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Abstract 
 
Non-wetting liquid slug motions in an axially oscillating horizontal circular tube are 

studied. We investigate the oscillatory dynamic contact lines that constitute an edge 

boundary condition for liquid interfacial flow with solid boundaries. To induce 

oscillatory motion of the liquid slug, the tube is oscillated horizontally along its axis 

where surface tension and inertia are dominant. Based on the observations, an oscillatory 

contact line model that considers the unsteady effect is proposed. When the slug 

acceleration is not large, the meniscus is always a spherical cap and the slug motion can 

be approximated by an ordinary differential equation in time (a zero dimensional 

simulation).  

 For sufficiently slow motion, the model approaches Dussan’s (1979) 

unidirectional steady contact line model. For minimal contact line stick, commonly called 

contact angle hysteresis, the contact line motion versus contact angle polar plot obtained 

from both experiments and simulation have elliptical trajectories. When the slug coats the 

tube with a macro-scale liquid layer for larger forcing velocities, the contact line relation 

is similar to earlier experiments by Ting & Perlin (1995). This relationship follows the 

standard definition of hysteresis in that the contact angle depends on the time history of 
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the contact line velocity, whether or not stick occurs. The model predictions agree 

qualitatively with the experiments. When the tube oscillation is asymmetric directionally 

(e.g. a truncated periodic t2 function), a net slug displacement relative to the tube is 

generated. The pumping effect has potential applications for fluid handling in 

microgravity or the control of small liquid drops in earth based labs.  

 
1. Introduction 

The moving contact line problem has attracted much attention due to its 

applications in wetting, coating, and capillary wave phenomena, to name a few. A non-

integrable stress at the contact line occurs if no-slip is assumed and the Newtonian fluid 

and non-deformable solid assumptions are satisfied simultaneously (Dussan 1976). The 

difficulty in treating the contact line problem conventionally arises from the failure of 

continuum fluid mechanics in the immediate vicinity of the contact area. The nature of 

the problem suggests the use of molecular mechanics (Thompson & Banavar 1989, 

Koplik, Banavar & Willemsen 1989). However, the difficulty of a molecular dynamics 

simulation is not only the vast computation power required to simulate real problems, but 

that a realistic universal model for the micro-scale physics does not yet exist. 

Consequently consistent results have yet to appear (Bhatt, Newman & Radke 2002). 

Two popular choices have been introduced to remove the singularity depending 

on the specific system. For non-wetting fluids, a no-slip wall condition is usually relaxed 

in the immediate vicinity of the contact line. This is not only easier to implement, but also 

consistent with molecular dynamics simulation (Thompson & Robbins 1989, Koplik & 

Banavar 1995). Slip models allow solutions of the steadily moving contact-angle problem 

for creeping flow of fluid advancing on a dry solid surface (Huh & Mason 1977, Hocking 
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& Rivers 1982, Cox 1986, Dussan, Ramé & Garoff 1991). Numerical approaches for the 

near contact line flow are usually based on a slip boundary condition (Lowndes 1980, 

Sheng & Zhou 1992).  

Precursor films also eliminate the singularity naturally. One can argue that 

microscopically, there is always a condensed liquid film ahead of a moving contact line 

especially for small static contact angles. With a lubrication approximation, this approach 

is particularly useful in treating slow drop spreading or creeping flows (Chang 1994, 

Schwartz & Eley 1998). In cases where the film is thin (less than 100 nm for water films), 

disjoining pressure should be included (Derjaguin, Churaev & Muller 1987, Mitlin & 

Petviashvili 1994). 

A complete analysis of many contact-line related fluid dynamic problems rely on 

an appropriate contact line model. For steady, unidirectional creeping flows, analyses 

(Cox 1986, 1998; Dussan et al. 1991) and numerical studies (Somalinga & Bose 2000) 

show that over an appropriate range of capillary number Ca (defined as σµ /rV , where µ  

is the dynamic viscosity, Vr is the contact line velocity relative to the solid, σ is the 

surface tension), the velocity field and the meniscus slope in a geometry-independent 

region can serve as material boundary conditions for outer flows with dynamic contact 

lines. Apparently, a microscopic study of the moving contact-line problem can potentially 

provide geometry-free boundary conditions for the outer flow. However, the physics in 

the immediate vicinity of the contact line is either unclear (the validity of the constant 

surface tension assumption and the Newtonian constitutive relation, exactness of inter-

molecular force/disjoining pressure, etc.) or difficult to measure (Decker, Frank, Suo & 

Garoff 1999). On the other hand, the apparent contact angle and the flow field are readily 
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accessible by more conventional measurements where classic hydrodynamics is valid. 

The dynamic contact-line models based on experiments are capable of solving problems 

beyond the reach of current full scale analyses or numerical simulations. Therefore the 

apparent contact angle is studied in this paper. 

Although they are often encountered in applications such as capillary wave 

generation and contact line damping (Hocking 1987, Miles 1990), heat transfer (Tilley, 

Davis & Bankoff 2001), etc, less is known regarding oscillatory contact lines. The 

unsteady inertia effects are usually not negligible; therefore analyses similar to 

unidirectional creeping flow are difficult. Contact line models typically relate the contact 

angle θ  (or local interface slope xη , where η  is the interface displacement relative to the 

static one, x is the coordinate normal to the solid, and the subscript represents partial 

differentiation) to the contact line velocity rV . Thus flows with a contact line boundary 

are well-posed. Young & Davis (1987) were among the first to study oscillatory contact 

line motion and they simplified Dussan’s model (for unidirectional creeping flow, 1979) 

to figure 1(a). Their analysis considered slow oscillatory contact line motions and was 

quasi-static. Hocking (1987) applied the same contact line model in studying waves 

generated by a vertically oscillating plate penetrating the free surface and in studying the 

capillary gravity standing wave damping problem. He also gave an analytical solution 

when contact angle hysteresis was neglected as shown in figure 1b. In studying a similar 

capillary gravity wave problem, Miles (1990) argued that the contact angle can be 

proportional to contact line velocity, but that there should be a phase lag for oscillatory 

motions. This model uses a complex quantity for the proportional constant of Hocking 

(1987) assuming a simple harmonic analysis. It is sketched in figure 1(c). 
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It should be noted that in formulating the gravity capillary waves generated by a 

harmonically oscillating plate, both Hocking (1987b) and Miles (1990) assumed that the 

generated wave is simple harmonic in time. Even the simplest edge condition linearly 

relating θ  (or meniscus slope if it is small, Hocking 1987) and rV  does not produce a 

wave that is simple harmonic in time near the oscillating contact line (as shown in the 

Appendix). Hocking’s model is consistent until a time-harmonic analysis is assumed. 

Miles’ model, however, implies that the wave is simple time harmonic apriori. Thus, 

although the resulting ellipse-like contact line relation poses a possible model for 

oscillatory contact lines, the simple modeling by Miles is not viable.  

           
(a) Young & Davis (1987).        (c) Hocking (1987), no stick.  

              

(c) Miles (1990), (b) modified by phase lag.     (d) Wölk (1997), Bian et al. (2003) 

Figure 1. Sketches of previous oscillatory contact line models. (a) A direct simplification from Dussan’s 
(1979) unidirectional model. One of the simpler variations is a proportional relation used by Hocking 
(1987) by neglecting contact angle hysteresis as shown in (b). (c) Miles (1990) used a complex proportional 
constant for oscillatory motion by explicitly assuming that the contact line velocity and contact line angle 
are simple harmonic in time. (d) A more qualitative model with linear relation between contact line 
displacement and interface slope. 
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Other researchers studied limiting cases applying similar contact line models as in 

figure 1(a). For small interface perturbations, contact angles can be within the advancing 

and receding values and remain pinned (Benjamin & Scott 1979, Graham-Eagle 1983, 

Miles 1987, Bian et al. 2003). West’s (1911) measurement on a moving mercury column 

in a capillary tube suggested a contact line model similar to figure 1(a) with zero slope. 

