cannot affect the optimality of a first period policy.
Uniqueness of a infinite horizon optimal first policy also insures existence of a forecast horizon.

In this paper, monotonicity of optimal policies is exploited to establish the existence and discovery of
solution and forecast horizons in a class of nonhomogeneous Markov decision processes without requiring
uniqueness of an infinite horizon optimal first policy. We instead require a much weaker condition we call
well-posedness. In fact, this condition simply requires that the problem be solvable. An infinite horizon
nonhomogeneous MDP will be called well-posed if, roughly speaking, a first-period optimal decision can be
determined by the data associated with a finite number of periods of problem data (See section 6 for a formal
definition.) We use this notion to characterize the sub-class of problems that can be solved with recourse to
finite amounts of data. We show that if a problem is well-posed, monotonicity of optimal policies ensures
the existence of an algorithm to compute a forecast horizon. We provide a simple detection procedure to
identify a forecast, and hence solution, horizon in finite time, thereby constucting an optimal initial policy
for the infinite horizon problem.

A substantial literature has developed over the years which focuses on attempts to establish existence of
algorithms for determining both solution and forecast horizons (see Chand et al (2002) for a complete and
up-to-date review). In cases where solution horizons fail to exist, Bean et al (1987), Alden and Smith (1984),
and Lee and Denardo (1986) provide bounds on the error (as a function of horizon) caused by solving finite
horizon versions of the problem.

Most of the results on the existence and discovery of solution and forecast horizons have been established in
the case of uniqueness of infinite horizon optima. (See, for example, Bean and Smith (1984,1993), Bean et al
(1990), Bhaskaran and Sethi (1985), Hopp (1989), Hopp et al (1987), and Ryan et al (1992).) In the context of
finite state non-homogeneous MDP problems, Bes and Lasserre [1986] proposed a finite procedure for finding
an optimal first policy under the assumption of uniqueness of an optimal first policy. Hernandez-Lerma and
Lasserre [1988] extended the stopping rule employed to the case of stationary MDP problems with Borel
state spaces and finite action sets, again under the assumption of a unique optimal policy (the stationary
model is relevant to us since any non-stationary MDP problem may be transformed into a stationary MDP
with infinite state space by augmenting the state variable with time). However, uniqueness of an infinite
horizon optimal solution is usually difficult, if not impossible, to establish (see for example, Ryan and Bean
(1989).

One can, in the absence of a uniqueness assumption on optimal policies, construct a series of approxi-
mating finite MDP problems which approximate the underlying infinite MDP problems optimal value (see
for example, Th. 4.8 of Hernandez-Lerma [1989]), but our goal is more ambitious, namely to approximate
the MDP’s optimal first period policy. Without assuming uniqueness of an optimal first decision, Smith
and Zhang (1998) and Cheevaprawatdomrong and Smith (2004) established the existence of solution and
forecast horizons, and provided closed-form formulas for a forecast horizon in the case of infinite horizon
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production planning problems under deterministic and stochastic demand, respectively. The key property
exploited was monotonicity of the first decision with respect to problem horizons. (See also Altman and
Koole [1995] where monotonicity is used for queueing control problems.) Garcia and Smith (2000) used a
similar approach to establish the existence and discovery of forecast horizons for nonstationary infinite hori-
zon dynamic optimization problems. In their paper, it was assumed that there exists a “forecast index” such
that the first-period optimal decision is monotonically non-decreasing in that index. However, the algorithm
for detecting forecast horizons reported in their paper may not terminate finitely in the presence of multiple
infinite horizon optimal first decisions.

This paper is organized as follows. In section 2, our infinite horizon nonhomogeneous Markov decision
process problem is formulated, and the assumptions required for establishing results in subsequent sections
are stated. In section 3, finite horizon versions of the infinite horizon problem are formulated and their
monotonicity properties are established. In section 4, we prove value and policy convergence for the infinite
horizon problem relative to its finite horizon versions. In section 5, we discuss sufficient conditions for policy
optimality. In section 6, sufficient conditions for existence of forecast and solution horizons are established.
An algorithm for detecting forecast horizons is presented with conditions under which it is guaranteed to
terminate within a finite number of steps. Finally, in section 7, we present an application of our main results
to asset selling under time-varying distributions for offers.

An Asset Selling Problem which is not Well-Posed

Before we provide a formal mathematical model for the class of problems of interest, we discuss an example
from asset selling that illustrates the challenges posed in solving time-varying infinite horizon problems. In
particular, we construct an instance of this problem that is not well-posed and hence, a problem for which
no algorithm exists to provide its solution. We will return to the general class of asset selling problems (in
the last section), as an application of the theory and algorithms developed. An algorithm is presented which
can solve any well-posed problem in this class. More generally, we provide an algorithm that will solve every
solvable problem.

Suppose we have an asset which is available for sale. At the beginning of each period, an offer is presented
for our asset. This offer may be zero (corresponding to no offer presented that period) or any positive
integer up to some largest possible value. We can either accept or decline the offer. If we decline, an asset
holding cost (eg., maintenance) must be paid before we continue to the next period to await the next offer.
If we accept, we receive the offer, the asset is sold, remains sold forever, and no further offers are received.
We assume that offers in all periods are independent random variables with known but period dependent
probability distributions (for example the offers may stochastically decline as time wears on). Our objective
is to make a decision (accept or reject) in each period, so as to maximize the expected total discounted value
of the asset over the infinite horizon. In each period n ∈ N, the state i is an element of the set {0, 1, . . . , g},
where g ≥ 0, and i represents the random amount offered in period n, so that g is the greatest possible
offer in any period; or the state i = g + 1, a dummy state, which represents the state of the system after
sale of the asset. Consequently, the state space is S = {0, . . . , g, g + 1}. We assume that we are given the
probability mass function qn−1 of the random offer at the beginning of each period n ≥ 1. Thus, in the event
that an offer i is made at the start of period n+ 1, qn(i) represents the probability that the offer is i, where
i ∈ {0, . . . , g}. In particular, q0 is the distribution of the initial state. In general, for n ≥ 0,

∑g

i=0 qn(i) = 1
and qn(g + 1) = 0

Corresponding to each state i ∈ S, the decision set Di is given by

Di =

{

{0, 1}, if 0 ≤ i ≤ g,

{1}, if i = g + 1,

where k = 0 (respectively, k = 1 ) represents rejection (respectively, acceptance), if the current offer is
0 ≤ i ≤ g. If the asset is sold, that is i = g+ 1, then we see that k = 1 is the only decision choice, i.e., k = 0
implies that 0 ≤ i ≤ g. For each period n, the reward function is defined by

ρn(i, k) =











−hn, if 0 ≤ i ≤ g, k = 0 ,

i, if 0 ≤ i ≤ g, k = 1 ,

0, if i = g + 1, k = 1,
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where hn ≥ 0 is the n-th period holding cost, which is assumed to be bounded, i.e., supn hn <∞.
Let {cn : n ≥ 1} denote the collection of optimal thresholds, i.e., at time period n, the optimal decision is

to reject the current offer i if i < cn, to accept if i > cn and to either accept or reject if i = cn. In principle,
the computation of cn, for a particular value of n, may require precise knowledge of an infinite amount of
data, namely, knowledge of an infinite subset of the time-indexed collection of probability distributions of
offers and holding costs, i.e. {(qn, hn) : n ≥ 1}. If this is indeed the case, the asset selling problem is not
well-posed.

To illustrate, consider the case with g = 2, h > 0, 0 < a < 1,

q(i) =











0, if i = 0, 3

1 − a, if i = 1,

a, if i = 2,

with stationary strategies δ1, accept any offer above or at 1; and δ2, accept any offer above or at 2. For
appropriate choices of the discount factor α and hn = h, ∀n (see Cheevaprawatdomrong et al (2005)
for the details), the strategies δ1 and δ2 are both optimal (non-uniqueness). Now, consider a forecast in
which a slight perturbation of the holding cost from a given point in time in the future is introduced. This
perturbation will break the tie in favor of either δ1 or δ2. Hence, an optimal decision for the first period is
inextricably tied to which particular infinite forecast is identified.

In the interest of brevity, we will omit many details and proofs throughout the manuscript. In particular,
proofs of all lemmas and corollaries have been omitted. Long proofs of theorems have been presented in
outline form. We refer the reader to the technical report by Cheevaprawatdomrong et al (2005) for all of the
missing details and proofs. In what follows, it will also be convenient to refer to this manuscript as CSSG
[2005].

2. Problem Formulation and Assumptions

In each period n = 1, 2, . . . , a dynamic system may be in one of the stochastic states belonging to the finite
(discrete) set S = {l, . . . , u}, where l ≤ u are integers which are assumed to be period-independent. Hence,
s ≡ u − l + 1 denotes the number of stochastic states in any period. For each state i ∈ S, there is a finite
(non-empty) set of feasible decisions (actions) Di, which is assumed to be period-independent and (without
loss of generality) in the form of consecutive integers, i.e., Di = {ai, . . . , bi}, for some integers ai ≤ bi, with
a ≡ mini∈S ai and b ≡ maxi∈S bi. The policy space D in period n is then given by the finite (discrete) space
D ≡ Dl × · · ·×Du, so that it is also period-independent. Thus, the data sets S and Di, i ∈ S, are constant
over discrete time.

Now let K denote the set of all feasible decisions, i.e., K = ∪i∈SDi, so that K ⊆ {a, . . . , b}. Also let L
denote the set of all feasible pairs of states and decisions, i.e.,

L = {(i, k) ∈ S ×K : k ∈ Di},

which is period-independent. In general, L is partially ordered by the restricted product order on the lattice
S × K. In general, L need not be a sublattice, even though S and K are chains. (See section 7 for an
example of this.)

Assumption 1. The partially ordered set L is a sublattice of S ×K.

This assumption, although restrictive, can often be met by an appropriate reformulation of the problem.
We have seen that S and D do not vary with n. However, this will not be the case for the remaining

data, i.e., the state transition and expected reward structures. This non-homogenous problem could be
transformed into a stationary problem by augmenting the state variable to include the period we are in,
but this transformation would result in an infinite state space problem (see for example, Hernandez-Lerma
[1989].) We define a state transition probability function to be a non-negative, real-valued function p on
L× S, denoted by ((i, k), j) → p(i, j; k), ∀(i, k) ∈ L, ∀j ∈ S, satisfying

∑u

j=l p(i, j; k) = 1, for each (i, k)



SOLUTION AND FORECAST HORIZONS FOR NONHOMOGENEOUS MDPS 5

in L. The quantity p(i, j; k) is interpreted as the probability that the system transitions from state i to state
j, given that decision k in Di is chosen.

Given such p, for each d ∈ D, let P (d) denote the corresponding s× s stochastic state transition matrix
given by

P (d) =







p(l, l; dl) · · · p(l, u; dl)
...

...
...

p(u, l; du) · · · p(u, u; du)






.

The resulting state transition probability matrix mapping P corresponding to p is a mapping of D into the
space Ps of s× s stochastic matrices with matrix norm defined by

‖A‖ = max
1≤i≤s

s
∑

j=1

|aij | = 1,

for all such A, where ‖Ax‖ ≤ ‖A‖ ‖x‖, relative to the supremum norm ‖x‖ = ‖x‖∞, for x ∈ Rs. The
correspondence p→ P is one-to-one.

For each n, if the dynamic system is in state i ∈ S at the start of period n, and decision k ∈ Di is
chosen, then the system transitions to state j at the start of period n + 1 with probability pn(i, j; k). If
pn → Pn as above, then for policy d ∈ D, Pn(d) denotes the resulting s × s stochastic state transition
matrix in period n corresponding to decision d. Thus, as above, Pn : D → Ps, ∀n. Consequently, the state
transition structure consists of a sequence (pn)∞n=1 of state transition probabilities, one for each period, with
corresponding sequence (Pn)∞n=1 of state transition mappings. Note that it is automatically the case that
‖Pn‖ = 1, ∀n, since the Pn are stochastic matrices.

