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Abstract

The aeration of an oil film flowing between the faces
of two closely spaced circular plates (one stationary, and
one rotating) is examined experimentally, numerically,
and with an improved lubrication model. The gap
between the plates is small compared to their radii,
making lubrication theory appropriate for modeling
the flow. However, standard lubrication boundary
conditions suggested by Reynolds (1886) of p = 0 and
pn = 0 (Dirichlet and Neumann conditions on pressure)
at the gas-liquid interface do not allow for the inclusion
of a contact line model, a phenomenon that is important
in the inception of aeration. Hence, the standard theory
does not adequately predict the experimentally observed
onset of aeration. In the present work, we modify the
Neumann boundary condition to include both interfacial
tension effects and the dynamics of the interface contact
angle. The resulting one-dimensional Cartesian two-
phase model is formulated to incorporate the prescribed
contact line condition and tracks the interface shape
and its motion. This model is then implemented in an
axisymmetric, two-dimensional model of the rotating
disk flow and used to predict the onset of aeration for
varying surface tension and static contact angles. The
results of the modified lubrication model are compared
with experimental observations and with a numerical
computation of the aerating flow using a Volume of
Fluid method.

1 Introduction

In a disengaged or open clutch, one plate typically ro-
tates while the other is stationary. Oil is passed between
open clutch plates to provide lubrication during clutch
re-engagement and to transfer heat away from the plates.
But the shearing of this liquid between the open clutch

plates results in viscous drag. Consequently, it is bene-
ficial to introduce air between the two plates while they
are disengaged, reducing the drag and subsequent par-
asitic losses. Open-clutch drag has been examined by
Schade (1971), Lloyd (1974), Fish (1991), Aphale et al.
(2006) and Aphale et al. (2010). Schade first suggested
that air might be present between the plate surfaces at
high rotation rates, which was subsequently observed to
occur. Aphale et al. (2006) examined the conditions nec-
essary for incipient aeration, and Aphale et al. (2010)
studied how the presence of grooves on the face of one
plate can enhance the aeration process. In the present
work, we examine how lubrication theory, appropriately
formulated, can be used to predict the onset of aeration
between two rotating disk, the geometry of a typical set
of clutch plates. We will show how the interfacial prop-
erties of the fluid and gas (e.g. the oil and air) strongly
influence the conditions for the inception of aeration in
lubricating flow.

Figure 1 presents a schematic diagram of the flow ge-
ometry under consideration. Two disks, separated by a
narrow gap, are rotating about the same axis. A pocket is
present in one disk, producing an annular ring of inner
radius Ri and outer radius Ro. The minimum spacing
between the plates is h. The radial and axial dimensions
are r and z, as shown. A liquid is pumped into the cavity
between the disks at an inlet that lies along the axis of
rotation, and the liquid flows both circumferentially and
radially until it exits from the gap at the outer radii of the
disks. Important parameters include the flow rate of the
liquid, Q, and the properties of the fluid (usually an oil)
such as the density, ρ, viscosity, µ, and surface tension,
σ. The drag torque that is developed between the plates
is T , and in the present study, we will consider one plate
rotating with speed ω, and one stationary plate. Note
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Figure 1: Schematic of the experimental assembly (left)
with different modes of aeration shown (right). Liquid
flows in axially from a passage within the rotating shaft
and is expelled radially outward due to the centrifugal
action of the rotating plate. When aeration occurs, the
gas interface moves radially inwards, with the gas layer
forming on the stastionary plate.

that a finite flow of fluid through the gap can occur sim-
ply as a result of centrifuging, but in the present case,
the flow rate of liquid will be prescribed via pumping.

Aeration can occur naturally between the rotating
disks due to centrifugal forces that act on the liquid flow-
ing through the gap. Figure 1 also shows the type of
aerated flows that could develop in the gap between the
plates. Without aeration, the flow is considered fully
flooded. But, under certain flow conditions, a pocket of
gas can penetrate from the outer radii of the disks to par-
tially aerate the gap flow. The cavity usually forms on
the stationary plate. If the gas pocket extends across the
radial extent of the gap, the flow is fully aerated. Also
shown is an idealized topology of the air pocket that will
be discussed below. The onset of aeration on smooth
clutch plates (e.g. without surface grooves, roughness,
or other patterns) depends on a variety of flow and phys-
ical parameters, including the rotation rates of the plates,
the liquid flow-rate, the liquid properties and the gap
thickness. Air penetration toward the inner radii of the
clutch plates necessitates the formation of a free surface
and contact line on the drying, stationary plate. This
suggests that interfacial properties of the oil and plate
surfaces will be an important consideration.