Kalinitchenko et al. (1998) took advantage of the same nonlinearity and generated mean 

motion of a liquid interface with sinusoidally changing pressure. A more qualitative 

model describing the linear relation between interface slope and contact line 

displacement, shown in figure 1(d), has also been used for oscillatory contact line 

motions (Wölk, Dreyer & Rath 1997, Bian et al. 2003). It should be noted that this edge 

condition is non-dissipative and compatible with the assumption of a time harmonic 

interface for capillary wave motion. 

 The accuracy of these oscillatory contact line models, however, has not been 

properly evaluated. Cocciaro, Faetti & Festa (1993), Ting & Perlin (1995) were the first 

to measure the oscillatory contact line motion and attempt to specify the boundary 

conditions. The proposed proportional coefficient λ  between the contact angle and the 

contact line velocity, or the slope in figure 1(a) was measured, but was found to be 

velocity dependent. A typical oscillatory contact line relation as measured by Ting & 

Perlin (1995) is shown in figure 2. This relationship looks much different than the 

previously proposed contact line models. We will show this also agrees with some 

observations in our experiments.    
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Figure 2. A typical measurement for the oscillatory contact line relation by Ting & Perlin (1995) that 
resembles a fattened, inverted ‘T’. Data are from a glass plate oscillating vertically in a water bath with 
frequency f = 12 Hz and amplitude a = 3 mm. 

 
To facilitate studying contact lines, this investigation considers driving a slug by 

directional forcing asymmetry. The oscillatory slug flow has applications for modeling 

multi-phase flow and wave propagation in porous media. For example, Graham & 

Higdon (2000) demonstrate multiphase flow enhancement in tubes with pressure 

oscillation or pulsing coupled with a mean pressure gradient. For wetting cases, similar 

steady problems have been studied experimentally (Taylor 1961), analytically 

(Bretherton 1961) and numerically (Ruschak 1980, Martinez & Udell, 1989, Giavedoni & 

Saita 1997). Even for perfectly wetting liquids without contact lines, interfaces in small 

pores account for a much larger drag than viscosity shear for standard pipe flows 

(Olbricht 1996). In non-wetting cases, the problem becomes more difficult due to the 

moving contact line as well as an unsteady, higher Reynolds number flow. An 

experimental study is thus more practical to investigate the problem. 

In this paper, a contact angle–contact line velocity relation is presented and 

discussed for an immiscible liquid slug in a circular tube with oscillatory forcing. The 
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apparent contact angle is measured using an indirect method assuming spherical menisci 

discussed in Section 2. In Section 3, a universal contact line model is proposed based on 

the observations of oscillatory contact lines. The slug is driven either by tube harmonic 

oscillation along its axis or by an oscillating pressure gradient. In Section 4, slug net 

“pumping” motion is introduced by directionally asymmetric (i.e. a periodic truncated t2 

motion profile) tube oscillation. The slug motion is simulated by a 0-D approach and the 

optimal pumping efficiency is sought experimentally and numerically. The paper is 

summarized in Section 5 and further studies are suggested. 

 
2. Experimental apparatus and procedures 

2.1 Experimental apparatus 

The experimental facilities include one electrodynamic shaker, one feedback controlled 

servo-motor driven linear positioner, an Argon-ion 6-Watt laser, a Kodak high speed 

video imager, all setup as shown schematically in figure 3. Two oscillators (shaker and 

linear positioner) span the system frequency range from slightly less than 1 Hz to more 

than 20 Hz. Both follow prescribed motions. The prescribed motion profile is either a 

digital signal to the positioner or an analogue voltage signal to the electrodynamic power 

module. Two precision ground (to )025.0 mm±  borosilicate glass tubes with internal 

diameters mmD 78.1=  and mm56.3  and square outer cross-sections, 

mmmm 7.127.12 ×  may be coupled to the shakers. The square shape is for reduced 

optical distortion.  The liquid slug is formed from HPLC-grade (high-pressure liquid 

chromatography) water. The water is fluorescein treated to respond to 514.5 nm laser 

light to increase the image contrast, decreasing the static surface tension by 

approximately 3.5 dyne/cm (Ting & Perlin 1995). It is not clear whether the dye alters the 
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wetting properties of the water slug on borosilicate glass – this is not a problem here as 

long as it is consistent. To better view the flow a laser sheet is produced by using a 

cylindrical lens and focusing optics to illuminate the water slug as desired. The imaging 

system is a Kodak Ektapro CID camera and EM1012 processor with a resolution of 

239192×   pixels; and the maximum frame rate is 1000 full frames per second.  The total 

memory is capable of storing 409 complete frames. A sample video image is shown in 

figure 4. 

 

 

Figure 3. The two experimental setups: The upper schematic shows a lead screw converting motor rotation 
to linear motion for larger stroke motion and lower frequency (0 to 3 Hz) forcing. The lower schematic 
shows the electrodynamic shaker used for higher frequencies (2 to 1000 Hz) and smaller stroke amplitude.  
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Figure 4. A sample image of a liquid slug. A vertical laser sheet is cast through the tube axis from the right 
upper side. The left meniscus is illuminated by the same laser sheet redirected by a dielectric mirror. 

 
The signal generator is a Dell PC using Windows 2000 with a National 

Instrument data acquisition board (PCI-6052E) and a Labview (6.0) program. A 

prescribed periodic 2t  function (see figure 21) horizontally drives the tube displacement 

to generate mean slug motion. To simplify the analyses and reduce the load on the 

oscillator, the periodic 2t  function is represented by a filtered 10-term Fourier Cosine 

expansion. This expansion ensures a smooth second derivative (acceleration). The linear 

motion system shown schematically in figure 3 is close-loop controlled and the actual 

motion can be monitored continuously. The electrodynamic shaker is open-loop 

controlled – the actual input signal is gain and phase compensated to achieve the required 

motion profile. The actual tube motion signal from a linear displacement sensor is 

recorded using an additional data acquisition channel and compared with the input signal. 

We tested sinusoidal and asymmetric tube motion profiles (saw-tooth and periodic t2 

function).  

2.2 Measurement procedures and image corrections  

Preparation of the glass tube and slug of water is as follows: The glass tube is flushed 

with tap water, then with ethyl alcohol, and last it is flushed with HPLC (high pressure 

liquid chromatography) water. To test the cleanliness, an HPLC water slug is forced 
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through the tube by tilting, and if no visible satellite droplets or visible film remains, the 

cleaning procedure is assumed successful. The procedure is otherwise repeated. The tube 

is then dried by clean, dehydrated, pressurized air. Next, a fluorescein treated HPLC 

water slug is inserted to a preset location using a sterile syringe. The slug length is 

measured relatively easily with a micrometer from contact line to contact line. To 

increase the uniformity of the contact line and to improve the consistency of the 

experiments, the tube is pre-wetted by hand tilting and allowing the slug to traverse 

nearly all the tube length twice. Again, no visible satellite water droplets or film can 

remain or the tube is deemed contaminated and the cleaning process is repeated. Each 

experiment records 409 images of 8-bit grey scale resolution, as shown in figure 4 and 

sketched in figure 6.  