Analogously, we define an expected reward function to be a function ρ : L → R. For each (i, k) ∈ L, the
quantity ρ(i, k) is interpreted as the expected reward associated with choosing decision k in Di, when the
system is in state i. Given such ρ, for each d ∈ D, let r(d) denote the corresponding s-dimensional vector
given by

r(d) = [ ρ(l, dl) · · · ρ(u, du) ]t , ∀d = (dl, . . . , du) ∈ D,

where xt denotes the transpose of the vector x ∈ Rs. The resulting expected reward vector-valued mapping
r is a mapping of D into Rs, and the correspondence ρ→ r is one-to-one. Define

‖r‖ = max
d∈D

‖r(d)‖ = max
i∈S

max
di∈Di

|ρ(i, di)| = max
(i,k)∈L

|ρ(i, k)| = ‖ρ‖.

Now let ρn denote the expected reward function at the start of period n, with ρn → rn, ∀n, as above.
Thus, rn : D → Rs, ∀n, and the expected reward structure consists of a sequence (ρn)∞n=1 of real-valued
functions defined on L, one for each period, with corresponding sequence (rn)∞n=1 of expected reward vector
functions. The following assumption requires marginal returns in actions be increasing in states.

Assumption 2. For each n, the function ρn has increasing differences on L (Topkis (1998)), i.e., if
(i, k), (i′, k′), (i′, k), (i, k′) ∈ L with k < k′ and i < i′, then ρn(i′, k′) − ρn(i′, k) ≥ ρn(i, k′) − ρn(i, k).

2.1 Lemma. Suppose Assumptions 1 and 2 hold. Then, for each n, the function ρn is supermodular on the
lattice L, i.e.,

ρn((i, k) ∨ (i′, k′)) + ρn((i, k) ∧ (i′, k′)) ≥ ρn(i, k) + ρn(i′, k′),

for all (i, k), (i′, k′) ∈ L.

Next, let Jn(i, k) denote the random state of the system in period n + 1, given that it is in state i at
the beginning of period n, and decision k ∈ Di is chosen. Note that each Jn is a function from L into the
space of random variables with values in S. Also, the probability that Jn(i, k) equals j in S is pn(i, j; k), i.e.,
j → pn(i, j; k) is the probability mass function for Jn(i, k), so that Prob[Jn(i, k) = j] = pn(i, j; k), ∀n ∈ N,
and ∀(i, k) ∈ L. Let ik denote the smallest i ∈ S for which k ∈ Di, ∀k ∈ K.
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Assumption 3. For each n, pn is constant with respect to i, i.e., pn(i, j; k) = pn(ik, j; k), so that
Prob[Jn(i, k) = j] = Prob[Jn(ik, k) = j], ∀(i, k) ∈ L, ∀j ∈ S.

Assumption 3 requires the probability distribution over the next state be dependent only on the action k

taken out of the preceding state i and in particular be independent of i. This assumption can often be met
by an artful formulation of the problem. For example, it is met in production planning if we choose action
k to be the produce-up-to quantity as opposed to the quantity ordered k − i.

Let Gn(k) denote the cumulative distribution function for the random variable Jn(ik, k), that is,

Gn(k;x) = Prob[Jn(ik, k) ≤ x] =











0, for all x < l,
∑⌊x⌋

j=l pn(ik, j; k), for all l ≤ x < u,

1, for all u ≤ x,

where ⌊x⌋ is the largest integer less than or equal to x. Note that Jn(i, k) is distributed as Gn(k), ∀(i, k) ∈ L

under Assumption 3.
The probability transition functions pn are required also to satisfy the following assumption which requires

the state transitioned into be stochastically increasing in action k. For example, inventory beginning the
next period is stochastically increasing in after production inventory from the previous period.

Assumption 4. For each n, Jn(ik, k) is stochastically increasing in k, that is, the distribution function
Gn(k) is stochastically increasing in k, i.e., if k < k′ ∈ K, then 1 − Gn(k′) ≥ 1 − Gn(k). Equivalently,
Gn(k′) ≤ Gn(k), as real-valued functions, i.e.,

⌊x⌋
∑

j=l

pn(ik′ , j, k′) ≤

⌊x⌋
∑

j=l

pn(ik, j, k), ∀l ≤ x < u,

or
u

∑

j=l

g(j)pn(ik′ , j, k′) ≥
u

∑

j=l

g(j)pn(ik, j, k), ∀k, k′ ∈ K,

for each increasing real-valued function g on S (Topkis (1998), Corollary 3.9.1(a)).
Now fix a discount factor 0 < α < 1.

Assumption 5. The expected reward structure (ρn)∞n=1 is dominated by the discount factor α in the sense
that

∑∞
n=1 α

n−1‖ρn‖ <∞. Note, in particular, that if the expected reward structure is uniformly bounded,
i.e., supn ‖ρn‖ <∞, then the expected reward structure is dominated by any discount factor.

In summary, the problem data for our nonhomogeneous MDP consist of:

(i) α, S and the Di, ∀i ∈ S, with lattice L, all of which we assume to be constant through time, as well as

(ii) the function sequence (ρn)∞n=1 dominated by α, each ρn with increasing differences, and

(iii) the function sequence (pn)∞n=1, each pn constant with respect to i and stochastically increasing with
respect to k.

Note that the pair (pn, ρn) constitutes the variable part of the problem data for period n.

Definition (forecast). We define a forecast for our problem to be a sequence (pn, ρn)∞n=1 as above, with
reward structure dominated by the discount factor α, and with corresponding sequence (Pn, rn)∞n=1. A forecast
will be called homogeneous if it is a constant sequence, i.e., both (pn)∞n=1 and (ρn)∞n=1 are constant sequences.

For convenience, define φn = (pn, ρn), ∀n ∈ N, so that a forecast φ may also be viewed as a sequence
(φn)∞n=1, where φn represents the state transition and expected reward data, i.e., the period forecast, for



SOLUTION AND FORECAST HORIZONS FOR NONHOMOGENEOUS MDPS 7

period n. Much of what follows will be forecast-dependent. However, since φ is our only forecast at this
point, it will be convenient for the time being to suppress notational reference to it.

A (feasible) strategy π = (πn)∞n=1 is a sequence of policies, one for each period, so that πn ∈ D, ∀n.

A policy πn in period n is a vector of decisions, i.e., πn = [πn(l) · · ·πn(u) ]t, one for each state, where,
for l ≤ i ≤ u, the “ith component” πn(i) of πn denotes the decision chosen in period n, if strategy π

is implemented, given that the system is in state i. We denote by Π the space of all strategies, so that
Π = D∞; then Π is a compact topological space in the product topology. Note that, under our assumptions,
all strategies are feasible and the strategy space Π is independent of the forecast φ. Given a strategy π,
the stochastic matrix Pn(πn) is then (relative to φ) the corresponding state transition matrix for period n.
Let Qn(π) denote the total transition matrix beginning in period 1, and terminating at the beginning of
period n ≥ 2, when strategy π is implemented, i.e., Qn(π) = P1(π1) · P2(π2) · · ·Pn−1(πn−1), ∀π ∈ Π. For
convenience, define Q1(π) to be the s × s identity matrix I. Therefore, the element Qn(π)ij in the ith row
and jth column of Qn(π) is the probability that the system is in state j at the start of period n, given that
it was in state i at the start of period 1, and strategy π is implemented, for l ≤ i, j ≤ u. It is easy to see
that each Qn(π) is also a stochastic matrix. For convenience, we will denote the ith row of the block matrix
Qn(π) by Qn(π)i, ∀i = l, . . . , u, so that Qn(π)i = [Qn(π)il · · · Qn(π)iu] and

Qn(π) =







Qn(π)l

...
Qn(π)u






.

It is not difficult to see that, for each n, the resulting mapping Qn : Π → Ps is continuous relative to the
norm ‖ · ‖ on Ps and the product topology on Π, with ‖Qn(πn)‖ = 1, ∀π ∈ Π.

Clearly, rn(πn) is the vector of expected rewards in period n under strategy π. Rewards received in
period n are to be discounted by αn−1. Let RN (π; i) denote the total expected discounted reward incurred
in periods 1 through N under strategy π, given that the initial state is i ∈ S, that is

RN (π; i) =

N
∑

n=1

αn−1 Qn(π)i · rn(πn), ∀i ∈ S,

with RN (π) = [RN (π; l) · · ·RN (π;u) ]
t
, the total expected discounted reward vector for periods 1 through

N . Thus, we obtain a sequence (RN )∞N=1 of vector-valued functions of the form RN : Π → Rs, each given by

RN (π) =
N

∑

n=1

αn−1Qn(π) · rn(πn), ∀π ∈ Π.

In addition, let

R(π; i) = lim
N→∞

RN (π; i) =

∞
∑

n=1

αn−1 Qn(π)i · rn(πn),

for all i ∈ S, which converges in R by Assumption 5. Then we obtain a mapping R : Π → Rs given by

R(π) = lim
N→∞

RN (π) =

∞
∑

n=1

αn−1Qn(π) · rn(πn), ∀π ∈ Π,

which converges in Rs, with ‖R(π)‖ ≤
∑∞

n=1 α
n−1‖ρn‖. The vector R(π) = [R(π; 1) · · · R(π; s)]t

is the infinite horizon total expected discounted reward vector indexed by the different starting states in
S = {ℓ, . . . , u}. If we let q0 denote the distribution of the initial states, a probability mass function on S,

then the infinite horizon total expected reward function R̃ : Π → R is given by R̃(π) =
∑u

i=ℓR(π; i)q0(i).
Given that Qn and rn are continuous and bounded, we have:
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2.2 Lemma. Suppose Assumption 5 holds. Then, for each N ∈ N, the function RN : Π → Rs is continuous,
as are the functions R : Π → Rs and R̃ : Π → R.

For the MDP (with given forecast φ), we wish to find a (feasible) strategy that maximizes the expected
total discounted reward over the infinite horizon, i.e., we wish to solve the following (vector) infinite horizon
optimization problem 〈φ〉 with forecast φ: v ≡ maxπ∈ΠR(π), defined component-wise. Note that v is an
element of Rs whose ith component v(i) = maxπ∈ΠR(π; i), ∀i ∈ S, denotes the maximum expected net
present value of rewards incurred from initial state i, under forecast φ. Moreover, |v(i)| ≤

∑∞
n=1 α

n−1‖ρn‖.

Analogously, consider the (scalar) infinite horizon optimization problem given by ṽ = maxπ∈Π R̃(π). For
convenience, define the vector ∆v of marginal optimal values to 〈φ〉 to be the element of Rs−1 whose ith

component is given by ∆v(i) ≡ v(i)− v(i−1), ∀i = l+1, . . . , u. Since Π is compact and R (respectively R̃)
is continuous on Π, the above maximum is attained component-wise, i.e., the non-empty space of φ-optimal
strategies Ω (respectively, Ω̃) is given by Ω = {π ∈ Π : R(π) = v} (respectively, Ω̃ = {π ∈ Π : R̃(π) = ṽ}).
Clearly, Ω ⊆ Ω̃. Observe that the previous discussion, results and notation are applicable to any generic
forecast θ = (θn)∞n=1 which satisfies Assumption 5.

For n ∈ N and i ∈ S, define vn(i) to be the maximum expected net present value, beginning period n, of
rewards incurred forever, given that the system is in state i at the beginning of period n. Also let vn ∈ Rs

be defined by vn = [ vn(l) · · · vn(u) ]
t
, ∀n ∈ N. Note that, in particular, v(i) = v1(i), for all i in S.

Denote by fn(i, k) the maximum expected net present value of rewards incurred forever, starting in period
n, given that the system is in state i at the beginning of period n, and decision k ∈ Di is chosen. Specifically,
for (i, k) ∈ L, we have (where E[·] denotes expectation)

fn(i, k) = ρn(i, k) + αE[vn+1(Jn(i, k))],

i.e., each function fn : L → R is given by fn = ρn + αE[vn+1 ◦ Jn]. Analogously, define fn : D → Rs by

fn(d) = [fn(ℓ, dℓ) · · · fn(u, du]t, ∀d ∈ D, and f̃1 : D → R by f1(d) =
∑u

i=ℓ f1(i, di)q0(i), ∀d ∈ D.
Consider the composition mapping vn+1 ◦ Jn from K into the space of real random variables. Then, for

(i, k) ∈ L, (vn+1 ◦ Jn)(i, k) = vn+1(Jn(i, k)) is the maximum expected net present value, beginning period
n+ 1, of rewards incurred forever, given that the system is in state i beginning period n, in which decision
k is chosen. For fixed n and k, the probability mass function of Jn(i, k) is given by j → pn(i, j; k), for j ∈ S.
Consequently, vn+1(Jn(i, k)) is given by

E[vn+1(Jn(i, k))] =

u
∑

j=l

vn+1(j)pn(i, j; k) =

u
∑

j=l

vn+1(j)pn(ik, j; k) = E[vn+1(Jn(ik, k))]

for all (i, k) ∈ L.