The gap between the two plates is small compared
to the plate radii. Therefore, lubrication theory can
be successfully used to model the flow (Aphale et al.
(2006)). However, difficulties with the standard lubri-

cation model are encountered during the onset and de-
velopment of aeration since aeration in lubricating flows
depends strongly on the contact line condition. Reynolds
(1886) proposed a simple gas-liquid interface conditions
for lubricating flow where p = 0 and pn = 0 (Dirichlet
and Neumann conditions on pressure) at the gas-liquid
interface. The former interface condition is justified
since the pressure in the gas is negligible compared to
that of the liquid. And when the cavity is open to the en-
vironment (as in the case studied here), the gauge pres-
sure is considered zero.

In cavitating lubrication flows, the fluid continues to
flow beyond the interface, but only along one wall. We
will model this flow in a way that incorporates surface
tension and contact line physics. The aeration process
under consideration here is analogous to other interfacial
flows, such as the progression of long bubbles in tubes
modeled by Bretherton (1961). The flow was divided
into three regions: 1) the leading spherical cap, 2) the in-
termediate region where the shape of the bubble is set by
surface tension, and 3) the final asymptotic region where
the bubble and tube form an annulus and the thickness of
fluid in the tube remains unchanged. Bretherton’s anal-
ysis can be modified for flow between two flat plates,
and it provides a steady solution for the shape of the
interface and accurately predicts the pressure in the in-
termediate region. However, the solution employs two
assumptions that make it unsuitable for predicting aer-
ation in the present problem. First, the interface shape
is assumed to be steady in the frame moving with the
bubble. Second, a zero wall contact-angle is imposed on
the flow. Both these assumptions need to be relaxed for
modeling the aerating flow between the plates.

Dussan (1979) discussed the relationship between the
contact angle and speed of a moving contact line. Since,
the stress singularity at the contact line makes the math-
ematical problem ill posed, researchers have developed
empirical contact line models relating the two quanti-
ties that introduce contact line slip. The most commonly
used model has a hysteresis region where the velocity is
zero between an advancing and receding contact angle.
In the present work, we will employ a contact line model
based on the theory of Hocking (1976) that has no hys-
teresis region, as discussed below. We will combine this
contact line model with lubrication theory to predict the
unsteady aeration between the clutch plates. Finally, the
results of this model will be compared to experimental
observations of a canonical aerating flow and the results
of a Volume Of Fluid (VOF) numerical model formu-
lated with commercial code FLUENT R©.
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2 Experimental observation of aeration

An experimental apparatus was constructed to examine
and measure the aerating flow between a rotating and
stationary disk as shown in Figure 1. Aphale et al.
(2006) provide a detailed description of the setup, in-
strumentation, and procedure. The apparatus had Ri

= 7.20 cm, and outer radius Ro = 8.13 cm, making
Rm = (Ri+Ro)/2 = 7.7 cm and δR = (Ro−Ri) = 0.93
cm. The rotation rate of the moving disk was 0< ω <
3500 RPM. The minimum gap between the plate, h, was
varied between 100 ± 20 < h < 200 ±20 microns, and
plates were parallel to within ±10 microns. The torque
on the stationary disk was measured with a moment arm
and linear force transducer for 0 < T < 1.5 N m. A
syringe pump was used to meter the liquid flow between
the plates at a rate of Q = 100 ± 5 mL/s. The station-
ary plate was made from aluminum or aluminum coated
with a 100-micron thick layer of Polytetrafluoroethylene
(PTFE) (commonly known as Teflon). The rotating plate
was made from quartz for optical access.