The glass tube acts as a concave cylinder lens distorting the recorded images. 

Figure 5 shows that the diameter of the illuminated slug (left figure with concave 

meniscus) appears smaller than the actual slug diameter or inner tube diameter due to the 

refraction by the tube glass. Corrections are therefore required for the images except 

when using a liquid with the same index of refraction as glass tube (borosilicate glass 

index 477.1=gn  for 514.5 nm laser). Here, water ( )33.1=wn  forms the slug (to take the 

advantage of its large surface tension to minimize gravity effects) so that optical 

corrections are required. Also, the convex meniscus has increased optical distortion as the 

light travels through air then glass rather than through water then glass. Using ray tracing, 

a non-distorted image can be constructed.  
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Figure 5. An image of a slug within the circular glass tube with square outer cross section (left). The right  
sketch shows that the slug appears smaller than it actually is due to light refraction by the tube wall. An 
undistorted image can be obtained by ray tracing. 

 
The apparent contact angles are measured here by assuming a spherical meniscus. 

In figure 6, a circle is fitted to match the distortion corrected image. The actual meniscus 

is represented reasonably by a circular arc within our experimental accuracy. Therefore 

for the subsequent image analysis, only three points, A, B and C in figure 6 are required 

to determine the upper and lower contact angles, uθ  and lθ  respectively.  

Each frame of the recorded video image consists of 239192×  8-bit pixels. The 

contact line edge is delineated by the maximum grey scale gradient. The tube position is 

determined from a shadow cast by a marker on the outside of the tube. Using the data 

structure of the output video, a program analyzes the images, and the positions A, B, C 

shown in figure 6 are determined as is the synchronized tube position. The contact angle 

and relative contact line velocity then are obtained as functions of tube position and time.  

 

Side view End view 

A
ct

ua
l s

iz
e 

Im
ag

e 
si

ze
 



 13 

 

Figure 6. Contact angle measurement with the spherical meniscus assumption. Using positions A, B, and C 
after image distortion correction, the sphere center O and the sphere radius R’ can be determined. The 
upper and lower contact angle uθ and lθ  are then calculated. 

 
  Likewise, to estimate the average apparent contact angle in a simpler way, the 

average axial distance from C to A and C to B, or h in figure 6 are obtained. The average 

contact angle is )/arctan(22/ Rhave −= πθ  according to the spherical meniscus 

assumption. As can be seen in figure 7, the average contact angle aveθ  is approximately 

the average of the upper and lower contact angles or 2/)( lu θθ +  to within experimental 

accuracy in our experiments. For convenience, we use aveθ  as a reasonable measure for 

the actual apparent contact angles. Therefore, although the upper and lower contact 

angles are different due to gravity, its effect that deforms the meniscus is neglected.  
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Figure 7. Measured upper contact angle uθ , lower contact angle lθ  and average contact angle aveθ . 

Clearly, 2/)( luave θθθ +≈ . 

 
The macroscopic contact angle measured with a protractor equals the 

measurement with an indirect method (i.e. by measuring the height of the meniscus apex) 

to within experimental accuracy (Ngan & Dussan 1989). On the other hand, Ramé & 

Garoff (1996) measured the apparent contact angle appθ  with a similar indirect method as 

that used here and a contact angle extrapolated from the static-like free surface further 

from the solid, for a cylinder entering a liquid. They found a o2  to o3 deviation between 

the two measured contact angles for capillary numbers 0.001 to 0.1. Due to the larger 

scale and smaller capillary number (Ca < 0.001) in our study, the discrepancy between 

these two angles is neglected. The primary focus of this study is to investigate the 

oscillatory contact line motions for a given liquid-solid-air system (such as tube material 

and surface roughness). The resulting contact line models should be valid for all material 
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systems having similar inner mechanism, but detailed physical parameters are likely 

limited only to this system. 

 
3. Oscillatory contact lines – harmonic forcing 

 Oscillatory contact line motions have been studied by Cocciaro, Faetti & Festa 

(1993), who measured the contact line on the vertical boundary for a standing wave 

generated by oscillating a container horizontally. The indicated contact line model was 

that of figure 1(a) with zero slope. However, according to Jiang et al. (2004), the 

extracted contact angle versus contact-line velocity data based on Cocciaro et al. show 

significant phase delay neglected by the original analysis. Related studies by Ting & 

Perlin (1995), and Perlin, Schultz & Liu (2004) measured and modeled contact line 

motions for oscillating vertical plates in water. This research indicates that the basic 

oscillatory contact line relationship is similar to a fattened, inverted ‘T’ as in figure 2. 

These measurements are largely different than previously proposed contact line models 

based on observations of slow contact line motions. To determine a more consistent 

model and explain previous observations, contact line motions on horizontal solid 

surfaces shall be the focus of this study.  

3.1. Measurement of oscillatory contact line motions  

The contact lines of a liquid slug will move relative to the tube when the inertia force 

generated by the oscillation is sufficiently large to overcome the contact line pinning 

force. To illustrate the contact angle–contact line velocity relation, measured contact 

angles are plotted versus contact line velocities for tube motions sinusoidal in time. To 

generate a sufficiently large dislodging force for the slug with oscillatory forcing, one 

requires a large value of sω , where fπω 2=  is the angular forcing frequency and s is 
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the peak-to-peak tube stroke. That is, a small oscillation stroke with higher frequency or a 

lower frequency with a larger stroke is required to free the slug. To provide sufficient 

spatial resolution of the flow requires magnification; however, the resulting field of view 

of the video camera is consequently unable to accommodate the large strokes required for 

low frequencies. Therefore for low frequencies, the slug oscillatory motions are driven by 

air pressure, as shown in figure 8, using a roller (denoted as ‘pressure driven’) compared 

to that caused by tube oscillation (‘inertia driven’), shown in figure 3. 

 

Figure 8. Sketch of the experimental setup for ‘pressure driven’ contact line motion. The slug is driven by 
pressure variation caused by sinusoidally rolling a circular cylinder amid the flexible hose length. The 
liquid slug of mmmmDL 556.35.35 ×=× is placed in the glass tube of length 700 mm. The flexible hose is 

of inner diameter 3 mm and total length of 1.6 m, the rolling cylinder diameter is 10 mm. The same glass 
tube is used for both sets of experiments. 

 
 Polar plots are useful to study the contact angle relation (Ting & Perlin, 1995). 

Here, contact angles are measured by assuming a spherical end cap (discussed in Section 

2), and the contact line velocities are obtained by differentiating the contact line positions 

relative to the tube. All data are phase-averaged for four cycles to reduce inherent noise. 

Figure 9 presents the ‘inertia driven’ oscillatory contact angle versus relative velocity for 
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a tube oscillating harmonically with frequencies f = 10, 15, and 20 Hz. The tube stroke 

displacements are s = 1, 1.5, and 2 mm. With increasing frequency, the backbones change 

from a step-function like shape (f = 10 Hz) to an inverted “T’ (f = 20 Hz). 

       
 f = 10 Hz, s = 1 mm              f = 15 Hz, s = 1 mm           f = 20 Hz, s  = 1 mm 

 
         f = 10 Hz, s = 1.5 mm        f = 15 Hz, s = 1.5 mm            f = 20 Hz, s  = 1.5 mm 

  
          f = 10 Hz, s  = 2 mm             f = 15 Hz, s  = 2 mm               f = 20 Hz, s = 2 mm 

Figure 9. Measured ‘inertia driven’ contact line polar plots for sinusoidal tube motion. f is the oscillation 
frequency and s is the peak-to-peak displacement. Slug mmmmDL 556.35.35 ×=× . The arrow in the first 

figure gives the general direction of the time increase for all figures. 