2.3 Lemma. Suppose Assumptions 1 and 2 hold. Then, for each n ∈ N, the function fn : L → R is
supermodular, i.e.,

fn((i, k) ∨ (i′, k′)) + fn((i, k) ∧ (i′, k′)) ≥ fn(i, k) + fn(i′, k′), ∀(i, k), (i′, k′) ∈ L.

The previous discussion, results and notation hold for any forecast θ which satisfies Assumptions 1 through
5. We now find it necessary to consider a collection of period forecasts (p, ρ). We assume we have a non-
empty collection F of admissible period forecast data (p, ρ) where ρ has increasing differences on L, p is
constant with respect to i and stochastically increasing in k. Consider the subset Φ of F∞ consisting of
those infinite horizon forecasts θ which satisfy Assumption 5, i.e., which are dominated by α. Hence, φ ∈ Φ.
Note that Φ depends on F and α which are fixed and hence, suppressed. We think of Φ as the set of forecasts
relative to S and D (as well as F and α) which define a particular nonhomogeneous MDP problem class
〈Φ〉 = {〈θ〉 : θ ∈ Φ}. Of course, all the previous results hold for each forecast θ in Φ. For the remainder
of this paper, we assume that we have such a problem class with fixed forecast φ ∈ Φ and generic forecast
θ ∈ Φ.
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In what follows, it will be necessary to consider different forecasts simultaneously. Consequently, if θ is
a generic forecast satisfying Assumptions 2,3,4,5, then we will incorporate θ in the notation which we have
introduced in order to distinguish between constructs depending on different forecasts. For example, we write
v(θ; i) = v1(θ; i) for the optimal value of optimization problem 〈θ〉 with initial state i ∈ S. In particular,
v(φ; i) = v(i) = v1(i) = v1(φ; i). Wherever practical, we will suppress the reference to φ for convenience.
Thus, if a forecast is not specified, then we will assume it is the underlying fixed forecast φ.

Our final assumption requires that there exist two special homogeneous forecasts (from F ) with maximum
(respectively, minimum) marginal optimal values with respect to changes of problem data in the first period
only.

Assumption 6. There exist (p, ρ), (p, ρ) ∈ F , with corresponding homogeneous forecasts ψ =
(

(p, ρ)
)∞

n=1

and ψ =
(

(p, ρ)
)∞

n=1
(in Φ), and corresponding optimal vector values w = v(ψ) and w = v(ψ) having the

following properties. Suppose (p, ρ) ∈ F , with associated forecasts

ψ(p, ρ) ≡
(

(p, ρ), (p, ρ), (p, ρ), . . .
)

and ψ(p, ρ) ≡
(

(p, ρ), (p, ρ), (p, ρ), . . .
)

(also in Φ). These satisfy Assumptions 1,2. Consider the corresponding optimization problems 〈ψ(p, ρ)〉 and

〈ψ(p, ρ)〉, with corresponding optimal vector values w(p, ρ) = v(ψ(p, ρ)) and w(p, ρ) = v(ψ(p, ρ)),
and corresponding marginal optimal vector values ∆w(p, ρ) and ∆w(p, ρ). Then we assume that

w(p, ρ; i′) − w(p, ρ; i) ≤ w(i′) − w(i) and w(p, ρ; i′) − w(p, ρ; i) ≥ w(i′) − w(i),

for all l ≤ i < i′ ≤ u, and for all (p, ρ) ∈ F . It is easy to see that this is equivalent to assuming that the
marginal optimal values of problems 〈ψ〉 and 〈ψ〉 are related to those of problems 〈ψ(p, ρ)〉 and 〈ψ(p, ρ)〉 as
follows:

∆w(p, ρ; i) ≤ ∆w(i) and ∆w(p, ρ; i) ≥ ∆w(i),

for all i = l + 1, . . . , u, and for all (p, ρ) ∈ F .

To summarize, we assume that we have a forecast class Φ defined by a period forecast set F as above,
with typical forecast θ ∈ Φ, a fixed arbitrary forecast φ ∈ Φ and two homogeneous forecasts ψ, ψ ∈ Φ for the
given state space S and decision sets Di, ∀i ∈ S, all of which satisfy Assumptions 1 through 6. Furthermore,
if n ∈ N, and forecast θ = (θ1, . . . , θn, . . . ) ∈ Φ, let θ(n) denote the forecast given by θ(n) = (θn, θn+1, . . . ),
so that θ(1) = θ, in particular, and θ(n) ∈ Φ, ∀n = 2, 3, . . . . Then, the optimal value v(θ(n)) of problem
〈θ(n)〉 satisfies v(θ(n)) = vn(θ). In particular, for θ = φ, we have v(φ(n)) = vn(φ) = vn.

By the Principle of Optimality, we have that the ith component of the s-tuple vn = vn(φ) is given by

vn(i) = max
k∈Di

fn(i, k), ∀i ∈ S, ∀n ∈ N.

Since each Di is finite, the set

Kn(i) ≡ {k ∈ Di : fn(i, k) = vn(i)} = arg max
k∈Di

fn(i, k)

is a non-empty finite subset of Di ⊆ K, which depends only on the forecast φ(n) = (φn, φn+1, . . . ), since

fn(i, k) = ρn(i, k) + α E[vn+1(Jn(i, k))] = ρn(i, k) + α

u
∑

j=l

vn+1(j)pn(i, j; k),

and vn+1(j) = vn+1(φ; j) = v(φ(n+1); j). Hence, we may define γn(i) to be the greatest such optimal solution,
i.e., γn(i) = max{k : k ∈ Kn(i)}, and λn(i) to be the least such optimal solution, i.e., λn(i) = min{k : k ∈
Kn(i)}, so that λn(i) ≤ γn(i), and fn(i, λn(i)) = fn(i, γn(i)) = vn(i), ∀i ∈ S. Observe that λn and γn are
policies in D with λn ≤ γn, ∀n. Also, λ ≡ (λn)∞n=1 and γ ≡ (γn)∞n=1 are strategies in Π with λ ≤ γ.
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Let d ∈ D and n ∈ N. We will say that the policy d satisfies the optimality equations for the forecast φ in
period n (alternately, d is optimal for problem 〈φ〉 in period n) if di ∈ Kn(i), that is vn(i) = fn(i, di), for all
i ∈ S. Let Ωn(φ) denote the non-empty set of φ-optimal policies in period n, so that by definition,

Ωn(φ) = Kn(l) × · · · ×Kn(u), ∀n ∈ N.

Observe that for each n, λn and γn are φ-optimal for period n, i.e., λn, γn ∈ Ωn(φ).
We will also say that the strategy π ∈ Π is strongly φ-optimal if π(n) ≡ (πn, πn+1, . . . ) is φ(n)-optimal, for

each n ∈ N. Of course, strongly optimal strategies are also optimal, since π(1) = π and φ(1) = φ. Also let

Ω(n)(φ) ≡ {π ∈
∞
∏

m=n

D : π(m) ∈ Ω(φ(m))}, ∀m ≥ n}, ∀n ∈ N,

so that, Ω(1)(φ) is the set of all strongly φ-optimal strategies, and π ∈ Ω(1)(φ) if and only if π(m) ∈
Ω(φ(m)), ∀m ≥ 1. Moreover, Ω(1)(φ) is a proper (non-empty ) subset of Ω(φ) = Ω(φ(1)) in general, i.e.,
φ-optimal strategies need not be strongly optimal. See CSSG [2005] for an example.

The following theorem is essentially the Principle of Optimality for nonhomogeneous infinite horizon
MDPs.

2.4 Theorem. Suppose Assumption 5 holds. Let π ∈ Π. Then π is strongly φ-optimal if and only if πn is
φ-optimal in each period, i.e., π ∈ Ω(1)(φ) if and only if πn ∈ Ωn(φ), ∀n ∈ N.

Outline of Proof. Suppose πn is φ-optimal in each period. By induction, we first show that, for each
m ≥ 1,

v(i) =

m
∑

n=1

αn−1Qn(π)i · rn(πn) + αmQm+1(π)i · vm+1, ∀i ∈ S.

For m = 1, by hypothesis, we have that v(i) = Q1(π)i · r1(π1) +αQ2(π)i · v2, i.e., the claim is valid for
m = 1. Similarly, for m > 1, we have that

αmQm+1(π)i · vm+1 = αmQm+1(π)i · rm+1(πm+1) + αm+1Qm+2(π)i · vm+2.

Now suppose the above claim is true for m. Then

v(i) =

m+1
∑

n=1

αn−1Qn(π)i · rn(πn) + αm+1Qm+2(π)i · vm+2,

i.e., the claim is true for m + 1 as well. But ‖vm‖ ≤
∑∞

n=1 α
n−1‖ρn‖, ∀m, i.e., the ‖vm‖ are bounded

(Assumption 5). Consequently,

v(i) =

∞
∑

n=1

αn−1Qn(π)i · rn(πn) = R(π; i), ∀i ∈ S,

so that π is φ-optimal.
Now fix m ∈ N. Then the infinite horizon forecast φ(m) does not depend on the period forecasts

φ1, . . . , φm−1. Thus, for each n ≥ m, πn is also optimal for φ(m) in period n. Therefore, applying the
previous result to φ(m), we have that π(m) is φ(m)-optimal. Since, m is arbitrary, π is strongly φ-optimal.

Conversely, suppose that π is strongly φ-optimal. Fix n ≥ 1. Then π(n) is φ(n)-optimal and π(n+1) is
φ(n+1)-optimal. Moreover, πn is φ-optimal in period n, since fn(i, πn(i)) = vn(i), ∀i ∈ S. (See CSSG
[2005] for the details.) Since n is arbitrary, the proof is complete. �

Remark. By the previous theorem, if dn ∈ Ωn(φ), ∀n, then the strategy (dn)∞n=1 is strongly φ-optimal.
Thus, (strongly) φ-optimal strategies exist, and every φ-optimal policy in any period can be completed to
such a strategy.
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Next we establish Theorem 2.4 for finite horizon problems with salvage value. Fix N ∈ N and ν ∈ Rs.
Consider the following N -horizon optimization problem with forecast φ(N, ν) = (φ1, . . . , φN ; ν), where each
φn, 1 ≤ n ≤ N , belongs to F . The vector ν ∈ Rs is viewed as a terminal reward (salvage value) after period
N , whose contribution will be computed as though it were awarded in period N + 1. As above, we have the
correspondences pn → Pn, ρn → rn, ∀n = 1, . . . , N , as well as the shifted forecasts

φ(N, ν)(n) = (φn, . . . , φN ; ν), ∀1 ≤ n ≤ N.

The N -horizon optimization problem 〈φ(N, ν)〉 is then given as follows:

maximize

N
∑

n=1

αn−1Qn(πN ) · rn(πn) + αNQN+1(π
N ) · ν

subject to
πN = (π1, . . . , πN ) ∈ DN ,

where Qn(π1, . . . , πN ) ≡ P1(π1) · · ·Pn−1(πn−1), ∀1 ≤ n ≤ N + 1, and Q1(π1, . . . , πN ) = I, in particular.
Let Ω(φ(N, ν)) denote the corresponding set of N -horizon optimal strategies in DN , and Ω(1)(φ(N, ν)) the
corresponding set of strongly optimal N -horizon optimal strategies, where πN is strongly (φ(N, ν))-optimal
if (πn, . . . , πN ) is φ(N, ν)(n)-optimal for each n = 1, . . . , N . Moreover, the policy d ∈ D is optimal in period
1 ≤ n ≤ N for φ(N, ν) if di belongs to

Kn(φ(N, ν); i) = {k ∈ Di : fn(φ(N, ν); i, k) = vn(φ(N, ν); i)}, ∀i ∈ S,

where fn(φ(N, ν); i, k) and vn(φ(N, ν); i) are defined as above, but only up to horizon N . Let Ωn(φ(N, ν))
denote the corresponding set of optimal policies in period n, ∀1 ≤ n ≤ N . Then we have the following
finite dimensional version of Theorem 2.4.