The fluid used in the experiments was standard auto-
matic transmission fluid that was maintained at a nom-
inal temperature of 20 to 25 C. The fluid density was
ρ = 873 kg / m3, and the viscosity was µ = 0.048 N
s /m2. The surface tension of the fluid was measured
with a Langmuir type device (Lapham et al., 1999) to be
0.029 ± 0.001 N/m at the operating temperature. The
static contact angle was measured on the aluminum and
Teflon coated disks using a sessile drop experiment. The
measured static contact angle for oil on aluminum was
θC = 9o ± 1o and θC = 45o ± 1o for the oil on Teflon.

Figure 2 presents typical data for the drag torque, T ,
as a function of rotation rate, ω. The data are shown
for the aluminum disk and two runs of the Teflon coated
disk. Note that the drag torque increases with increasing
rotational speed until there is a sharp drop, correspond-
ing to the onset of aeration. The torque ranges from 0.2
< T < 0.8 N m over a range of 500 < ω < 3500 RPM
with the oil flow rate fixed at Q = 100 mL / s. These
data represent Reynolds numbers Re = ρωRmh/µ in
the range 7 < Re < 52, and Weber numbers We =
ρω2R2

mh/σ in the range 49 < We < 2400. The non-
dimensional flow rate Q = Qµ/ρω2R2

mh3 is in the range
7 < Q < 338, and the non-dimensional Torque, T =
Th/µωR4

m, is in the range 0.13 < T < 0.2.

3 Two-dimensional axisymmetric multi-phase
numerical modeling using the Volume of
Fluid method

A two-dimensional axisymmetric geometry conform-
ing to the above experimental geometry was imple-
mented for use in a Volume of Fluid (VOF) formu-

Figure 2: The experimentally obtained results of coat-
ing the Aluminum disk with Teflon. The two curves for
Teflon coated stationary plates are shown with squares.
The circles denote the case when the stationary plate sur-
face is aluminum.

lated in FLUENT R© simulation of the aerating flow.
GAMBIT R© was used to create the grid, which had
200 x 75 node points in the radial and axial directions,
respectively. The grid in the axial direction was re-
fined near the walls to resolve the steep flow gradients
expected there. At the inlet, natural boundary condi-
tions are prescribed while at the outlet ambient pressure
boundary conditions are used. The fluid flow passing
from the inlet at the axis, through the region with the
larger gap was first simulated and used as an inlet condi-
tion for the flow leading into the narrow gap at the outer
radii. The computations are first order accurate in time
and space. The time step used is 0.001 seconds.

Figure 3 presents a plot of the computed drag torque
versus rotational speed for the conditions matching that
of the experiment. As the speed of rotation increases,
the transmitted drag torque increases nearly linearly, as
expected. However, at a critical rotational speed, the
torque falls abruptly to near zero levels as a result of
aeration. The rotation speed at which aeration occurs is
sensitive to the surface tension, as shown in Figure 3,
and to the imposed contact angle, as shown in Figure 4.

The trend in figure 3 shows that increasing the value
of surface tension promotes aeration. This trend can be
explained on the basis of pressure-curvature relation. Ig-
noring viscous normal forces,

δp = σ(
1

R1
+

1
R2

) (1)

where δp is the pressure increase on the concave side
of the interface, and R1, R2 are the principal radii of
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Figure 3: The drag torque, T , versus the rotation rate, ω,
as computed with the Volume of Fluid model. The sharp
drop in drag torque at a particular rotation rate is coin-
cident with aeration. An increase in the surface tension
promotes aeration. The computations were performed
using the contact angle of the aluminum plate, and the
corresponding experimental results are shown (circle)

curvature of the interface. The shape of the aerating in-
terface is such that the concave side is exposed to gas,
and the higher pressure on the concave side of the inter-
face pushes the air toward the inner radius. Therefore,
for a given interface shape, increasing the magnitude of
the surface tension will promote aeration.