  
 Due to the high surface tension of water and its ease of contamination, the contact 

line measurement must be repeated for consistency and careful material preparation is 

necessary to reduce irregularities. The experiments are completed within 5 minutes and 

the data are discarded if any thick film or beads appear near the contact lines.  Polar plots 
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still usually contain irregularities and small loop-like structures especially for the larger 

contact line velocities. The smaller regular loops seem to be caused by an uneven pinning 

and unpinning mechanism, possibly due in part to surface defects on the tube wall. 

Another possible reason that may cause smaller repeatable loops is that the slug 

oscillation may contain higher-modes that violate the spherical cap assumption. Figure 10 

shows the polar plots obtained from repeated experiments for tube harmonic motion with 

f = 10 Hz, s = 2 mm. Each figure shows the phase-averaged results of 4 successive 

cycles. The repeatability of these phase-averaged polar plots is reasonable considering the 

fast contamination of water. The smaller features are usually not repeatable and are 

considered a type of experimental noise. 

 

Figure 10. Repeatability of polar plots for inertia driven flow with harmonic forcing f = 10 Hz, s = 2 mm. 
Slug is of mmDmmL 556.3,5.35 == , and tube length is 700 mm.  

  
 The pressure driven polar plots for the lower frequencies f = 1 Hz, 5 Hz, and 10 

Hz are shown in figure 11. The lateral displacement strokes, ls , of the rolling cylinder 

(shown in figure 8) are 5, 10, and 15 mm. The 10 Hz results are compared to the polar 

plots by the inertia driven motion at the same frequency (figure 9), and reasonable 

agreement is observed. In a sufficiently small tube, the polar plots of both methods would 

agree more closely.  
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 f = 1 Hz , ls  = 5mm  f = 5 Hz , ls = 5 mm  f = 10 Hz, ls  = 5 mm 

 

 
 f = 1 Hz , ls = 10 mm  f = 5 Hz, ls  = 10 mm  f = 10 Hz, ls = 10 mm 

 

 
   f = 1 Hz, ls  = 15 mm  f = 5 Hz, ls  = 15 mm  f = 10 Hz, ls  = 15 mm 

Figure 11. Polar plots by ‘pressure driven’ flow for frequencies f = 1 Hz, 5 Hz, and 10 Hz and  ls  = 5 mm, 

10 mm, and 15 mm. The slugs are forced by sinusoidally rolling the cylinder as shown in figure 8. The 
arrow in the first figure gives the general direction of the time increase for all figures. 

  
 Unidirectional advancing and receding contact line motions can be largely 

different because no unsteady effects and possible macroscopic pre-wetting (for the 

advancing case) exist. A polar plot for a very slow oscillatory motion presumably 

approaches that of an unidirectional motion as demonstrated in figure 12 where pressure 

driven flow is presented for frequency f = 0.2 Hz and lateral rolling cylinder displacement 
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15 mm. As expected, the contact line relation is close to the unidirectional case described 

by Dussan (1979). The contact angle hysteresis is the typical pure stick for unidirectional 

motion; the advancing and receding contact angles are approximately o47  and o83  

respectively. 

 
Figure 12. The contact line relation for a slug driven slowly by a harmonically varying pressure. The 
frequency f is 0.2 Hz and the lateral cylinder displacement stroke is 15 mm. With very slow oscillatory 
motion, the results should approach that of a slug moving unidirectionally in a horizontal tube.  

 
 Both sets of polar plots for oscillatory contact lines (figures 9 and 11), although 

exhibiting rich behaviors, are similar in two primary aspects. Firstly, a step-function-like 

“backbone” resembles the unidirectional moving contact line motion as in figure 1(a) and 

figure 12. Secondly, the oscillations add a variable phase lag between the contact angle 

and the contact line velocity. Hence there exists an apparent ‘inertial’ effect due to 

unsteady motion. The unsteady effect or ‘fatness’ of the polar graphs appears to depend 

more on the frequency than on the contact line velocity (Ca). To illustrate the observed 

contact line relations, figure 13 shows a sketch with the dotted line representing a generic 

oscillatory contact line result while the solid line represents a unidirectional, steady 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
x 10 -5 

40 

50 

60 

70 

80 

90 

100 

Ca, µVr/σ  

C
on

ta
ct

 a
ng

le
, d

eg
 



 21 

dynamic contact line result. The advancing and receding contact angles are 

approximately o90  and o40  respectively for a water slug in a horizontal capillary. The 

arrow indicates path direction with increasing time. For the unidirectional case, the path 

direction is immaterial. 

 
Figure 13. A simplified sketch of the observed polar plots. The oscillatory motion adds a variable phase lag 
between the contact angle and contact line velocity. 

  
 Most polar plots with frequencies from 1 Hz to 20 Hz can be represented by the 

sketch in figure 13. There are two observations in figure 9 that deviate from the general 

model of figure 13, especially at 20 Hz. Firstly, the receding contact angles are much less 

than the receding contact angle, recθ = o40 ; secondly, the small θ portion of the polar 

plots overshoots significantly to positive rV  making the plot more closely resemble an 

inverted ‘T’ rather than a “fattened” step function. This indicates that advancing contact 

angles at certain phases approximately equal the receding contact angles. This is similar 

to previous experimental studies on oscillatory contact lines (Ting & Perlin 1995). It is 

believed that in these cases, the contact line region is covered with a thick film due to the 

higher frequencies and/or the larger velocities. Therefore the meniscus is moving partly 

on a liquid layer. It moves on a less-coated region only when the contact line travels near 

θ  

o40≈recθ  

o90≈advθ  

rV  
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the end of its motion. Although lubrication theory fits this case, the unsteady and 

transient motion of the meniscus, film, and dry solid present a formidable task for 

analysis. The model depicted in figure 13 should be used for oscillatory contact lines only 

when the liquid does not significantly coat the solid.  

 In Ting & Perlin’s experiments, almost all the polar plots resemble a fattened 

inverted ‘T’, even for small sf  as low as  2 mms-1 (f = 4 Hz and s = 0.5 mm). Except for 

possible different wetting properties of their water and glass combination, a very rapid 

glass surface contamination may have contributed to the thick film deposition. In our 

experiments, several minutes after a slug is placed in the tube, the water deposits a visible 

thick film and beads near the contact area, similar to complete wetting – this is evident 

when the tube wall is illuminated using fluorescein-treated water. Ting & Perlin’s 

experiments are therefore more likely for cases where Newtonian liquid layer deposition 

occurs, a parameter region beyond most of our experiments. 

The contact line velocities are determined by differentiating numerically the 

contact line displacement with time. Differentiation amplifies noise. Also, due to the 

uneven contact line motion (contact line velocity exhibits stick-slip motion due to surface 

roughness and possible contamination), the velocity time series obtained is not smooth. In 

addition to using local averaging techniques to smooth the velocity curves, here a sine 

function is used to fit the contact line displacement curve as shown in figure 14. For slow 

motion (no liquid layer deposit near the contact region), a sine function fits the 

experimental data reasonably well. However, when the dynamic contact angles are 

plotted versus the fitted velocities, the polar plots are altered significantly.  
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Figure 14. Contact line displacement with sine function fit. The resulting polar plot changes are evident in 
figure 15. 