2.5 Theorem. Suppose Assumptions 3, 4 and 5 hold. Let πN ∈ DN . Then πN is strongly φ(N, ν)-optimal
if and only if πn is φ(N, ν)-optimal for each period n = 1, . . . , N , i.e., πN ∈ Ω(1)(φ(N, ν)) if and only if
πn ∈ Ωn(φ(N, ν)), ∀1 ≤ n ≤ N .

Outline of Proof. For ν ∈ Rs and ρν : L → R given by ρν(i, k) = ν(i), ∀(i, k) ∈ L, consider the infinite
horizon forecasts

φN (ν)(n) = (φn, . . . , φN , (pN+1, ρν), (pN+2, ρ0), (pN+3, ρ0), . . . ), ∀1 ≤ n ≤ N,

where pN+k is any transition probability satisfying Assumptions 3, 4, ∀k ≥ 1. All such forecasts belong
to Φ. (For convenience, let φN (ν) = φN (ν)(1).) Then (πn, . . . , πN ) is φ(N, ν)(n)-optimal if and only if any
completion (πn, . . . , πN , πN+1, . . . ) of (πn, . . . , πN ) to an element of Π∞

m=nD is strongly φN (ν)(n)-optimal,
i.e.,

Ω(φN (ν)(n)) = Ω(φ(N ; ν)(n)) × Π∞
m=N+1D, ∀1 ≤ n ≤ N.

Consequently, πN = (πn, . . . , πN ) is strongly φ(N, ν)-optimal if and only if any completion

π = (π1, . . . , πN , πN+1, . . . )

of πN to an element of Π is strongly φN (ν)-optimal, i.e.,

Ω(1)(φN (ν)) = Ω(1)(φ(N, (ν)) × Π∞
m=N+1D.

By Theorem 2.4, this is true if and only if πn is optimal in period n for φN (ν), ∀n ≥ 1. But this is equivalent
to πn is optimal in period n for φ(N, ν), ∀1 ≤ n ≤ N , since any policy is optimal in period n ≥ N + 1 for
the forecast ((pN+1, ρν), (pN+2, ρ0), (pN+3, ρ0), . . . )), ∀ν ∈ Rs. �

2.6 Theorem. The N -horizon forecast φ(N, ν) and the infinite horizon forecast

φN (ν) = (φ1, . . . , φN , (pN+1, ρν), (pN+2, ρ0), (pN+3, ρ0)

have the same optimal policies in each period 1 ≤ n ≤ N , i.e., Ωn(φ(N, ν)) = Ωn(φN (ν)), ∀1 ≤ n ≤ N.

Proof. Observe that fN(φ(N, ν); i, k) = fN (φN (ν); i, k), ∀(i, k) ∈ L. Consequently,

vN (φ(N, ν)) = vN (φN (ν)), KN (φ(N, ν)) = KN (φN (ν)) and ΩN (φ(N, ν)) = ΩN (φN (ν)).

Hence, the theorem is true for n = N . In the same way, we may show that the theorem holds for n = N − 1.
Continue in this way down to n = 1. �
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3. Policy Monotonicity for Finite Horizon Problems

In this section, for the given forecast φ, and for each positive integer N , we formulate certain (N + 1)-

horizon “upper and lower bound” forecasts φ
N

and φN , respectively. Each is a finite horizon truncation,

after period N , of forecast φ, with salvage value equal to w = v(ψ) or w = v(ψ), treated as the reward vector
at the start of period N + 1. We will show that, for any horizon N , and any period 1 ≤ n ≤ N , there exists

an optimal policy d
N

n for problem 〈φ
N
〉 such that, for each n ∈ N, the sequence (d

N

n )∞N=n is decreasing in N ,

i.e., n ≤ N < M implies d
N

n ≥ d
M

n . Similarly, for any horizon N , and any period 1 ≤ n ≤ N , there exists

an optimal policy dN
n for problem 〈φN 〉 such that, for each n ∈ N, the sequence (dN

n )∞N=n is increasing in N ,

i.e., n ≤ N < M implies dN
n ≤ dM

n .
Recall that our fixed infinite horizon forecast φ = (φn)∞n=1 is such that φn = (pn, ρn), with pn → Pn and

ρn → rn as in section 2. Also fix a positive integer N and recall the period forecasts (p, ρ) and (p, ρ) in F

with
ρw = ρ→ r = rw, ρw = ρ→ r = rw, p→ P , p→ P ,

also defined as in section 2. Define the hybrid infinite horizon forecasts

φ
N

= (φ1, . . . , φN , (p, ρw), (p, ρ0), (p, ρ0), . . . ),

and
φN ≡ φN (w) = (φ1, . . . , φN , (p, ρw), (p, ρ0), (p, ρ0), . . . ),

all of which belong to Φ. Note that

Ωn(φ(N,w)) = Ωn(φN (w)) = Ωn(φ
N

),

Ωn(φ(N,w)) = Ωn(φN (w)) = Ωn(φN ),

for all 1 ≤ n ≤ N , by Theorem 2.6. Thus, for periods n = 1, . . . , N , finding the optimal policies of the

infinite horizon problems 〈φ
N
〉 and 〈φN 〉 is equivalent to finding the optimal policies of the finite horizon

problems 〈φ(N,w)〉 and 〈φ(N,w)〉, respectively. More generally, we may repeat the above procedure for any

θ ∈ Φ to get θN and θ
N

in Φ.

Consequently, we may apply the results of section 2 to the infinite horizon forecasts φN and φ
N

. If we

replace φ by φ
N

in section 2, we obtain analogues of problem 〈φ〉, and of the quantities

R = R(φ), Ω = Ω(φ), Jn = Jn(φ), fn = fn(φ),

vn = vn(φ), Kn = Kn(φ), γn = γn(φ), λn = λn(φ),

for 1 ≤ n ≤ N , which we denote respectively by problem 〈φ
N
〉 and

R
N

= R(φ
N

), Ω
N

= Ω(φ
N

), J
N

n = Jn(φ
N

), f
N

n = fn(φ
N

),

vN
n = vn(φ

N
), K

N

n = Kn(φ
N

), γN
n = γn(φ

N
), λ

N

n = λn(φ
N

),

where

R
N

(π) =

N
∑

n=1

αn−1Qn(π) · rn(πn) + αNQN+1(π) · w; 〈φ
N
〉

vN = vN
1 = maxπ∈ΠR

N
(π); Ω

N
= {π ∈ Π : R

N
(π) = vN}; J

N

n (i, k) is the state ending period n,

under forecast φ
N

, starting in state i and choosing decision k, so that J
N

n (i, k) = Jn(i, k), ∀1 ≤ n ≤ N + 1;

f
N

n (i, k) is the maximum expected present net value of rewards incurred in problem 〈φ
N
〉 through period
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N + 1, starting in period 1 ≤ n ≤ N , given that the system is in state i at the beginning of period n, and
decision k ∈ Di is chosen; vN

n (i) is the maximum expected net present value, beginning period n of problem

〈φ
N
〉, of rewards incurred through period N+1, given that the system is in state i at the beginning of period

n;

f
N

n (i, k) = ρN
n (i, k) + αE[vN

n+1(J
N

n (i, k))] = ρn(i, k) + αE[vN
n+1(Jn(i, k))],

for all 1 ≤ n ≤ N , since forecasts φ
N

and φ agree in periods 1 ≤ n ≤ N ;

vN
n (i) =

{

max{f
N

n (i, k) : k ∈ Di}, 1 ≤ n ≤ N,

w(i), n = N + 1,

by the Principle of Optimality; for all i ∈ S, and for all 1 ≤ n ≤ N ,

K
N

n (i) = {k ∈ Di : f
N

n (i, k) = vN
n (i)} = arg max

k∈Di

f
N

n (i, k);

γN
n (i) = max{k : k ∈ K

N

n (i)} and λ
N

n (i) = min{k : k ∈ K
N

n (i)}.

Clearly, the previous quantities are the same, for 1 ≤ n ≤ N + 1, irrespective of whether we view φ
N

as an
infinite horizon forecast or as an (N + 1)-horizon forecast. We have the following analogue of Theorem 2.5

for forecast φ
N

.

3.1 Lemma. Suppose Assumptions 5 and 6 hold. The strategy π ∈ Π is strongly φ
N

-optimal (i.e., π ∈

Ω(1)(φ
N

)) if and only if πn is a φ
N

-optimal policy in period n (i.e., πn ∈ Ωn(φ
N

)), for each n ≤ N , in which

case, λ
N

n (i) ≤ πn(i) ≤ γN
n (i), for all 1 ≤ n ≤ N , and all i ∈ S. In particular, this is the case for arbitrary

extensions of (λ
N

1 , . . . , λ
N

N ) and (γN
1 , . . . , γ

N
N ) to elements of Π.

Similarly, if we replace φ by φN in section 2, then we obtain the (N + 1)-horizon problem 〈φN 〉 and the

entire previous discussion for problem 〈φ
N
〉 is valid for 〈φN 〉, including Lemma 3.1.

3.2 Lemma. Suppose Assumptions 5 and 6 hold. The strategy π ∈ Π is strongly φN -optimal, (i.e.,

π ∈ Ω(1)(φN )) if and only if πn is a φN -optimal policy in period n (i.e., πn ∈ Ωn(φN )), for all 1 ≤ n ≤ N ,

in which case, λN
n (i) ≤ πn(i) ≤ γN

n
(i), for all 1 ≤ n ≤ N , and all i ∈ S. In particular, this is the case for

arbitrary extensions of (λN
1 , . . . , λ

N
N ) and (γN

1
, . . . , γN

N
) to elements of Π.

The following theorem is the main result of this section. .

3.3 Theorem. Suppose all Assumptions 1 through 6 hold. Fix N ∈ N and let HN = {N,N + 1}. Then we

have the following for problem 〈φN 〉. For each 1 ≤ n ≤ N :

(i) the real-valued function (M, (i, k)) → fM

n
(i, k) is supermodular on the lattice HN × L, i.e.,

fM∨M ′

n
(i ∨ i′, k ∨ k′) + fM∧M ′

n
(i ∧ i′, k ∧ k′) ≥ fM

n
(i, k) + fM ′

n
(i′, k′),

for all M,M ′ ∈ HN and for all (i, k), (i′, k′) ∈ L.

(ii) the integer-valued functions (M, j) → γM

n
(j) and (M, j) → λM

n (j) are increasing on HN×S. Equivalently,

if l ≤ j ≤ j′ ≤ u and N ≤M ≤M ′ ≤ N + 1, then γM

n
(j) ≤ γM ′

n
(j′) and λM

n (j) ≤ λM ′

n (j′).

(iii) the real-valued function (M, j) → vM
n (j) has increasing differences on HN × S. Equivalently, if l ≤

j ≤ j′ ≤ u and N ≤M ≤M ′ ≤ N + 1, then vM
n (j′) − vM

n (j) ≤ vM ′

n (j′) − vM ′

n (j).

Outline of Proof. The proof is by finite reverse induction from n = N down to n = 1. First we show
that the real-valued function (M, j) → vM

N+1(j) has increasing differences on HN × S, i.e., if j < j′, then
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vN
N+1(j

′) − vN
N+1(j) ≤ vN+1

N+1(j
′) − vN+1

N+1(j), so that part (iii) of the Theorem is true for n = N + 1 also.
Equivalently, we show that

vN
N+1(j) − vN

N+1(j − 1) ≤ vN+1
N+1(j) − vN+1

N+1(j − 1), ∀j = l + 1, . . . , u.

Consider the (infinite horizon) forecasts φN , ψ, ψ(φN+1) =
(

φN+1, (p, ρ), (p, ρ), · · ·
)

and

φN+1 =
(

φ1, · · · , φN , φN+1, (p, ρw), (p, ρ0), (p, ρ0), · · ·
)

.