When the clutch aerates, a gas layer forms on the sta-
tionary plate since the centrifugal acceleration of liquid
near the stationary plate side is low compared to that
near the rotating plate. This leads to the formation of
a potentially unsteady contact line, where the liquid-gas
interface intersects with the stationary plate, and in the
two-dimensional case this line moves radially inwards or
outwards, depending on whether the clutch is aerating
or flooding. The results in Figure 4 were obtained by
varying the static contact angle while keeping the sur-
face tension fixed. A higher contact angle signifies an
oleophobic behavior of the stationary plate for the case
of an oil flow, which would promote the formation of an
air layer. However, the strong inertial action near the ro-
tating plate ensures that the oil continuously forms a thin
film on its surface. Thus, altering the contact angle of the
rotating plate will have a reduced effect on aeration.

The contact angle was modified experimentally by
coating the stationary plate with an oleophobic sub-
stance (Teflon). The experimental data presented in Fig-
ure 2 illustrates the effect of contact angle on the incep-
tion of aeration. The two data sets for the Teflon coated
plate are two separate experimental runs to illustrate the
experimental repeatability. We can see some difference

Figure 4: The drag torque, T , versus the rotation rate,
ω, as computed with the Volume of Fluid model, illus-
trating the influence of the contact angle on the inception
of aeration. A larger contact angle, θc, indicates a lesser
affinity for the liquid, and, as a result, aeration is pro-
moted as the contact angle increases.

in the drag torque when it is still flooded. However,
the aeration incipience is earlier than the plate without
Teflon. The experiments are performed at a fixed clear-
ance and oil flow rate, and the drive motor spins the
rotating disk at a low rotational speed to start and the
speed is increased until aeration is observed. These ob-
servations are consistent with the numerically predicted
influence of the contact angle variation on aeration.

4 Modification of the two-phase lubrication
model in two-dimensional flow

Both the experiments and the VOF computations
demonstrate that both the surface tension and flow
physics at the contact line significantly affects the in-
cipience of aeration. If lubrication theory is to be em-
ployed to predict the onset of aeration between the disks,
these physical processes, must be incorporated into the
lubrication model. In this section, we will formulate
the required modifications for an aerating flow in two-
dimensions.

If the static contact angle determines the hydrostatic
displacement of a liquid column in a capillary, the dy-
namic contact angle determines the rate of the displace-
ment. The non-integrable stress singularity at the con-
tact line when no slip is applied makes the mathemati-
cal problem ill-posed. Consequently, a simple analytic
model between the dynamic contact angle and contact
line speed is difficult to formulate. Various authors have
developed empirical contact line models, and Dussan
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Figure 5: Commonly used contact line models relating
the contact angle, θc, with the velocity of contact line,
Vcl. The common model is shown on the left, the model
proposed by Hocking (1976) is shown on the right.

(1979) provides a summary. The most common model
is illustrated in Figure 5 (on the left) and has a hysteresis
region bounded by an advancing and receding contact
angle. The simpler model (on the right) proposed by
Hocking (1976) has no hysteresis region and has a sin-
gle static contact angle, which is appropriate for smooth
surfaces. Here we will employ a model similar to that
of Hocking that has a hyperbolic tangent profile. Note
that the velocity of the contact line may be positive or
negative for the same contact angle.

Bretherton (1961) analyzed the motion of elongated
bubbles in tubes and observed that the actual velocity
of the bubbles was larger than that of the fluid, since
the bubbles ’did not behave like close-fitting pistons’.
In the absence of flow, the surface tension alone gov-
erns the shape of the bubble and the bubbled ends be-
come hemispherical caps. For sufficiently small values
of µU/s, Bretherton divided the bubble interface into
three regions: 1) the fully flooded region, 2) the interme-
diate region where the shape asymptotes to a final film
thickness, and 3) the final region where the film thick-
ness is constant and there is no pressure driven flow. He
assumed that surface tension alone governs the interface
shape and that viscous stresses are negligible away from
the wall. Thus, in this region px = −σy1xxx, where y1

is the location of the interface and is only a function of
x and t, where the subscripts x and y denote differentia-
tion with respect to the spatial coordinates. Bretherton’s
analysis was for a wall contact angle of zero. Our goal
here is to incorporate the moving contact line model of
Hocking described above with his analysis.