  
 The polar plots using fitted data as presented in figure 15 are somewhat similar to 

an ellipse corresponding to some of the results in figures 9 and 11. The fitting process 

eliminates contact angle hysteresis caused by pinning. Therefore the contact line moves 

more freely. This fitting forces the process to be time harmonic and hence Miles’ model 

(1990) becomes relevant. The resulting polar plot is close to an ellipse as in figure 1(c) 

(direct application of Miles’ model to the general problem is hampered due to the 

improper assumption that the contact angle and contact line velocity are time harmonic). 

Miles also presumed this contact line relation only applies to hydrophilic fluid-solid 

combinations where capillary hysteresis does not exist. (We assume in this case, 

however, due to the lubrication effect, that the contact line relation will be more likely 

similar to a fattened inverted “T” as in the experiments for f = 20 Hz in figure 9 and those 

of Ting & Perlin in figure 2). In this context, the elliptical shape is expected to be the 

case for oscillatory contact lines relation of those ideal systems without static contact 
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angle hysteresis, i.e. where the unidirectional contact angle – contact line velocity can be 

described by Hocking’s model, figure 1(b). 

   
 f = 5 Hz, s = 4 mm.        f = 10 Hz, s = 1 mm.  f = 10 Hz, s = 1.5 mm.  
  

 f = 10 Hz, s = 2 mm.                   f = 15 Hz, s = 1.5 mm.          f = 20 Hz, s = 1 mm.  

Figure 15. The polar plots where the contact line displacements are fitted by sine functions thus virtually all 
contact line pinning is removed. The relationship obtained approaches an ellipse. The original data are the 
same as for those in figures 9 and 11. 

 
3.2. Oscillatory contact line model and zero dimensional approach 

A model based on experimental observation is constructed following the sketch in figure 

13. The “backbone” of the polar graphs is the low-frequency approximation to the 

unidirectional contact line in figure 12 that is modeled in figure 1(a). The piecewise-

linear function is not analytical, so it is replaced with the hyperbolic tangent function 

(polynomials should work too) to ease the simulation. The backbone may not be a close 

approximation for slow, unidirectional motion as the pure stick or contact angle 

hysteresis is eliminated by the model. But for oscillatory contact lines, this is not a 

-1.5 1.5 
x10-4 

40 

90 

Ca, µVr/σ 

θ,
 d

eg
 

-2 2 
x10-4 

40 

90 

Ca, µVr/σ 

θ,
 d

eg
 

-6 6 

40 

90 

Ca, µVr/σ 

θ,
 d

eg
 

x10-4 

-8 8 

40 

90 

Ca, µVr/σ 

θ,
 d

eg
 

x10-4 
-8 8 

40 

90 

Ca, µVr/σ 

θ,
 d

eg
 

x10-4 
-8 8 

x10-4 

40 

90 

Ca, µVr/σ 

θ,
 d

eg
 



 25 

problem as no standard contact angle hysteresis (pure contact line stick with zero contact 

line velocity) exists. The model takes the following form: 

  rrrrelrel VVV && λβγκθαθ ++=+ )tanh( ,    (1) 

where (1) without the terms with time derivatives (dotted terms) is the backbone to 

describe the slow, unidirectional dynamic contact line motion, and the relθ&  and rV&  terms 

represent unsteady effects. The parameters κ  and β  have the dimensions of inverse 

velocity, λ  has the dimensions of inverse acceleration, and α  and γ  are dimensionless. 

Here relθ  is the relative contact angle defined as the difference between the actual 

contact angle θ  and the static contact angle sθ , and is normalized to 1 by 

)/()( sadvsrel θθθθθ −−= . 

 To apply this contact line model in simulation, a zero dimensional (0-D) approach 

is used for the inertia driven slug motion. In the 0-D approach, the flow pattern within the 

slug is neglected and both ends of the slug are assumed spherical. This dramatically 

simplifies the calculation and still yields reasonable results. The 0-D approach is valid for 

small Weber and Bond numbers ( σρ /2RUWe = ; σρ /2gRBo = ) and large aspect ratio 

of the slug L/D >>1. 

This 0-D simulation is for slug motion in a horizontal tube that is driven by 

sinusoidal oscillation of the tube as in the experimental study in figure 9. Now consider 

the equation of motion of the slug in the tube-fixed coordinate as sketched in figure 16: 

)(2)cos(cos2/)( 2121 tamRVVcxm rrc −=−+++ πσθθ&& .  (2) 

Here, m is the mass of the slug, cx  is the center of slug mass in the tube coordinate, c is 

the viscous friction coefficient for the slug and the enclosed air in the tube as calculated 
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for steady pipe flow (Poiseuille-flow); 1rV  and 2rV  are contact line velocities for the two 

end caps. The third term on the left-hand side, the stiffness term, is the surface tension 

force from the contact lines. The shear contribution from the immediate vicinity of the 

contact line is negligible for smaller Capillary number, Ca (the drag contribution is 0(Ca) 

from the shear and is 0(1) from the surface tension in the inner and intermediate regions, 

Shikhmurzaev 1997). The right-hand side is the applied force and a(t) is the prescribed 

sinusoidal tube acceleration. 

 

Figure 16.  0-D motion analysis for the liquid slug in the tube-fixed coordinate. 

 

Backward time marching is used to solve for the motion of the center of mass n

c
x , 

contact angles n
2,1θ , contact line velocities n

rV 2,1  and slug positions nx 2,1  for both end caps 

at time step n under the prescribed tube motion a(t). The equation of motion in 

differential form is: 

)(2)cos(cos)(
2121 tamRVVcxm nnnn

r
n

r
n

c
−=−+++ πσθθ&&   (3a) 

txxx n
c

n
c

n
c ∆+= − &&&& 1

; txxx nnn

ccc
∆+= − &1 .     (3b, c) 

The contact line positions 1x  and 2x  are related to the slug center of volume cx  via 2,1θ . 

At any instant, the total volume ∀  of the incompressible slug is conserved. The initial 

1θ  2θ  
cx  

2x
1x  

L 



 27 

slug length defined from contact line to contact line is sL , the static contact angle is sθ . 

The volume V enclosed by each of the spherical end caps and the plane that includes the 

contact line is determined by contact angle θ  ( 1θ  or 2θ ): 

2

3

)sin1(

)sin2(cos

3
)(

θ
θθπθ

+
+= R

V .       (4) 

The center of volume for the end cap measured from the plane of the contact line is: 

Rh
)sin2(cos4

sinsin23
)(

2

θθ
θθθ

+
−−= .       (5) 

To maintain the total volume ∀  constant, the instantaneous slug length must be 

determined by the initial slug length sL and the static contact angle sθ : 

 )()()(2 21
22 θθπθπ VVLRVLR ss −−=−=∀ ,  

or )](2)()([
1

),( 21221 ss VVV
R

LL θθθ
π

θθ −++= .    (6) 

The center of mass of the slug is: 

∀

−−−
= +

)]()[()()( 221211
2

21
2

1

),(),(
2

1 θθθπ θθθθθ hLVhVLR
xxc ,  (7) 

and 
∀

−−−
= −

)]()[()()( 121122
2

21
2

2

),(),(
2

1 θθθπ θθθθθ hLVhVLR
xcx , (8) 

The contact line velocities are determined by:   

txnnxW ∆−
−= /)1

2,12,12,1
( .       (9) 

The contact line velocities and the contact angles are related through the given contact 

line model (1) in differential form: 
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)(tanh)( 1
2,12,12,12,1

1

2,12,12,1

−− −
∆

++=−
∆

+ n
r

n
r

n
r

n
r

nnn VV
t

VV
t

λβγκθθαθ .  (10) 

There are seven equations (3a-c, 7-10) for seven unknowns. Using iteration and 

assuming initial contact line velocities nU
1

 and nU 2  at time step n, the contact angles n

2,1
θ  

can be obtained via contact line model (10), as are the contact line positions 2,1x . The 

deduced contact line velocities 2,1W  by (9) should converge to the initially assumed 

contact line velocities, 2,1U . A relaxation technique is used by introducing the weighted 

average *

2,1
V  of these two contact line velocities 

2,12,1
* )1(

2,1
WaV aU −+= ,       (11) 

where a is the weight for averaging 2,1U , and 2,1W . *

2,1
V  are now substituted back as the 

initial value 
2,1

U  to complete one iteration. A large weight for a (~> 0.99) is found 

necessary for successful convergence of the iteration process (iteration number ≈ 100). 