Then, for i ∈ S, using forecast φN+1,

vN+1(φ
N+1; i) = max

k∈Di

{ρN+1(i, k) + α

u
∑

j=l

w(j)pN+1(i, j; k)}.

On the other hand, by definition, using forecast ψ(φN+1),

w(φN+1; i) = max
k∈Di

{ρN+1(i, k) + α

u
∑

j=l

w(j)pN+1(i, j; k)}.

Consequently, vN+1
N+1(i) = w(φN+1; i), ∀i ∈ S. By Assumption 6 applied to the forecasts ψ and ψ(φN+1)

(with φN+1 ∈ F ), which satisfy Assumptions 2,3,4,5,

vN+1
N+1(j) − vN+1

N+1(j − 1) ≥ vN
N+1(j) − vN

N+1(j − 1),

(using forecast φN ), for all j = l + 1, . . . , u, as required.
Next we show that part (i) of the Theorem is true for n = N . We do this in steps. Our first step is to

show that the function y : HN ×K → R defined (for convenience) by y(M,k) = αE[vM
N+1(JN (ik, k))] (using

forecast φM ) is supermodular, i.e.,

y(M ∧M ′, k ∧ k′) + y(M ∨M ′, k ∨ k′) ≥ y(M,k) + y(M ′, k′), ∀(M,k), (M ′, k′) ∈ HN ×K.

Without loss of generality, we may assume that k < k′, so that k ∧ k′ = k and k ∨ k′ = k′. Then y is
supermodular if

y(M ∧M ′, k) + y(M ∨M ′, k′) ≥ y(M,k) + y(M ′, k′),

which is trivially true if M ≤ M ′ also, in which case M ∨M ′ = M ′ and M ∧M ′ = M . Thus, assume in
addition that M > M ′, i.e., M = N + 1 and M ′ = N , in which case M ∧M ′ = N and M ∨M ′ = N + 1.
We next show that

y(N + 1, k) − y(N, k) ≤ y(N + 1, k′) − y(N, k′).

On the one hand,

y(N + 1, k) − y(N, k) = α

u
∑

j=l

(

vN+1
N+1(j) − vN

N+1(j)
)

pN(ik, j; k).

Analogously, by Assumption 4,

y(N + 1, k′) − y(N, k′) ≥ y(N + 1, k) − y(N, k),

since the “integrand” g(j) ≡ vN+1
N+1(j) − vN

N+1(j) is an increasing function of j ∈ S by the first claim of this
proof. To conclude that the function y is supermodular, apply Corollary 2.6.1 of Topkis (1998), together
with our hypothesis.
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Now consider the real-valued function on HN × L defined by (M, (i, k)) → αE[vM
N+1(J

M
N (i, k))] (using

forecast φM ). This function is simply the canonical “lifting” of the previous function from HN × K to
HN × L. We leave it to the reader to verify that it inherits the supermodularity property. Next, consider
the real-valued function defined by (M, (i, k)) → ρN(i, k), whose domain is also HN ×L. We have seen that
ρN is supermodular on L (Lemma 2.1). Consequently, as above, the lifting of ρN from L to HN × L is also
supermodular. Finally, observe that the required function

(M, (i, k)) → fM

N
(i, k) = ρN (i, k) + αE[vM

N+1(J
M
N (i, k))],

which is the lifting of fM

N
from L to HN ×L, is the sum of the two previous supermodular functions. Thus,

it is also supermodular (Topkis (1998), Lemma 2.6.1). This completes the proof of part (i) of the Theorem
for the case n = N .

We next prove part (ii) for n = N . Observe that, in the notation of Chapter 2 of Topkis (1998):

(a) X ≡ K, T ≡ HN × S and X × T = K × (HN × S) ∼= HN × (S ×K) are lattices (relative to the product
order), where x = k and t = (M, j);

(b) Z ≡ {(k, (M, j)) ∈ K × (HN × S) : k ∈ Dj} is a sublattice of X × T which is order isomorphic to the
sublattice HN × L of HN × (S ×K);

(c) Zt = {x ∈ X : (x, t) ∈ Z}, i.e., Z(M,j) = {k ∈ K : (M, (j, k)) ∈ HN × L} = Dj is the (finite) section of
Z = HN × L at t = (M, j) in T = HN × S;

(d) the (continuous) function g : X × T → R, i.e., g : K × (HN × S) → R, defined by

g(x, t) = g(k, (M, j)) = fM

N
(j, k)

is supermodular in (x, t) = (k, (M, j)) on Z = HN × L.

Then, by Theorem 2.8.3(a) of Topkis (1998), argmax
x∈Zt

g(x, t), i.e.,

argmax
k∈Dj

fM

N
(j, k) = {k ∈ Dj : fM

N
(j, k) = vM

N (j)} ≡ KM
N (j)

is a non-empty sublattice of X = K, and the functions (M, j) → γM

N
(j) and (M, j) → λM

N (j) are increasing

in t = (M, j) on T = HN × S, which gives part (ii) for n = N .
Next we show part (iii) for n = N . In addition to (a), (b), (c), (d) above, we also have:

(e) the function g(x, t) above is supermodular (by part (i)) on the sublattice Z = HN × L of the lattice
X × T = K × (HN × S) ∼= HN × (S ×K);

(f) ΠTZ ≡ {t ∈ T : Zt 6= ∅}, i.e., ΠHN×S(HN ×L) = HN ×S is the projection of HN ×L onto HN ×S; and

(g) the function t → maxx∈Zt
g(x, t), i.e., (M, j) → vM

N (j) = maxk∈Dj
fM

N
(j, k) is finite, and consequently

supermodular, on ΠTZ = HN × S by Theorem 2.7.6 of Topkis (1998). Finally, this function has increasing
differences on HN × S by Theorem 2.6.1 of Topkis (1998).

This completes the proof of all three parts of the Theorem for the case n = N . They were obtained
as consequences of the fact that the function (M, j) → vM

N+1(j) has increasing differences. For the case

n = N − 1, repeat all the above steps, beginning with the fact that the function (M, j) → vM
N (j) has

increasing differences. We leave it to the interested reader to verify that these steps are valid for this case.
In view of the resulting validity of part (iii) for n = N −1, i.e., the function (M, j) → vM

N−1(j) has increasing
differences, we may continue in this way until we have verified parts (i), (ii) and (iii) down to the case n = 1.
This completes the proof of Theorem 3.3. �

We next observe that, in each period, the extreme optimal policies λN
n and γN

n
for the problems 〈φN 〉 are

monotonically non-decreasing in horizon length and state. As consequences of Theorem 3.3, we have:
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3.4. Corollary. Suppose Assumptions 1 through 6 hold. Fix arbitrary n ∈ N. Then the infinite policy
sequences (γN

n
)∞N=n and (λN

n )∞N=n are

(1) component-wise increasing in the finite horizon N ≥ n, i.e., ∀j ∈ S, if 1 ≤ n ≤ N < M , then

γN

n
(j) ≤ γM

n
(j) and λN

n (j) ≤ λM
n (j), and (2) increasing on S, i.e., ∀N ≥ n, if l ≤ j < i ≤ u then

γN

n
(j) ≤ γN

n
(i) and λN

n (j) ≤ λN
n (i).

By replacing all the lower bars in Theorem 3.3 by upper bars, we obtain:

3.5. Theorem. Suppose Assumptions 1 through 6 hold. Fix N ∈ N and let HN = {N,N + 1}. Then we

have the following for problem 〈φ
N
〉. For each 1 ≤ n ≤ N :

(i) the real-valued function (M, (i, k)) → f
M

n (i, k) satisfies

f
M∧M ′

n (i ∨ i′, k ∨ k′) + f
M∨M ′

n (i ∧ i′, k ∧ k′) ≥ f
M

n (i, k) + f
M ′

n (i′, k′),

for all (M, (i, k)) and (M ′, (i′, k′)) in HN × L;

(ii) the integer-valued functions (M, j) → γM
n (j) and (M, j) → λ

M

n (j) are decreasing on HN × L. Equiva-

lently, if l ≤ j ≤ j′ ≤ u and N ≤M ≤M ′ ≤ N + 1, then γM ′

n (j′) ≤ γM
n (j) and λ

M ′

n (j′) ≤ λ
M

n (j);

(iii) the real-valued function (M, j) → vM
n (j) has decreasing differences on HN × S. Equivalently, if

l ≤ j < j′ ≤ u and N ≤M ≤M ′ ≤ N + 1, then vM
n (j′) − vM

n (j) ≥ vM ′

n (j′) − vM ′

n (j).

Proof. The proof for Theorem 3.3 can be applied verbatim with the order in HN reversed. In short, M and
M ′ can be interchanged in the right hand sides of the claims in Theorem 3.3. Note that this proof requires
the other half of Assumption 6. �

As in Corollary 3.4, we have that the extreme optimal policies for the problems 〈φ
N
〉 are decreasing in

horizon length, and decreasing in state.

3.6. Corollary. Suppose Assumptions 1 through 6 hold. Fix arbitrary n ∈ N. Then the infinite policy

sequences (γN
n )∞N=n and (λ

N

n )∞N=n are (1) component-wise decreasing in the finite horizon N ≥ n, i.e., for

all j ∈ S, 1 ≤ n ≤ N < M implies γN
n (j) ≥ γM

n (j) and λ
N

n (j) ≥ λ
M

n (j), and (2) decreasing on S, i.e.,

∀1 ≤ n ≤ N , l ≤ j < i ≤ u implies γN
n (j) ≤ γN

n (i) and λ
N

n (j) ≤ λ
N

n (i).

4. Value and Policy Convergence

In this section, we show that the φ-optimal value vector v is the limit of the sequence of φN -optimal

value vectors vN . The same is true for the forecasts φ
N

and the vN , i.e., vN → v and vN → v (value

convergence). Moreover, there exists a sequence (δN )∞N=1 of strongly φN -optimal strategies which converges

to a strongly φ-optimal strategy δ. Similarly for the forecasts φ
N

, i.e., there exists a sequence (δ
N

)∞N=1 of

strongly φ
N

-optimal strategies which converges to a strongly φ-optimal strategy δ, i.e., δN → δ and δ
N

→ δ

in Π (policy convergence).
Part (1) of Corollary 3.4 states that, for each period n, both the largest and the smallest optimal policy

functions N → γN

n
and N → λN

n are pointwise increasing in N ≥ n, i.e., 1 ≤ n ≤ N < M implies γN

n
≤ γM

n

and λN
n ≤ λM

n , as functions on S. Therefore, we may let (δN
n )∞N=n represent a generic component-wise

increasing sequence of optimal policies to the problems 〈φN 〉∞N=n (for example, δN
n = γN

n
or λN

n ). Thus,

δN
n (i) ∈ KN

n (i), ∀1 ≤ n ≤ N , ∀i ∈ S, so that δN
n ∈ Ωn(φ(N,w)). Analogously, we may let (δ

N

n )∞N=n represent

a generic component-wise decreasing sequence of optimal policies to the problems 〈φ
N
〉∞N=n (for example,

δ
N

n = γN
n or λ

N

n ). Thus, δ
N

n (i) ∈ K
N

n (i), ∀i ∈ S, so that δ
N

n ∈ Ωn(φN (w)), ∀1 ≤ n ≤ N . Consequently, for
each N , we obtain the N -tuples

(δN
1 , . . . , δ

N
N ) ∈ Ω(1)(φ(N,w)) and (δ

N

1 , . . . , δ
N

N ) ∈ Ω(1)(φ(N,w))
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by Theorem 2.5. For convenience, we fix an arbitrary policy ζ in D, and define

δN = (δN
1 , . . . , δ

N
N , ζ, ζ, . . . ) and δ

N
= (δ

N

1 , . . . , δ
N

N , ζ, ζ, . . . ).

Note that any policy in a period after period N is φN -optimal and φ
N

-optimal, since rewards in these periods

are constant, and consequently do not distinguish between policies. Then δN and δ
N

belong to Π and (by

Theorems 2.4, 2.5) are strongly φN -optimal and strongly φ
N

-optimal, respectively, i.e., δN ∈ Ω(1)(φN ) and

δ
N

∈ Ω(1)(φ
N

), so that RN (δN ) = vN and R
N

(δ
N

) = vN , for all N ∈ N.