A modified Bretherton model is obtained by analyz-
ing the problem in the contact line frame of reference
where the contact line moves with the velocity Vcl. The
contact line often accelerates or decelerates and hence
the analysis should be performed in an inertial frame of
reference. However we assume that the forces due to
accelerations are small compared to other forces acting
on the interface. A schematic of the model geometry is
shown in Figure 6. In the contact line frame of refer-

Figure 6: The geometry of the two-dimensional model
using Cartesian coordinates. The coordinate system
moves with the velocity of the contact line, Vcl. The
fluid attaches to the moving plate while the gas attaches
to the stationary plate.

ence, the velocity of the top plate is U − Vcl, and that of
the bottom plate is −Vcl. It is best to analyze the flow
in three separate regions. Region 1 is the fully flooded
region (x < 0) where the momentum equation reduces to
the standard lubrication form

uyy = px/µ (2)

py = 0. (3)

(2) can be integrated using the no slip boundary condi-
tions. The pressure gradient px in this region is just a
constant and obtained from the flow rate Q′. The flow
region where the film thickness remains constant (α) is
Region 3. In this region the flow is purely wall driven
and p and px are both zero. The velocity profile is rec-
tilinear and the film thickness is calculated by a simple
mass balance in the contact line frame of reference,

Q′ − Vclh = (U − Vcl)α. (4)

The flow region from the contact line until where the
interface flattens out is Region 2. According to Brether-
ton, surface tension alone determines the interface shape
at sufficiently low µU/σ. We still assume (2) and (3)
to hold true; a good assumption to make if the contact
angles are low. Thus from (2) we again obtain the x
component of velocity and the flow rate. If the inter-
face shape does not change with time, then the flow rate
balance between Regions 2 and 3 leads to the following
condition on pressure

px = −3µU
(h− α)− y1

(y1 − h)3
. (5)

Here px and y1 are functions of x.
Combing this with px = −σy1xxx, the governing dif-

ferential equation for the steady shape of the interface
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is,

y1xxx = 3µU/σ
(h− α)− y1

(y1 − h)3
. (6)

The correct boundary conditions to be prescribed are
y1(0, t) = 0, y1x(∞, t) = 0, y1x(0, t) = tan(π − θ).
(5) is a nonlinear ordinary differential equation that can
be solved using a two-point shooting method. This mod-
ified Bretherton’s model for a flow attached to a flat plate
now incorporates the contact line model and predicts the
steady shape of a moving interface.

However, Bretherton’s model can be used to obtain a
posteriori the shape of the interface if Vcl is provided
but cannot predict when aeration will occur. Moreover,
Bretherton’s model is steady and aeration may only oc-
cur for unsteady flows. The contact line condition de-
termines Vcl/U and then (4) requires unphysical values
of Q/Uh and α/h, which must lie between 0 and 1 for
steady flows. An unsteady Bretherton model must then
be used. The interface shape is advanced by a time step-
ping procedure as described below. The normal stress
boundary condition is simplified to neglect the viscous
stresses terms. The pressure as x → ∞ is taken to
be zero (atmospheric) and air is assumed to be passive.
Thus, the expression for pressure on the fluid side of the
interface is

p(x, t) = −y1xx (7)

assuming a low slope consistent with the lubrication the-
ory. Using p(∞, t) = 0, px(x, t) and pxx(x, t) can be
computed. Here, y1x(0, t) is the tangent of the contact
angle determined from the contact line model, here mod-
eled by this simple expression

Vcl =
1

1000
tanh−1(θ − θst)(θmax − θst)−1, (8)

where θst is the static contact angle and θmax is the max-
imum contact angle in the appropriate quadrant. Then,
the x-component of velocity is integrated from the mo-
mentum equation. The zero tangential stress boundary
condition on the interface and no slip condition on the
top wall yield

u(x, y, t) =
px

µ

(y2 − h2

2
+ y1(h− y)

)
+U −Vcl. (9)

Note that in this region, u is a function of all three vari-
ables x, y, t, since px and y1 are x-dependent. We cal-
culate v from continuity,

ux + vy = 0. (10)

A straightforward integration of ux leads to the expres-
sion for v on the interface as

v(x, y, t) =
pxx

µ

(y1 − h)3

3
+

px

µ
y1x

(y1 − h)2

2
. (11)