To evaluate the effects of various terms of the model, a simpler version of the 

contact line model (1) is used: 

rrelrel Vβγθαθ tanh=+ & ,       (12) 

where the advancing and receding contact angles are chosen as o90 and o40 respectively. 

This model was used for the 0-D simulation for sinusoidal tube motion with f = 10 Hz, s 

= 2 mm, and L/D = 10. The polar plot obtained and shown in figure 17 is comparable 

with that in figure 9. 
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Figure 17. Polar graphs generated by a 0-D simulation for tube harmonic oscillation with f = 10 Hz and s = 

2 mm. The contact line model is rrelrel V200tanh002.0 =+ θθ & . The polar plot is comparable to the 

experiments presented in figure 9 for f = 10 Hz, s = 2 mm.  The water slug is L = 35.5 mm, D = 3.556mm. 

 
 The simulated contact line velocity and contact angle variation are compared with 

the inertia-driven measurements in figure 18 for f =10 Hz, s = 2 mm. They compare 

reasonably well except for the high frequencies present in the experiments. For these 

particular experimental data, the contact angles have oscillations near o90  and o40 . This 

motion is caused possibly by a fixed defect on the tube wall as it is not repeatable in our 

experiments (figure 10). On the other hand, smaller inhomegeneities are usually present 

that cause smaller irregular contact line motions. Lastly, higher mode oscillations may be 

present in the experiments. 
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Figure 18. Left: measured and simulated contact line velocities; right: measured and simulated contact 
angles. Tube harmonic oscillation with f = 10 Hz and s = 2 mm. Water slug is L = 35.5 mm, D = 3.556 mm. 

  
 The contact line model (1) can be “fine tuned” to include other observed features. 

The basic idea is to add the unsteady effect by introducing terms that have time 

derivatives. The rV&  term naturally adds more oscillatory effects to the region where 

velocity changes faster as shown in figure 19 (backbone is fattened on both ends). The 

coefficients of these additional terms can be variables; for most analyses, simpler models 

should be sufficient. The parameter-fitting of the model requires more quantitative 

measurements. The backbone can also be modified. Using a linear function (figure 1b), or 

Hocking’s model as the backbone and adding a simple acceleration term gives a contact 

line model similar to an ellipse (figure 20). This model does not have the restrictions 

posed by Miles (1990) that motions are simple time harmonic.  

 It should be noted that there are cases where no solutions exist for the set of 

equations (3a-c, 7-10). For instance, the contact-line relation 

rrrel VV &λβγθ += tanh (when λ  is negative) failed when the θ  – rV  curve has a 

negative local slope for larger rV  and a positive rV& . This indicates that a contact-line 
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relation should be formulated according to experiments and should not be extrapolated 

outside its range of validity. 

 

Figure 19. The polar graph (left) and the contact angle variation / contact line velocity (right) predicted by 
the contact line model rVrVrVrelrel

&& 015.0200tanh2002.0 ++=+ θθ  with harmonic forcing. Compared 

with figure 17, the rV&  term adds more oscillatory effect where velocity changes faster (on both ends of the 

backbone curve).  

 

 

Figure 20. A non-hysteresis backbone (figure 1b) with added unsteady effect: rVrV &λκθ += . This polar 

plot generated for harmonic forcing is close to an ellipse. 

 
4. Oscillatory contact lines – asymmetric forcing and liquid pumping 

 Contact line motions under asymmetric forcing are studied in this section. As 

discussed in Section 1, the contact angle variation and contact line velocity is not time 
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harmonic even for simple harmonic tube forcing. The directionally biased contact line 

motions are expected to provide extra information on oscillatory contact lines as they are 

more complicated. At the same time, the liquid slug net motion generation provides a 

possible fluid handling mechanism in microgravity, and is interesting in its own right. 

4.1. Generating net motion by asymmetric oscillation 

Net motion of a slug relative to the tube is driven by a truncated, periodic 2t  horizontal 

tube motion (figure 21). The 2t  function is chosen because it produces a large 

acceleration in one direction with shorter duration and a much smaller acceleration in the 

other direction with longer duration (ratios are a function of the truncation degree). The 

biased acceleration causes a net motion of the slug relative to the tube. Figure 21 shows a 

typical mean motion generated by a truncated periodic t2 motion where the slug moves 

from one end of the tube to the other end under tube oscillation. The slug relative motion 

becomes time-periodic after about five initial cycles for the case shown in figure 21. We 

define the ‘pumping efficiency’ as the cyclic net displacement of the slug (relative to the 

tube) ∆z divided by the tube peak-to-peak stroke, s. The motion presented in figure 21 

has a pumping efficiency of %40 . 
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Figure 21. Net motion generated by a periodic 2t  tube motion. The slug mean speed becomes steady after 
about five cycles. The pumping efficiency for this example is about %40 . D = 3.556 mm, L = 10 mm. 

 

Figure 22 graphs the measured contact angle θave (as described in Section 2 where 

gravity effects are compensated by averaging upper and lower contact angles) versus the 

contact line velocity measured for the meniscus on the advancing side of the moving 

slug. For optimal pumping, the advancing meniscus will experience mostly an advancing 

contact line, while the other meniscus will experience mostly a receding contact line. The 

mechanisms for advancing and receding contact lines are apparently different and they 

were treated as such in steadily moving, long bubble problems by Bretherton (1961). 

Strictly, the latter case has transition or contact areas rather than true contact lines. For 

the oscillatory contact line problem however, a simple model is desirable that includes 

the wetting and de-wetting process in one equation.  



 34 

 

 

Figure 22. Measured contact angle and relative contact line velocity for the meniscus on the forward side of 
the advancing slug with D = 3.556 mm, L = 10 mm. 10-term t2 tube motion with frequency f = 10 Hz, stroke 
s = 2.2 mm.  

 
 Similar to the sinusoidal forcing cases in Section 3, the contact angle versus 

contact line velocity relationship can be plotted from the measurement in figure 22 for 

front or rear end caps. The polar plots are generally motion dependent, thus the same 

contact line relationship will usually result in different polar plot shapes for different 

forcing. Harmonic motion usually produces an antisymmetric polar plot about the static 

contact angle. Presented in figure 23 is the polar plot for the front end cap of the slug 

under periodic t2 tube motion. The polar plot is asymmetric as the advancing contact line 

velocity is much larger than the receding velocity, and that generates net slug motion. 

Apparently, the polar plot in figure 23 can be similarly described as was that of harmonic 

forcing in figures 9 and 14. The repeatable smaller loop inside the lower part of the graph 

is a lowest natural mode of the meniscus with a smaller amplitude. Its frequency is about 
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24 Hz (due to small but evident partial slip in figure 23, it is probably lowered from 28.3 

Hz for the complete pinned contact line condition, Bian et al. 2003). As shown in Section 

4.2, these observations can also be predicted by the contact line model (1).  