4.1 Lemma. Suppose Assumptions 1 through 6 hold. Then, for each n ∈ N, the policy sequences (δN
n )∞N=n

and (δ
N

n )∞N=n converge in D. In particular, the policy sequences (λN
n )∞N=n, (λ

N

n )∞N=n, (γN

n
)∞N=n, (γN

n )∞N=n

converge in D.

For each i ∈ S and n ∈ N, let δn(i) ≡ limN→∞ δN
n (i), δn(i) ≡ limN→∞ δ

N

n (i), in Di, and observe

that there exists M sufficiently large so that δn(i) = δN
n (i) and δn(i) = δ

N

n (i), ∀N ≥M . Also let

δn = (δn(l), . . . , δn(u)) and δn = (δn(l), . . . , δn(u)) in D,

and let δ = (δn)∞n=1 and δ = (δn)∞n=1, in Π. Clearly, limN→∞ δN = δ and limN→∞ δ
N

= δ, in Π. In
particular, this is the case for δ = γ or λ, and δ = γ or λ.

Next, we will show that the strategies δ and δ are φ-optimal, i.e., δ, δ ∈ Ω = Ω(φ).

4.2 Lemma. Suppose Assumptions 5 and 6 hold. Then the mapping sequences (RN )∞N=1 and (R
N

)∞N=1

converge pointwise to R on Π, i.e., for each π ∈ Π, limN→∞RN (π) = limN→∞R
N

(π) = R(π) in Rs.

4.3 Lemma. Suppose Assumptions 5 and 6 hold. Then the sequence of optimal values {vN}∞N=1 for problems

〈φN 〉∞N=1 converges to the total discounted expected reward for problem 〈φ〉 of strategy δ, i.e., limN→∞ vN =

limN→∞RN (δN ) = R(δ). Similarly for the sequence (vN )∞N=1 relative to problems {〈φ
N
〉}∞N=1, i.e.,

lim
N→∞

vN = lim
N→∞

R
N

(δ
N

) = R(δ).

In particular,

lim
N→∞

RN (λN ) = R(λ), lim
N→∞

R
N

(λ
N

) = R(λ), lim
N→∞

RN (γN ) = R(γ), lim
N→∞

R
N

(γN ) = R(γ).

We are now ready to prove that optimal strategies and optimal values to the finite horizon lower and upper
bound problems converge, as horizons go to infinity, to optimal strategies and optimal values respectively for
the infinite horizon problem, that is, δ and δ are φ-optimal (i.e., δ, δ ∈ Ω = Ω(φ)). Recall that δN ∈ Ω(1)(φN )

and δ
N

∈ Ω(1)(φ
N

), for all horizons N .

4.4 Theorem. Suppose Assumptions 5 and 6 hold. Then optimal strategy (policy) convergence holds, i.e.,

δ and δ are optimal strategies for problem 〈φ〉, limN→∞ δN = δ, and limN→∞ δ
N

= δ, in Π. In

particular, λ, λ, γ, γ are optimal for problem 〈φ〉, limN→∞ λN = λ, limN→∞ λ
N

= λ, limN→∞ γN =

γ, and limN→∞ γN = γ. Also, optimal value convergence holds, i.e., limN→∞ vN = limN→∞ vN = v, as

functions on S. More generally, for each n ∈ N, limN→∞ vN
n = limN→∞ vN

n = vn, as functions on S.

Outline of Proof. For each N ∈ N, we have that RN (δN ) ≥ RN (π), ∀π ∈ Π, since δN is optimal for 〈φN 〉.

By Lemma 4.3, limN→∞RN (δN ) = R(δ), and by Lemma 4.2, limN→∞RN (π) = R(π), ∀π ∈ Π. Hence,
R(δ) ≥ R(π), ∀π ∈ Π, so that for problem 〈φ〉, δ is an optimal strategy and R(δ) is the optimal value v.
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Since limN→∞ δN = δ, and limN→∞ δ
N

= δ, we have optimal policy convergence. Moreover, by Lemma 4.3,
we also have limN→∞ vN = limN→∞RN (δN ) = R(δ) = v = v1, so that optimal value convergence holds as
well.

For the last part, observe that although forecast φ is fixed, it is also arbitrary in Φ. Moreover, vN =

v(φN ), ∀N ∈ N. Thus, we have actually shown that limN→∞ v(θN ) = v(θ) = limN→∞ v(θ
N

), for each θ in

Φ. Also, for 1 ≤ n ≤ N , we have that vN
n = vn(φN ) = v((φN )(n)) = v((φ(n))

N−n+1
). Consequently, letting

θ = φ(n) ∈ Φ and M = N − n+ 1 in the previous limits, so that θN = (φ(n))N−n+1 , it follows that

v(φ(n)) = vn(φ) = vn = lim
N→∞

v((φ(n))
N−n+1

) = lim
N→∞

vN
n ,

for each n ∈ N. For the remaining case, this proof can be repeated verbatim with lower bars replaced by
upper bars. �

4.5 Lemma. Suppose Assumptions 5 and 6 hold. Then, for each n ∈ N, the function sequences (fN

n
)∞N=n and

(f
N

n )∞N=n converge pointwise on L to fn, i.e., limN→∞ fN

n
(i, k) = limN→∞ f

N

n (i, k) = fn(i, k), ∀(i, k) ∈
L.

4.6 Theorem. Suppose Assumptions 5 and 6 hold. Then the strategies δ and δ are strongly φ-optimal, i.e.,
δ, δ ∈ Ω(1)(φ). In particular, the strategies λ, λ, γ, γ are strongly φ-optimal, i.e., λ, λ, γ, γ ∈ Ω(1)(φ).

Proof. Since δN
n (i) ∈ KN

n (i), we have that vN
n (i) = fN

n
(i, δN

n (i)), ∀n ∈ N, ∀N ≥ n, ∀i ∈ S. But

limN→∞ vN
n (i) = vn(i), by Theorem 4.4, δN

n (i) = δn(i), for sufficiently large N , and limN→∞ fN
n (i, δn(i)) =

fn(i, δn(i)), by Lemma 4.5. Hence, vn(i) = fn(i, δn(i)), ∀i ∈ S, so that δn ∈ Ωn(φ), ∀n. Consequently,
δ ∈ Ω(1)(φ) by Theorem 2.4. Similarly for δ ∈ Ω(1)(φ). �

4.7 Lemma. Suppose Assumptions 1 through 6 hold. Then, for each N ∈ N, if l ≤ j < i ≤ u, then

vN
N+1(i) − vN

N+1(j) ≤ vN+1(i) − vN+1(j) ≤ vN
N+1(i) − vN

N+1(j).

For the following, recall (from section 2) the meaning of λ and γ, and the fact that λn and γn are the
smallest and largest policies (respectively) in Ωn, ∀n ∈ N.

4.8 Theorem. Suppose Assumptions 1 through 6 hold. Fix n ∈ N. Then, ∀N ≥ n, we have λN
n ≤ λn ≤ λ

N

n

and γN

n
≤ γn ≤ γN

n . Consequently, λn ≤ λn ≤ λn and γ
n
≤ γn ≤ γn, for all n, i.e., λ ≤ λ ≤ λ and

γ ≤ γ ≤ γ

Proof. In the proof of Theorem 3.3, replace {N,N + 1}, vM
n (j), λM

n and γM

n
by {N,∞}, vn(j), λn and γn,

respectively. Beginning with the fact (Lemma 4.7) that vN
N+1(i) − vN

N+1(j) ≤ vN+1(i) − vN+1(j), we see
that the entire proof of Theorem 3.3 is valid for N + 1 replaced by ∞. Then, it follows from part (ii) of the

resulting version of Theorem 3.3, that λN
n ≤ λn and γN

n
≤ γn. Analogously, repeat this proof with lower

bars replace by upper bars.

4.9 Corollary. Suppose Assumptions 1 through 6 hold. Then, for any n ∈ N and any N ≥ n:

(1) either λN
n ≤ λ

N

n ≤ γN

n
≤ γN

n or λN
n ≤ γN

n
≤ λ

N

n ≤ γN
n ;

(2) if λN
n = λ

N

n , then λM
n = λ

M

n , for all M ≥ N ;

(3) if γN

n
= γN

n then γM

n
= γM

n , for all M ≥ N .

5. Conditions for Optimal Policies

Let d ∈ D and n ∈ N. Recall that policy d is φ-optimal in period n if d ∈ Ωn(φ), i.e., di ∈ Kn(φ; i), ∀l ≤
i ≤ u. In this section, we investigate sufficient conditions for this to happen, particularly for the case n = 1,
i.e., for d to be a first-period optimal policy. However, we begin with a necessary condition.
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5.1 Theorem. Suppose Assumptions 1 through 6 hold. If d ∈ D is φ-optimal in period n, then λN
n ≤ d ≤ γN

n

component-wise on S, ∀N ≥ n.

Proof. By hypthesis, λn ≤ d ≤ γn. Hence, by Theorem 4.8, λN
n ≤ λn ≤ d ≤ γn ≤ γN

n , ∀N ≥ n, as
required. �

Next we turn to finding a sufficient condition. First, we require some preliminary results. Fix i ∈ S. Then
Di = {ai, . . . , bi} with cardinality |Di| = bi − ai + 1. If |Di| ≥ 3 and g is any real-valued function on Di,
then we will say that g is concave if g(i, k′′)− g(i, k) ≤ g(i, k)− g(i, k′), whenever ai ≤ k′ ≤ k ≤ k′′ ≤ bi.

Assumption 7. Assume that for each N ∈ N, and for each i ∈ S for which |Di| ≥ 3,

(i) the real-valued functions k → fN

1
(i, k) are concave on Di, and

(ii) the real-valued functions k → f
N

1 (i, k) are concave on Di.

Note that Assumption 7 is automatically met in the important special case where |Di| = 2, all i as in the
asset selling problem of section 7.

5.2 Lemma. Suppose Assumptions 6 and 7 hold. Let 1 ≤ n ≤ N .
(i) A policy d ∈ D is optimal for problem 〈φN 〉 in period n if and only if λN

n (i) ≤ di ≤ γN

n
(i), i.e., KN

n (i) is

the integer interval {λN
n (i), . . . , γN

n
(i)}, ∀i ∈ S.

(ii) Furthermore, for each i ∈ S for which |Di| ≥ 2,

fN

n
(i, k) − fN

n
(i, k − 1) is











> 0, if ai < k ≤ λN
n (i),

= 0, if λN
n (i) < k ≤ γN

n
(i),

< 0, if γN

n
(i) < k ≤ bi.

Analogously, we have the following:

5.3 Lemma. Suppose Assumptions 6 and 7 hold. Let 1 ≤ n ≤ N .

(i) Then a policy d ∈ D is optimal for problem 〈φ
N
〉 in period n if and only if λ

N

n (i) ≤ di ≤ γN
n (i), ∀i ∈ S,

i.e., K
N

n (i) is the integer interval {λ
N

n (i), . . . , γN
n (i)}, ∀i ∈ S.

(ii) Furthermore, for each i ∈ S for which |Di| ≥ 2,

f
N

n (i, k) − f
N

n (i, k − 1) is











> 0, if ai < k ≤ λ
N

n (i),

= 0, if λ
N

n (i) < k ≤ γN
n (i),

< 0, if γN
n (i) < k ≤ bi.

Remark. Lemma 5.2 requires Assumption 7 part (i), while Lemma 5.3 requires Assumption 7 (ii).

The following is our sufficient condition for policy optimality in a period.

5.4 Theorem. Suppose Assumptions 1 through 6 hold as well as either part (i) or (ii) of Assumption 7 (not

necessarily both). Let n ∈ N and d ∈ D. If there exists M ≥ n such that λ
M

n ≤ d ≤ γM

n
component-wise on

S, then d is θ-optimal in period n, for all θ ∈ Φ satisfying θi = φi, ∀i = 1, . . . ,M .