Finally, the kinematic boundary condition is satisfied to
march in time and to solve for y1

y1t + u(x, y, t)y1x = v(x, y, t), (12)

at the free surface. (7)-(12) represent the set of equa-
tions to track the unsteady motion of the interface. The
reader should note that these equations are in the contact
line frame of reference and as such the flow rate is not
Q′ but Q′ − Vclh. Careful inspection of (7)-(12) indi-
cates that 2 boundary conditions on y1 and p are needed.
The equations are elliptic in nature and hence the bound-
ary conditions need to be specified on each end of the
boundary i.e. at x = 0,∞. These are y1(0, t) = 0 (since
the problem is analyzed in a contact line moving frame
of reference) and y1x(∞, t) = 0 on y1 and p(∞, t) = 0
and a suitable flow rate matching condition on px(0, t)
which will be described in detail later. The initial inter-
face shape y1(x, 0) is prescribed to start the numerical
integration with.

5 The pressure boundary condition at the
liquid-gas interface

The correct boundary condition on px must be derived
from the matching condition. The most commonly
and widely accepted boundary condition used is the
Reynolds condition (p = 0 and pn = 0) at the liquid-gas
interface, first proposed by Reynolds (1886) in his orig-
inal paper on hydrodynamic lubrication. In the present
case, the pn = 0 (Neumann) boundary condition needs
to be modified so the interface shape can be computed.
And, we must include a boundary condition that incor-
porates the contact line condition discussed above.

To do this, the non-homogeneous boundary condition
for pn is derived at the contact line based on the mo-
mentum equation and continuity. Referring to Figure 6,
the pressure gradient in Region 1 is set by the flow rate
and is a constant for a given geometry. Conserving x-
momentum equation in Region 1, subject to the no slip
boundary conditions on two walls, we can derive the ve-
locity profile. The flow rate is given by integration,

Q′ =
Uh

2
− h3px(x < 0)

12µ
. (13)

In Region, 2 the governing equation for momentum is
still the same but the boundary condition on the interface
is zero shear stress condition that causes a velocity dis-
continuity at x = 0. The origin has a stress singularity
that is well documented, especially if the contact line is
moving. We only crudely model that here by matching
fluxes across the x = 0 plane. Integrating this profile,
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we get for region 2

Q =
px(x > 0)

µ

(y3
1 − h3

3
+ y1h(h− y1)

)
(14)

+U(h− y1)− Vclh

Q is the flow rate at any x location and is a constant for
a steady interface. In the unsteady case, it is a function
of x.

The only location in Region 2 where we can match the
flow rates at all times is at x = 0 in a frame of reference
moving with the contact line. Thus,

Uh

2
− h3px(x < 0)

12µ
− Vclh =

px(x > 0)
µ

(
−h3

3
) (15)

+Uh− Vclh,

4px(x > 0)− px(x < 0) = 6. (16)

since y1 = 0 at the matching location. In (16), px

is nondimensionalized with µU/h2. Thus, the right
boundary condition to be prescribed that satisfies con-
tinuity and at the same time allows for a nontrivial inter-
face shape is

px = 3
(
1− Q′

Uh

)
. (17)

This is obtained on equating the incoming flow rate
Q′ − Vclh with the right hand side of (16) evaluated
at the contact line. This universal boundary condition
should be used instead of the standard Reynolds bound-
ary condition at the contact line location. The condi-
tion is truly independent of the velocity of contact line or
the dynamic contact angle and depends only on the non-
dimensional flow-rate Q′/Uh. If Q′/Uh is greater than
1, then px is negative and both the Couette and Poiseuille
action are assisting the oil and aeration is highly unlikely
to occur. When Q′/Uh is less than 1, Poiseuille and
Couette actions are in opposite directions and this would
promote aeration.

6 An axisymmetric model of a
two-dimensional flow

The formulation mentioned in section 4 can be modi-
fied to incorporate the effect of constant body forces.
This works well for cylindrical geometries provided
Ro−Ri � Rm. A shortcoming of modeling a cylindri-
cal geometry in this manner is that the influence of non-
constant body force cannot be incorporated. In the case
of clutches, the change in the body force as the contact
line moves from one radial location to another causes
the contact line to stop. This effect cannot be included
in the model of section 4. The model mentioned in this
section is derived using the same underlying principles
as explained above but employs cylindrical coordinates.