 The contact line polar graphs as measured for the menisci are different on the 

front end cap (figure 23) and the rear end cap (figure 24) of the slug since one meniscus 

mostly wets the tube and the other meniscus mostly de-wets the tube.  It is also noted that 

in the polar plots, the contact line velocity is always defined positive for wetting and 

negative for de-wetting. Thus the larger negative velocity for the rear meniscus in figure 

24 is actually in the direction of slug net motion. 

 
Figure 23. Contact line relation for the meniscus on the front side of the slug moved by periodic t2 
oscillatory tube motion. The figure is phase averaged for eight cycles. These data are for 10-term periodic 

2t  tube frequency f = 10 Hz, peak-to-peak tube stroke s = 2.2 mm, tube D = 3.556 mm, slug L = 10 mm.  
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Figure 24. Contact line relation for the meniscus on the rear side of the slug moved by periodic t2 
oscillatory tube motion. The curve exhibits different behavior than that of the front meniscus due to the 
different nature of the two motions – much different surface wetting conditions of the tube. Tube motion is 
the same as that for generating figure 23. 

 
 The contact line relation with harmonic forcing as shown in figures 9 and 11 is 

roughly axisymmetric with respect to static contact angle due to the almost symmetric 

contact line motion. However, this is not the case for asymmetric forcing as figure 23 in 

conjunction with figure 24 does not generate an approximately axisymmetric function 

about the static contact angle.  Due to the slug net motion and a relatively small field of 

video image view under large magnification, we have no simple method to record the two 

menisci simultaneously. Therefore separate videos are recorded for the two menisci, then 

tube motions are used as a reference to synchronize the data. The velocities and contact 

angles for both end caps are graphed in figure 25.  The contact angles and contact line 

velocities of the two end caps are approximately in phase. The velocity for the front end 

cap is larger than the rear end cap, presumably caused by one being mostly an advancing 
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contact line and the other a receding one.  The receding meniscus can be more sensitive 

to pinning that would also lower the maximum speed. 

 

 
Figure 25. The contact angles and contact line velocities are almost symmetric for the two end caps; 

however, the maximum contact line velocity for the front end cap is larger. Truncated periodic 2t  tube 
motion with  f = 10 Hz, s = 2 mm;  water slug D = 3.556 mm, L = 20 mm. 
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For axisymmetric oscillation, the optimal parameters are of practical interest. To 

experimentally determine the maximum pumping efficiency for a given slug, a contour 

plot for efficiency as a function of  drive frequency and stroke is presented in figure 26. 

The drive frequency is nondimensionalized by the lowest natural slosh frequency of the 

slug with pinned contact line (see Bian et al. 2003). The maximum measured pumping 

efficiency is about 0.69 for this slug. The region for optimal pumping obtained is roughly 

at small abscissa, middle ordinate of the contour graph. The optimal frequencies are 

expected to relate to the natural frequencies of the first slosh mode. The basic idea is to 

generate resonant slug motion through resonant end cap forcing – this argument is 

possibly flawed for a very long slug where slip accounts for most of a cycle period. The 

experiments indicate that the maximum pumping occurs at less than half the frequency of 

the first slosh mode. We have no explanation for this. 
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Figure 26. Measured pumping efficiency presented for different drive frequency – stroke combinations. 

The slug is HPLC water with ;10,556.3 mmLmmD ==  the tube is driven by periodic 2t  motion 
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represented by a filtered 10-term Fourier expansion. The lowest natural slosh frequency of the slug for 
o65=

s
θ  with pinned contact line is 28.3 Hz according to the 2-D potential solution (Bian et al. 2003). 

 
 Other asymmetric tube motions have been tested to achieve pumping, however 

the periodic t2 function has so far been the most effective. For instance, the saw tooth 

function (very slow constant velocity in one direction and maximum system velocity in 

the other) has been implemented to achieve pumping (Agarwal et al. 2001). However, net 

motion was generated only at very low frequencies (< 0.22 Hz). It is believed that this is 

due to two identical maximum accelerations per cycle in opposite directions rather than 

one as for the t2 case. The maximum force is prescribed necessarily much larger than the 

pinning force of the contact lines.  Therefore the saw tooth function could not fully take 

advantage of the contact angle hysteresis to retain the slug from moving backward.  

Consequently at higher frequency the slug moves back and forth relative to the tube 

rather than moving in one direction. The pumping effect that is achieved at very low 

frequency is mostly due to the liquid friction, and it is much less effective than contact 

line drag. 

4.2. Zero dimensional simulation of the slug mean motion 

With a prescribed contact line model, the slug motion can be simulated by the 0-D 

approach introduced in Section 3. To simulate the net motion, the same truncated 

periodic t2 forcing in the experiments is used together with a reduced contact line model: 

rrelrel Vβγθαθ tanh=+ & ,       (13)  

based on a hyperbolic tangent backbone and added unsteady effects. The polar graph 

obtained is presented in figure 27 for parameters =α 0.002; 1=γ ; 200=β . The tube is 

driven by a truncated periodic t2 function with frequency f = 10 Hz, peak-to-peak stroke s 
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= mm2.2 . The slug dimension is ,10556.3 mmmmLD ×=×  the same as in the 

experiment. The static, advancing, and receding contact angles are ,65o ,90o and o40  

respectively. As the same model is used for both end caps, the polar graph for the rear 

end cap, coupled to the front end cap makes an approximately odd function about the 

static contact angle. The small loop inside each of the graphs is predicted, and it 

corresponds nicely to the experiments in figures 23 and 24.  

 

 

Figure 27. The polar graph is for the contact line on the forward side of the slug (upper graph). The contact 

line model )200(tanh002.0 rrelrel V=+ θθ &  is used as an edge condition for a 0-D simulation. As the 

same contact line model is used for both menisci, the polar graph for the contact line at the rear of the 
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moving slug (lower graph) is approximately axisymmetric to the front of the moving slug. Periodic t2 
forcing with f = 10 Hz, s = 2.2 mm is implemented. 

 
The single slug net motion simulated with the 0-D approach is presented in figure 28 

together with the experiments. The contact angle – contact line velocity relation used for 

simulation is that of figure 27, with o90=advθ and o40=recθ . This is one of the simplest 

models considered in Section 3 for the harmonic forcing case. For simplicity, both 

contact lines for the forward and rear end caps of the slug are assumed to be governed by 

the same contact line model. As shown in figure 28, the simulated slug motion compares 

well with the experimental measurement (figure 21). 
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Figure 28. Simulated slug net motion compared with the experiment. The simulated pumping efficiency ≈  
47 %. The measurement is for the end cap on the front of the moving slug. This is the ‘steady’ net motion. 
Since the electrodynamic shaker is not stable initially, transient motion occurs prior to these data, and is 
therefore not presented. The tube motion is a 10-term t2 function with frequency f = 10 Hz, stroke s = 2.2 
mm. The slug is L = 10 mm, D = 3.556 mm.  

 
The simulated contact angle variation and relative contact line velocity are 

presented in figure 29. They qualitatively agree with the measurement for the front cap 

shown in figure 22.  
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Figure 29. Contact angle, contact line velocity by a 0-D simulation corresponding to the experimental data 
shown in figure 22 (not in phase). The predicted motions are almost the same for the front and rear end 
caps as the same model is used for both in simulation. 