Proof. By Corollary 3.6, the function N → λ
N

n is component-wise monotonically non-increasing. Therefore,

by hypothesis and Theorem 4.8, we have that 1 ≤ n ≤ M ≤ N implies λN
n ≤ λ

N

n ≤ λ
M

n ≤ d, as functions
on S. Analogously, by Corollary 3.4, the function N → γN

n
is component-wise monotonically non-decreasing

on S. Therefore, by hypothesis and Theorem 4.8, we have 1 ≤ n ≤ M ≤ N implies d ≤ γM

n
≤ γN

n
≤ γN

n ,

as functions on S. Thus, λN
n ≤ d ≤ γN

n
, ∀N ≥ M , as functions on S. By Lemma 5.2(i), d is an

optimal policy for period n of problem 〈φN 〉, for all N ≥ M . Hence, by definition of optimal policy,
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fN

n
(i, di) = vN

n (i), ∀i ∈ S, ∀N ≥ M . But, by Lemma 4.5, limN→∞ fN

n
(i, di) = fn(i, di), ∀i ∈ S, and,

by Theorem 4.4, limN→∞ vN
n (i) = vn(i), ∀i ∈ S. Consequently, fn(i, di) = vn(i), ∀i ∈ S, so that d is an

optimal policy for problem 〈φ〉 in period n. But λ
M

n and γM

n
depend only on the period forecasts φ1, . . . , φM

and the quantities w and w. Consequently, d is also an optimal policy for each such problem 〈θ〉 in period n.
The proof for the other case is similar, using Lemma 5.3(i) in place of Lemma 5.2(i). �

6. Solution and Forecast Horizons

In this section we give sufficient conditions for the existence of solution and forecast horizons, as well as
algorithms for their determination.

Definition (solution horizon). We define a solution horizon for problem 〈φ〉 to be a finite horizon M for
which there exists a vector ν ∈ Rs and a first-period optimal policy d in D for the finite horizon problem
〈φ(N, ν)〉, i.e., d ∈ Ω1(φ(N, ν)) = Ω1(φ

N (ν)), ∀N ≥M . Of course, each N ≥M is also a solution horizon.

As a result, there exists a finite horizon version 〈φM (ν)〉 of problem 〈φ〉 which yields a φ-optimal first-
period policy. Note that this definition applies to any forecast satisfying Assumption 2. Moreover, all
homogeneous problems have solution horizons.

Suppose we are given the problem class Φ as above with fixed forecast φ.

Definition (forecast horizon). We define a forecast horizon for problem 〈φ〉 in class Φ to be a finite
horizon M for which there exists a first-period φ-optimal policy which is also first-period θ-optimal for any
forecast θ ∈ Φ whose forecasts in periods 1 ≤ n ≤M are the same as those of φ, i.e., there exists d ∈ Ω1(φ)
such that d ∈ Ω1(θ), for all θ ∈ Φ such that θn = φn, ∀1 ≤ n ≤M . Note that any horizon greater than M

is also a forecast horizon.

Note that our definition of forecast horizon is very weak in that it is problem dependent but algorithm
independent. If we can identify solution horizonsMn with vectors νn, one for each forecast φ(n), we can apply
a “rolling horizon” procedure to recursively solve problem 〈φ〉. That is, we first solve problem 〈φ(M1, ν1)〉
and implement an optimal first policy for φ, which is guaranteed to exist. After that, roll forward to the next
period, solve problem 〈φ(M2, ν2)〉 and implement an optimal first policy for φ(2), which is also guaranteed
to exist. Repeat this procedure ad infinitum. In this way, we are able to recursively construct a sequence of
φ-optimal policies (i.e., a strategy) which is guaranteed to be strongly φ-optimal (Theorem 2.5). Moreover,
we shall see (Theorem 6.2) that solution horizons exist for all the φ(n), for all n ≥ 1.

6.1 Lemma. Suppose Assumptions 5 and 6 hold. If M is a forecast horizon for problem 〈φ〉 and class Φ,
then it is also a solution horizon for 〈φ〉.

We next show the existence of solution horizons, and present an algorithm for determining such a horizon.

The crux of our algorithm is to successively solve problems 〈φN 〉 and 〈φ
N
〉, with increasing horizons N , until

we obtain optimal strategies whose first-period policy decisions satisfy our sufficient condition. We conclude
this part of the section by, in turn, providing a sufficient condition for this algorithm to terminate in a finite
number of steps.

Recall the meanings of δ and δ from section 4, as well as Assumptions 1-6.

6.2 Theorem. Suppose Assumptions 1 through 6 hold. Then there exists a solution horizon for problem
〈φ〉. Moreover, there exists a horizon M sufficiently large such that, if N ≥ M , then δN

1 = δ1 ∈ Ω1(φ) and

δ
N

1 = δ1 ∈ Ω1(φ), which are both φ-optimal first-period policies. In particular, this is true for δ = λ, γ and

δ = λ, γ. The previous is also true for each φ(n), n ≥ 1.

Proof. We have that the sequence (δN )∞N=1 converges to δ in the product topology of Π (Theorem 4.4).

Consequently, in particular, (δN
1 )∞N=1 converges to δ1 in D, i.e., the sequence of integers (δN

1 (i))∞N=1 converges

to δ1(i) in N, for each i ∈ S. Thus, eventually δN
1 (i) must equal δ1(i), for each i in the finite set S. Hence,
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there exists M sufficiently large such that, if N ≥ M , then δN
1 (i) = δ1(i), ∀i ∈ S, i.e., δN

1 = δ1. We
have the analogous result for δ. The proof is then completed by observing that δ1 and δ1 belong to Ω1(φ)
(Theorem 4.6). The last part follows from the fact that φ(n) ∈ Φ, ∀n. �

6.3 Theorem. Suppose Assumptions 1 through 7 hold. If there existsM ≥ 1 such that λ
M

1 ≤ γM

1
component-

wise on S, then M is a solution horizon for problem 〈φ〉.

Proof. This follows from Theorem 5.4 for n = 1 and the definition of solution horizon. �

SOLUTION HORIZON ALGORITHM
Suppose we are given φ ∈ Φ as in section 2 satisfying Assumptions 1 though 7.

INITIALIZE: Solve the infinite horizon homogeneous problems 〈ψ〉 and 〈ψ〉 to get w and w. Set N=1.

ITERATE: Solve the resulting problems 〈φN 〉 and 〈φ
N
〉 for γN

1
and λ

N

1 .

TERMINATE: If λ
N

1 ≤ γN

1
, stop. Then N is a solution horizon. Otherwise, replace N by N + 1 and

Iterate.

Remark. Note that the proof of Theorem 6.3 and the Solution Horizon Algorithm require only that either
(i) or (ii) of Assumption 7 holds.

We next turn to forecast horizons.

6.4 Lemma. Suppose Assumptions 1 through 6 hold. Suppose also that there exists a horizon N and a

period 1 ≤ n ≤ N for which λN
n = λ

N

n (respectively, γN

n
= γN

n ). Then λM
n = λ

M

n = λn = λn(φ) (respectively,

γM

n
= γM

n = γn = γn(φ)), for all M ≥ N .

6.5 Theorem. Suppose Assumptions 1 through 6 hold. Suppose also that there exists a horizon N for which

λN
1 = λ

N

1 (respectively, γN

1
= γN

1 ). Then such N is a forecast horizon for problem 〈θ〉 and class Φ, for all
θ ∈ Φ such that θi = φi, ∀i = 1, . . . , N .

Proof. Suppose λN
1 = λ

N

1 . Let θ ∈ Φ be such that θn = φn, ∀1 ≤ n ≤ N . For such θ, we have θN = φN

and θ
N

= φ
N

. Consequently, by hypothesis, λ1(θ
N ) = λ1(φ

N ) = λN
1 = λ

N

1 = λ1(φ
N

) = λ1(θ
N

). Lemma
6.4 is valid for fixed, but arbitrary, φ ∈ Φ. Hence, applying Lemma 6.4 to θ and φ, with M = N , we obtain

λ1(φ) = λ1 = λ
N

1 = λN
1 = λ1(θ

N ) = λ1(θ). Therefore, d ≡ λ1 is in Ω1(φ) and in each of the required Ω1(θ).
The second part is proved similarly. �

For notational convenience, given N ≥ 1 and φ ∈ Φ, we let

ΦN (φ) =
{

θ ∈ Φ : θi = φi, ∀i = 1, . . . , N
}

.

Definition (well-posedness). Define φ ∈ Φ to be well-posed if there exists N (depending on φ) such that
⋂

θ∈ΦN (φ) Ω1(θ) 6= ∅, i.e., there exists a policy which is first-period optimal for each forecast θ ∈ ΦN (φ).

Note that a problem is well-posed if and only if it admits a forecast horizon and that all stationary forecasts
are well-posed relative to the set of all stationary forecasts. In section 2, we gave an example of a problem
which is not well-posed. We next characterize forecast horizons for well-posed problems.

6.6 Theorem. Suppose Assumptions 1 through 7 hold. Let φ ∈ Φ be well-posed. Then:

(i) the set of positive integers N(φ) = {N ∈ N : λ
N

1 ≤ γN

1
} is non-empty;

(ii) for each N ∈ N(φ), we have {d ∈ D : λ
N

1 ≤ d ≤ γN

1
} ⊆ Ω1(θ), ∀θ ∈ ΦN (φ);

(iii) for each N ∈ N(φ), N is a forecast horizon.
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Proof. (i) Suppose that for each N , λ
N

1 � γN

1
. Then, for each N , there exists iN ∈ S for which λ

N

1 (iN ) >

γN

1
(iN). However, since S is finite, there must exist a state i and a subsequence (Nn)∞n=1 such that λ

Nn

1 (i) >

γNn

1
(i), ∀n. But limn→∞ λ

Nn

1 (i) = λ1(i) and limn→∞ γNn

1
(i) = γ

1
(i) (Theorem 4.4). Hence, λ1(i) ≥ γ

1
(i).

If λ1(i) > γ
1
(i), then for all n, Ω1(φ

Nn
) ∩Ω1(φ

Nn) = ∅, which is a contradiction by well-posedness and the

fact that φNn and φ
Nn

both belong to ΦNn(φ). If λ1(i) = γ
1
(i), then necessarily λ

Nn

1 (i) = γNn

1
(i), for large

n, since λ1(i) and γ
1
(i) are integers. This is also a contradiction.

(ii) For each N ∈ N(φ), we have that λ
N

1 ≤ γN

1
, so that by Theorem 5.4,

{d ∈ D : λ
N

1 ≤ d ≤ γN

1
} ⊆ Ω1(θ), ∀θ ∈ ΦN (φ).

Consequently,

⋂

θ∈ΦN (φ)

Ω1(θ) ⊇ {d : λ
N

1 ≤ d ≤ γN

1
} 6= ∅.

(iii) By definition, each N ∈ N(φ) is a forecast horizon. �

When the problem is well-posed (and only then), a forecast horizon exists. In this case, the Solution
Horizon Algorithm terminates in the discovery of a forecast horizon.

FORECAST HORIZON ALGORITHM

Suppose we are given a φ ∈ Φ which is well-posed.

INITIALIZE: Solve the infinite horizon homogeneous problems 〈ψ〉 and 〈ψ〉 to get w and w. Set N=1.

ITERATE: Solve the resulting problems 〈φN 〉 and 〈φ
N
〉 for γN

1
and λ

N

1

TERMINATE: Stop if λ
N

1 ≤ γN

1
. Then N is a forecast horizon. Otherwise, replace N by N + 1 and

Iterate.

6.7 Theorem. Suppose all seven assumptions hold. If problem〈φ〉 is well-posed, then the Forecast Horizon
Algorithm terminates in finite time.

Proof. This follows from parts (i) and (ii) of Theorem 6.6. �

Theorem 6.7 assures us that the Forecast Horizon Algorithm will successfully determine with finite data an
infinite horizon optimal first policy. See Figure 1 for an illustration of this discovery for a well-posed problem
(the graphs are drawn along continuous time for visual clarity).
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S e t o f a l l f o r e c a s t h o r i z o n s

O p t i m a l fi r s t p e r i o dp o l i c i e s f o r h o r i z o n N

H o r i z o n
γ

N

1

γ
N

1

λ
N

1

λ
N

1

δ
N

1

N(φ)

NF i g u r e 1 D i s c o v e r y o f F o r e c a s t H o r i z o n s N ( ϕ ) f o r W e l l / p o s e d P r o b l e m s ϕ i n Φ
Recall (Theorem 6.2) that solution horizons exist in general, and Di = {ai, . . . , bi}, ∀i ∈ S. The following

theorems provide conditions which are sufficient for a problem to be well-posed so that a forecast horizon
exists and the Forecast Horizon Algorithm terminates in finitely many iterations. Uniqueness of an infinite
horizon optimal first policy is sufficient but not necessary for this condition to hold.