Figure 7: The geometry of the axisymmetric, two-
dimensional model. The two interfaces shown are for
the two ranges of contact angle, θc, given by a solid line
(0o < θc < 90o) and by the dash-dot line (90o < θc <
180o). The dashed line indicates the region where the
lubrication equations are solved. The solid line is the
portion of the interface that is modeled by a third order
polynomial. Three matching conditions link the two re-
gions at junction point A where R = -ro.

Let us consider an axisymmetric geometry when
90o < θ < 180o. The sketch and velocity components
are shown in fig 7. A local coordinate system with or-
thogonal basis R, z and θ is placed on and moved with
the contact line while the global system is fixed and has
the basis r, z and θ. The reduced momentum equations
are

−ρv2

r
= −pr + µuzz, (18)

−pz = 0, (19)
vzz = 0. (20)

where subscripts denote differentiation. The u and v
components of velocity are obtained by integrating the
above equations. The w component of velocity is ob-
tained from the continuity equation in radial coordinates

wz +
1
r
(ur)r = 0. (21)

The u, v, w components evaluated in the two-phase re-
gion with the interface shape defined as z1(r, t) are,

u =
pr

2µ
(z2 − 2z1(z − h)− h2)

− ρω2r

12µh2
(z4 − 4z3

1(z − h)− h4)

−Vcl,

(22)

7



7th International Conference on Multiphase Flow,
ICMF 2010, Tampa, FL, May 30 – June 4, 2010

w =
pr

2µ
z1r(z − h)2

− 1
µ

(
pr

r
+ prr)(

z3

6
− h2z

2
− z1(

z2

2
− hz)

+
h3

3
− z1h

2

2
)− ρω2r

2µh2
z2
1z1r(z − h)2 +

2ρω2

µh2
(
z5

60
− h4z

12

−z3
1

3
(
z2

2
− hz) +

h5

15
− z3

1h2

6
) +

Vcl

r
(z − h),

(23)

v = ωrz/h. (24)

The model requires one initial condition and two condi-
tions on pressure and the interface, z1, at R = 0 and∞.
The boundary condition on pressure at the contact line
is derived in a similar manner, as the Cartesian model,
based on continuity and momentum equation. However,
as the contact line moves to a different radial location,
this boundary condition changes. This dependence of
pr(R = 0) on the value of radius r captures the effect
of the non constant body force and the contact line stop-
ping at a different radius for same flow rate and rotation
speed.

pr(R = 0) = (Q′ − ρω2rh3

15µ
)(−3

µ

h3
). (25)

Knowing u, v and w and the boundary conditions on z1

and p at R = 0,∞ we advance interface shape using the
kinematic boundary condition.

In the case where 0o < θ < 90o and the oil wets
the plate, the above analysis needs to be modified. For
one, the shape of the interface is shown in figure 7 and
is multivalued in z for a given radius. Secondly, the high
slope near the nose of the interface inhibits the use of lu-
brication theory throughout. The lubrication theory can
be applied in the upper and lower branches of the in-
terface and the nose approximated as a spherical cap or
some other polynomial that is atleast C1 continuous, that
is, the z location and the slope at the z location match.
But the velocities in the lower branch are very small, so
we choose to approximate the entire nose and the lower
branch using a suitable ordered polynomial.

The first point in the upper branch (point A) where the
lubrication equations are solved communicates with the
third order polynomial. The slope and the z location of
this point are used as two junction conditions. The third
condition is the ‘pinned’ condition at the contact line.
The fourth condition is based on pr and the incoming
flow rate similar to section 5. These four conditions de-
fine a third-order polynomial. Let us define the problem
and the solution method.