 
The contact line motions predicted with the 0-D approach using contact line 

model (1) depend on the parameters in this edge condition. Although the contact angle 

hysteresis recadv θθ −  obviously affects the contact angle and contact line motion, the 

unsteady effects incorporated into the model are also important for pumping efficiency.  

In figure 30, the two contact line models have the same backbones but different 

coefficients for relθ& . For the same tube motion, the larger oscillatory effect of relθ&003.0  in 

(b) produces a larger pumping efficiency, 0.436, than that of the smaller oscillatory effect 

relθ&001.0  in (a), 0.373. Apparently, more quantitative measurements for well controlled 

materials and tolerances are required to fit accurately these coefficients.  
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(a) pumping efficiency = 0.373   (b) pumping efficiency = 0.436 

Figure 30. Predicted pumping efficiency is affected by the contact line model parameters. Pumping 

efficiency predicted is 0.373 in (a) for model rrelrel V200tanh001.0 =+ θθ &  with less oscillatory effect; 

and 0.436 in (b) for model rrelrel V200tanh003.0 =+ θθ &  with more oscillatory effect. The tube motion is 

a 10-term t2 function with frequency  f = 10 Hz, stroke s = 2 mm. The slug is L = 10 mm, D = 3.556 mm.  

 
To determine optimal pumping for a given slug, the pumping efficiency is 

simulated for the same slug of size mmmmLD 10556.3 ×=×  driven by the 10-term 

periodic t2 function with different frequencies and strokes. The contact line model chosen 

for this simulation is rrrrelrel VVV 01.0200tanh3002.0 ++=+ θθ &  that gives a typical polar 

graph shown in figure 31 for asymmetric forcing, close to the measurement presented in 

figure 23. The maximum pumping efficiency contour plot simulated with the 0-D 

approach is presented in figure 32 and corresponds to the experiments in figure 26. The 

maximum pumping efficiency from this simulation is a function of the tube motion 

frequency and stroke as in the experiment. The figure shows the maximum pumping 

efficiency is in a region where the dimensionless frequency is 0.25 ~ 0.4 and the 

dimensionless stroke is 0.5 ~ 1. Compared with the experiments, the simulated optimal 

pumping coefficients decrease slower for larger tube motions, i.e., higher frequencies or 

larger amplitudes.  The simulated region of optimal pumping efficiency is close to that of 
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the experiments in figure 26 with slightly larger area extending to the lower right corner 

of the contour plot. However, the simulated maximum pumping efficiency is larger 

(~0.77) than the observations (~0.69).  

 
Figure 31. A typical polar graph corresponding to experiments presented in figure 23 is simulated for 

asymmetric forcing with contact line model rVrVrVrelrel 01.0200tanh3002.0 ++=+ θθ & .  
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Figure 32. Simulated pumping efficiency presented for different drive frequency – stroke combinations. 
The corresponding experiment is presented in figure 26. The slug is of dimension 

mmmmLD 10556.3 ×=× . The tube is driven by periodic 2t motion represented by a filtered 10-term 

Fourier expansion. The lowest natural slosh frequency of the slug when o65=
s

θ is 28.3 Hz according to 

the 2-D potential flow calculation for pinned contact lines (Bian et al. 2003). 

 
There are several possible reasons for the over prediction by the 0-D approach.  

The most likely is that at large tube acceleration or velocity, the 0-D model prediction is 

inaccurate due to the no-longer-valid spherical end-cap assumption. Another possibility is 

that the difference in advancing and receding end caps observed in our experiments is not 

considered in our model. Also for a highly unsteady moving tube, a complicated flow 

pattern within the short slug may impose a much different drag than that of a steady pipe 

flow as approximated for the 0-D simulation.  
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5. Conclusions and discussion 

The dynamic contact line of an immiscible liquid slug undergoing oscillatory 

motion in a circular tube has been studied. In the experiments due to the oscillatory flow, 

the surface condition of the tube wall is different than that of a dry tube. Focus is on the 

cases where no measurable thickness of film (maximum of 100 nm) is left by the moving 

meniscus. Oscillatory contact line motion is a complex process due to the unsteady 

motion and constant coating process in the vicinity of the contact line. The contact line 

relations depend on the oscillation frequencies and strokes. The unsteady effect is more 

sensitive to frequency, presumably due to inertia which is related directly to the 

acceleration term. The frequency also affects the surface wetting conditions near the 

contact line by an intermittent coating process. In Cocciaro et al. (1993) and Ting & 

Perlin’s (1995) experiments with contact lines oscillating on a vertical plate, however, the 

contact line stroke had significant effect on the characteristics of the contact line relation. 

To describe our experimental observations, an oscillatory contact line model is 

proposed where the unsteady effect is superposed on a unidirectional slow moving 

contact line model. Therefore with very slow oscillations, the contact angle–contact line 

velocity relation approaches the unidirectional contact line model (Dussan 1979). When 

oscillations are sufficiently large to coat the solid with thicker Newtonian films 

(O(1) mµ ), a contact angle–contact line velocity relationship similar to the experimental 

results of Ting & Perlin (1995) was observed. The experiments indicate that an ellipse-

shaped oscillatory contact line model similar to Miles’ (1990) can be used for sinusoidal 

motions exhibiting minimal contact line stick. 



 47 

For small capillary number, Weber number and Bond number, a 0-D approach 

assuming spherical menisci is used to simulate the motion with the developed contact line 

model. The parameters of the model can be adjusted easily to fit the observations. With 

an even simpler reduced model, the simulated contact angle and contact line velocities 

are in qualitative agreement with the measurements. The 0-D approach also simulates the 

net slug displacement when the tube motion is asymmetric directionally (e.g. periodic t2 

function). The simulated slug motion agrees well with the experiments for slower 

motions where the spherical end cap assumption is presumably valid. The simulation also 

indicated that the oscillatory contact line model developed here is readily applicable to 

non-harmonic forcing. 

Water is chosen as the substance for the liquid slug due to its large surface tension 

and relatively smaller viscosity. However, the consequent rapid contamination rate is an 

unfortunate drawback. It would be interesting to see the contact line relation for systems 

with different wetting properties. In our experimental study, the difference between 

apparent contact angles and macroscopic ones are neglected, and the gravity effects are 

approximated. Further measurement may be required to eliminate these problems, or 

identify these effects more quantitatively. 

Finally, with the universal contact line model as the edge condition and a specific 

slip model in the vicinity of the contact line, a higher dimensional analysis should be 

readily accessible. 

 

This research was supported by the NASA Microgravity Fluid Physics Program. 
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Appendix. Contradiction of time-harmonic wave motion assumption 

 

We consider a standing capillary gravity wave at a solid vertical wall with 

Hocking’s edge condition ,tx c ηη =  the simplest contact line relationship relating 

contact line velocity to contact angle. For the sake of this argument, we assume the 

contact-line velocity is simple harmonic in time. At a small horizontal distance ∆x from 

the wall, the surface elevation, η(∆x, t) = )(),0( xoxt x ∆+∆+ηη . The free surface at ∆x  

is in phase with the surface elevation at the wall when η(0, t) is at the crest or trough 

since the surface slope is zero. However, it is not in phase a quarter period later since the 

two locations do not cross the mean wave height at the same time. Therefore, there is a 

phase difference between the surface elevations η(∆x, t) and η(0, t)  and both cannot both 

be simple harmonic in time. Extending this to more complicated relationships between 

contact angle versus contact-line velocity leads to a similar conclusion. A similar 

argument shows that the relation ηx= γη is compatible with time harmonicity. 
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