6.8 Theorem. Suppose Assumptions 1 through 7 hold. Suppose also that if i ∈ S is such that γ
1
(i) < bi,

then either f1(i, γ1
(i) + 1) 6= f1(i, γ1

(i)), or f
N

1 (i, γN

1
(i) + 1) 6= f

N

1 (i, γN

1
(i)), for sufficiently large N . Then

problem 〈φ〉 is well-posed. In particular, if there exists a unique infinite horizon optimum for problem 〈φ〉,
then it is well-posed, since the condition is then satisfied.

Proof. Recall that by setting δ = γ in section 4, we have, in particular, that for each i ∈ S, γ
1
(i) =

limN→∞ γN

1
(i). Thus, in view of the discreteness of K, there must exist M sufficiently large so that N ≥M

implies γN

1
(i) = γ

1
(i), ∀i ∈ S. Hence, for all i ∈ S for which γ

1
(i) = bi, we have N ≥ M implies

γN

1
(i) ≤ γN

1 (i) ≤ bi = γ
1
(i) = γN

1
(i), i.e., γN

1
(i) = γN

1 (i). On the other hand, for i ∈ S for which γ
1
(i) < bi,

we have γ
1
(i) + 1 ≤ bi, so that, by hypothesis, f1(i, γ1

(i) + 1) < f1(i, γ1
(i)), since γ

1
∈ Ω1(φ). Necessarily,

by Lemma 4.5 and hypothesis (i) of Theorem 6.6, we may assume that M is sufficiently large such that

N ≥ M implies f
N

1 (i, γ
1
(i) + 1) < f

N

1 (i, γ
1
(i)), and that f

N

1 (i, ·) is concave (if |Di| ≥ 3), for all N ≥ M .

Consequently, for any such N , by Lemma 5.3(ii), it follows that γN
1 (i) < γN

1
(i) + 1 = γ

1
(i) + 1. Therefore,

for such N , γN
1 (i) ≤ γN

1
(i). However, by Theorem 4.8, it is also the case that γN

1 (i) ≥ γN

1
(i), so that

γN
1 (i) = γN

1
(i). Since the stopping condition of Theorem 6.5 is satisfied, the algorithm will stop at N , if not

earlier. The remaining part is proved similarly. �

Analogously, we have the following.

6.9 Theorem. Suppose Assumptions 1 through 7 hold. Suppose also that if i ∈ S is such that ai < λ1(i),

then either f1(i, λ1(i) − 1) 6= f1(i, λ1(i)), or f
N

1 (i, λ
N

1 (i) − 1) 6= f
N

1 (i, λ
N

1 (i)), for sufficiently large N . Then
problem 〈φ〉 is well-posed. In particular, if there exists a unique infinite horizon optimum for problem 〈φ〉,
then it is well-posed.

7. Application to Asset Selling

We return to the asset selling problem introduced in section 1. We will show how to solve every well-posed
problem in this class. In this setting, we have that K = {0, 1},

ik =

{

0, if k = 0,

1, if k = 1,
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and
L = {(i, k) : 0 ≤ i ≤ k, k = 0, 1} ∪ {(g + 1, 1)}

is a lattice (Assumption 1). (Note that it would not be a lattice had we chosen Dg+1 = {0} instead.)
For each period n, the reward function is defined by

ρn(i, k) =











−hn, if 0 ≤ i ≤ g, k = 0 ,

i, if 0 ≤ i ≤ g, k = 1 ,

0, if i = g + 1, k = 1,

where hn ≥ 0 is the n-th period holding cost, which is assumed to be bounded; thus, supn hn <∞. Hence, the
sequence (ρn)∞n=1 is indexed by the bounded sequence (hn)∞n=1 of non-negative real numbers with ρn ↔ hn,
and clearly, each function ρn(·, 0) is independent of the rejected offer 0 ≤ i ≤ g. Of course, once the asset
is sold, the reward in each later period is zero. The reward functions are easily seen to have increasing
differences on L (Assumption 2).

In order to define the transition structure, let

pn(i, j; k) =











qn(j), if 0 ≤ j ≤ g, k = 0 ,

0, if j = g + 1, k = 0; or 0 ≤ j ≤ g, k = 1 ,

1, if j = g + 1, k = 1.

Note that these probabilities are independent of i ∈ S (Assumption 3), and the sequence (pn)∞n=1 is indexed
by the sequence (qn)∞n=1 of probability mass functions on {0, 1, . . . , g} with pn ↔ qn, ∀n.

For each n, let pn, ρn be as above, and let φ = (φn)∞n=1 = (pn, ρn)∞n=1 be the fixed forecast. Clearly, φ
is parametrized by (1) the bounded sequence (hn)∞n=1 of non-negative real numbers, and (2) the sequence
(qn)∞n=1 of probability mass functions on the set {0, 1, . . . , g}.

From the definition of the transition structure, we see that for each k ∈ K, the cumulative distribution
functions Gn(0) and Gn(1) are given by

Gn(0;x) =











0, if x < 0,
∑⌊x⌋

j=0 qn(j), if 0 ≤ x < g + 1,

1, if x ≥ g + 1,

and

Gn(1;x) =

{

0, if x < g + 1,

1, if x ≥ g + 1,

from which it follows that the Gn are increasing in k ∈ {0, 1} (Assumption 4). Note that every forecast of
the form of φ is dominated by 0 < α < 1 (Assumption 5), since the ρn are bounded.

We next define F and Φ. Let F be the set of all (p, ρ) such that p is of the form of pn above for some
probability mass function q (p ↔ q), ρ is of the form of ρn above for some h ≥ 0 (ρ ↔ h), and Φ is defined
as in section 2. We think of Φ as the “asset selling” class of forecasts.

Next, in order to define the homogeneous forecasts ψ and ψ in Φ, define the transition probabilities pn = p

and p
n

= p to be of the same form as the pn, ∀n, with the corresponding probability mass functions qn = q

and q
n

= q given by

q(j) =

{

1, if j = 0,

0, if 1 ≤ j ≤ g,

and

q(j) =

{

0, if 0 ≤ j ≤ g − 1,

1, if j = g,

for each n in N. Then p↔ q, i.e.,

pn(i, j; k) = p(i, j; k) =

{

1, if j = 0, k = 0; or j = g + 1, k = 1,

0, if 1 ≤ j ≤ g + 1, k = 0; or 0 ≤ j ≤ g, k = 1,
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and p↔ q, i.e.,

p
n
(i, j; k) = p(i, j; k) =

{

0, if j 6= g, k = 0; or 0 ≤ j ≤ g, k = 1,

1, if j = g, k = 0; or j = g + 1, k = 1.

Also define the reward functions ρn = ρ and ρ
n

= ρ to be of the same form as the ρn, with hn = 1

and hn = 0, for all n. Then (p, ρ), (p, ρ) ∈ F and the resulting homogeneous forecasts ψ = (p, ρ)∞n=1 and
ψ = (p, ρ)∞n=1 clearly belong to Φ.

Next, consider the homogeneous infinite horizon problem 〈ψ〉, as in section 2, with associated w and
∆w. In each period n, if decision k = 0 is chosen, no matter what the offer 0 ≤ i ≤ g is, the process will
transition to state j = 0 in the next period. In this case, future offers and rewards are zero. Thus, it is
clearly optimal to accept any offer in the first period, since it is worse to pay holding costs and suffer the
effects of discounting, only to be faced with zero offers in the future. Thus,

w(i) = v(ψ; i) =

{

i, if 0 ≤ i ≤ g,

0, if i = g + 1,

which implies that

∆w(i) = ∆v(ψ; i) =

{

1, if 1 ≤ i ≤ g,

−g, if i = g + 1.

For (p, ρ) ∈ F , consider the infinite horizon problem corresponding to the forecast

ψ(p, ρ) = ((p, ρ), (p, ρ), (p, ρ), . . . ).

Let v(ψ(p, ρ); ·) and ∆v(ψ(p, ρ); ·) be as in section 2 for the forecast ψ(p, ρ), where p ↔ q and ρ ↔ h.

For convenience, let q̂ =
∑g+1

i=0 iq(i), so that q̂ < g and

αq̂ − h = f1(ψ(p, ρ); 0, 0) = f1(ψ(p, ρ); i, 0), ∀0 ≤ i ≤ g.

Then we may show that

w(p, ρ; i) = v(ψ(p, ρ); i) =











αq̂ − h, if 1 ≤ i ≤ αq̂ − h,

i, if αq̂ − h < i ≤ g,

0, if i = g + 1,

from which it follows that

∆w(p, ρ; i) = ∆v(ψ(p, ρ); i) ≤

{

1, if 1 ≤ i ≤ g,

−g, if i = g + 1.

Consequently, ∆w(p, ρ; i) ≤ ∆w(i), ∀i = 1, . . . , g + 1, as required.
Analogously, starting with problem 〈ψ〉, we can show that

w(i) = v(ψ; i) =











αg, if 0 ≤ i ≤ αg,

i, if αg < i ≤ g,

0, if i = g + 1,

which implies that ∆w(p, ρ; i) ≥ ∆w(i), ∀i = 1, . . . , g+1 (Assumption 6). Assumption 7 is automatically
satisfied since each Di contains only two elements. Thus, since all of our assumptions hold for the asset
selling problem, we may conclude all the results established in the previous sections.

Now fix n ∈ N. Then fn(g + 1, 1) = 0, fn(i, 1) = i, ∀0 ≤ i ≤ g , and, if 0 ≤ i ≤ i′ ≤ g, then
fn(i′, k) ≥ fn(i, k), for all k.
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We may define cn = fn(i, 0) = fn(0, 0), since it is independent of 0 ≤ i ≤ g. Necessarily,

vn(i) = max
k∈Di

fn(i, k) = max{cn, i} ≥ i,

so that, in particular,

v(i) = v1(i) =











c1, if 0 ≤ i ≤ c1,

i, if c1 < i ≤ g,

0, if i = g + 1,

Also define S∗
n to be the set of acceptable offers in period n, i.e.,

S∗
n = {i ∈ S : fn(i, 1) ≥ fn(i, 0)} = {i ∈ S : i ≥ cn}.

Since fn(g, 1) = g ≥ αg ≥ fn(g, 0), we see that g ∈ S∗
n. Define i∗n to be the smallest element (threshold) of S∗

n,
so that 0 ≤ i∗n ≤ g. (The threshold is the smallest acceptable offer in the period.) In fact, S∗

n = {i∗n, . . . , g},
since fn(·, k) is increasing in i. Consequently,

Kn(i) =











{0}, if 0 ≤ i < i∗n,

{0, 1}, if i = i∗n = cn,

{1}, if i∗n < i ≤ g + 1.

Moreover, optimal policies are threshold policies, i.e.,

Ωn = {(0, 0, . . . , 0, 1, 1, . . . , 1, 1)},

for n such that i∗n 6= cn, with the first k = 1 in the i∗n-th position, and

Ωn = {(0, . . . , 0, 1, 1, . . . , 1, 1), (0, . . . , 0, 0, 1, . . . , 1, 1)},

for n such that i∗n = cn, with the first k = 1 in the i∗n-th or the (i∗n + 1)-th position. Thus, Ωn is a singleton
if i∗n 6= cn; otherwise, it has two elements.

Since Assumptions 1-7 hold, we have

7.1 Theorem. Consider the asset selling problem class Φ with well-posed instance φ ∈ Φ. There exists
a forecast horizon for the associated problem 〈φ〉 which may be determined in finite time by the Forecast
Horizon Algorithm.

Proof. This follows from Theorem 6.7. �

We have from Theorem 7.1 that an optimal initial policy for every well-posed instance of the time-varying
asset selling problem can be computed with a finite number of periods of forecasted data.
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