The location of the interface at any time is z1(r, t).
ro is the R location of the point A in the upper branch
where the lubrication equations are solved from. To en-
sure that the lubrication approximations are valid at all

points lying at R > ro, ro is defined as a point where
the slope of z1 is at a predetermined value. This value
is arbitrarily chosen to be between 0.9 and 1.4. We will
discuss about the sensitivity of this value on the final so-
lution below. During the calculation, the computational
points are moved so that ro remains at the location where
the slope is at the predetermined value and the lubrica-
tion equations are valid.

The slope z1r(ro, t) and location z1(ro, t) are the two
junction conditions prescribed to define the polynomial.
The pinned condition at the contact line is the third con-
dition. The fourth condition required is obtained from
the flow rate such that

Q =
∫ h

z1(ro)

udz. (26)

where u, v and w are given by (22-24). The polynomial
is thus modified at the end of each time step depending
on the slope and z location at ro.

The selection of a third-order polynomial based on the
junction conditions ensures that the initial condition is
very smooth. Kinematic boundary condition is used to
advance the shape of the interface but a minor modifica-
tion is now needed since we cannot take partial deriva-
tives with respect to time if r is not constant due to slid-
ing. Thus the kinematic boundary condition is

dz1

dt
+ (u− unode)

∂z1

∂r
= w, (27)

where unode is the velocity of sliding nodes in the upper
branch to accommodate changing slope. The method-
ology for modeling the axisymmetric ‘wetting’ case
involves a region where the lubrication equations are
solved for (r > ro) and a third order polynomial approx-
imating the nose and the lower branch. Explicit solu-
tions of these non-linear equations are unstable. Hence,
we employ a predictor corrector scheme, where for each
time step, the first iteration is done explicitly followed by
three corrector iterations. The measured contact angles
were used in the model, and the comparison between the
theory and experimental inception conditions is good.
The comparisons of this model’s results with the clutch
experiment are shown in Figure 8. The data in the single-
phase region is obtained from Aphale et al. (2006).

To ensure robustness of the model, we performed a
few tests. The model was run for two different values
of slopes 0.9 and 1.2 to check the sensitivity on the pre-
dicted onset of aeration. The dependence of changing
the slope was negligible. Second, we determined that it
was acceptable to use a polynomial in the lower branch
in the vicinity of the contact line instead of resolving this
region using the lubrication equations. The curvature of
the polynomial, as it changes its shape is compared with
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Figure 8: The drag torque, T , versus the rotation rate,
ω, as computed with the axisymmetric, two-dimensional
lubrication model, illustrating the influence of the con-
tact angle on the inception of aeration. The experimental
data for the aluminum plate θc = 9o (o) and the Teflon
coated plate with θc = 45o (square) are shown with the
analytical results with θc = 9o (solid line) and θc = 45o

(dashed line). A larger contact angle, θc, indicates a
lesser affinity for the liquid, and, as a result, aeration
is promoted as the contact angle increases.

the curvature given in this region using the standard lu-
brication equation, and they are equivalent. Finally, the
aeration onset differs depending on the initial location
of the interface, whether it is at the inner radius or outer
radius owing to the difference in the body force. This
‘hysteresis’ region in the model is 100-150 rpm and on
the same order as observed in the experiments.

7 Conclusions

The effect of surface tension and contact angle on the on-
set of aeration in lubricating flows is significant. Hence,
lubrication models that include aeration must consider
the contact line conditions. The simple model presented
in this work is an extension of that presented by Brether-
ton for aerating lubrication flow in axisymetric coordi-
nates. The model includes the dynamics of the contact
line, and it was shown to capture the basic elements
of the aerating flow between a rotating and stationary
disk with varying contact angle. The modified Brether-
ton’s analysis can be used a posteriori to predict the
shape of the interface if a steady state solution exists,
while the Reynolds boundary condition of pn = 0 yields
a trivial solution for the shape of the interface for two-
dimensional flow. Thus, the standard Reynolds bound-
ary condition needs to be modified. We propose a simple

boundary condition as an alternative based on continuity
and momentum equation. The boundary condition de-
pends on the non-dimensional flow rate. The shape of
the interface must be tracked and include the underlying
shape and curvature of the interface near the contact line.
And, this model was successfully used to predict the on-
set of aeration for the oil flow between two rotating disks
with varying levels of oleophobicity.
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