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Synopsis

Axisymmetric Newtonian viscous fibers are examined under isothermal conditions.
An expansion based on lubrication scaling is used to derive systematically the one
dimensional equations for the fiber. At lowest order these are identical with those
obtained by others, e.g., Matovich and Pearson. One-dimensional theory limitations
on jet shape and inertial, gravitational, and surface tension effects are obtained from
higher-order approximations. Similar approaches can be used to analyze fibers having
complex rheological behaviors.

INTRODUCTION

Slender axisymmetric liquid jets have important applications in
fluid mechanics. High-inertia jets are used in rock cutting. Sur
face-tension-dominated jets are used in printing. Fluid/boundary
interactions dominate fluidic logical devices. In the present work we
address fiber-forming configurations where viscous forces dominate.
In textile applications molten glass or polymer leaves an orifice and
rapidly hardens due to heat or mass transfer to the environment or
due to chemical reaction. The fiber is then "wound-up" downstream,
the winder imposing a fixed velocity at the fiber end. In other ap
plications, large body forces in the axial direction stretch the jet. In
this case the fiber end is force free, Although there are some nu
merical'F and experimentalv' studies of such viscous flows near the
orifices, most of the analysis applies away from the orifices where the
flow is taken to be one dimensional.5-8 By this, the authors mean that
the axial velocity and pressure are independent of the radial coordi
nate or that the axial velocity has become rectilinear.

In his review of this subject, Denn? credits Matovich and Pearson7

with the "most careful derivation" of the one-dimensional equations.
Although Matovich and Pearson do set up an expansion procedure,
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they do not define a small parameter for the expansion. Instead, they
formulate directly a one-dimensional momentum balance in the same
sense as Glicksman." To do this one assumes that the pressure and
axial velocity are independent of the radial coordinate. Geyling-?
has attempted to use a parametric expansion for the textile fiber
process but it is not clear that he satisfies all the relevant boundary
conditions. He does not calculate corrections to the one-dimensional
approximation.

There have been attempts at the analysis of jets by the use of
coordinate expansions. Kasel! expands axial velocity in powers of
the radial coordinate. Kaye and Vale12 and Clarke" essentially ex
pand in inverse powers of the axial coordinate. Unlike parametric
expansions, these coordinate expansions cannot satisfy conditions
at all the fiber boundaries.

In the present study we consider the simple fiber system, namely,
a steady, axisymmetric jet of a Newtonian, constant-property liquid
emptying into a passive gaseous atmosphere. Viscous, inertial, gra
vitational, and surface tension forces are included.

We formalize the notion that the jet is slender by applying lubri
cation scaling ideas and develop the solutions in powers of e, a slen
derness ratio. At leading order we obtain the one-dimensional system
identical to that of previous authors (e.g., Matovich and Pearson"),
However, since our procedure is a parametric expansion, we can obtain
higher-order corrections to the one-dimensional theory. These cor
rections show that axial velocity and the pressure depend on the radial
coordinate. Having obtained these, we can estimate the validity of
the one-dimensional theory. We find that the limitations for the
textile configurations are quite modest, but that the limitation on the
effect of gravity in some processes can be quite severe.

Thus, the two objects of this work are (i) the systematic derivation
of the one-dimensional approximations from the full axisymmetric
problem and (ii) the estimation of the validity of the one-dimensional
theory by examining higher-order corrections. Clearly, such proce
dures are applicable to the more complicated systems as well.

The asymptotic procedure we use gives an "outer" solution to the
problem valid in regions sufficiently far from either ends of the fiber.
The "inner" solutions valid at the ends are boundary-layer corrections,
which in the present case are solutions to the full governing equations.
Since these can only be solved using extensive numerical analysis, we
bypass this and pose"average" boundary conditions at the ends. The
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numerical analysis by Fisher, Denn, and Tanner- indicates that the
boundary-layer corrections are confined to within one diameter of the
orifice. These averaged conditions are imposed on the outer variables
and substantially coincide with those conditions previous authors
have used.

FORMULATION FOR THE FIBER WITH A WINDER

A slender, axisymmetric liquid jet (fiber) steadily emerges from an
orifice of radius rt into a passive gaseous environment. At a distance
L the fiber is "wound up" at a given average axial velocity ww. The
system is isothermal and gravity acts in the axial direction. The jet
liquid is Newtonian, all fluid properties are constant including the
surface tension (J on the liquid-gas interface. A cylindrical coordinate
system is employed as shown in Figure 1.

We scale the governing system of equations and boundary condi
tions consistent with a fiber whose flow properties vary slowly in the
axial direction. We scale the axial and radial coordinates on Land
rt, respectively. In order to preserve conservation of mass, we scale
the axial and radial velocities on WI and wIrI!L, respectively, where
WI is the average axial speed through the orifice. Pressure is scaled

Fig. 1. Schematic figure of liquid fiber showing the coordinate system and nota
tion.
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on ~wdL so that the radial momentum equation balances the pressure
gradient and the viscous forces. (Using the axial momentum balance
between pressure gradient and viscous forces would result in the same
results differently named.)

The resulting nondimensional continuity and Navier-Stokes
equations are as follows:

U r + (l/r)u + W z =0, (La)

1 1
f2Re(uu r + wUz ) = -Pr + U rr + - u; -"2 U + f2u zz , (Lb)

r r

and

Re( ) - - 2 ! 2 Re
f UWr + WWz - E pz + W rr + W r + f W zz + F .

r r
(Lc)

(2a)

The interface between the liquid and the gas is located at r = R(z).
The kinematic boundary condition is given by

u=wRz onr=R(z).

On the interface, the shear stress is zero,

2f 2Rz {u r - wz ) + (1 - E2R ; )(E2U
z + wr ) = ° onr = R(z), (2b)

and the normal stress is balanced by surface tension times curva
ture,

fCa!p(l + f2R'f) - 2[ur + f2R;wz - Rz(f2uz + wr)Jl

1
= Ii (1 + E2R;)1I2 - f2Rzz (l + E2R';)- 1I2 on r = R(z). (2c)

On the axis of the fiber, all physical quantities must be bounded,

lu/'lwl,lpl < 00 on r = O. (3)

At the orifice, the liquid attaches to the sharp corner, and both the
velocity field and the diameter of the fiber are given,

u = u/(r), W = w/(r), R = 1 on z = O. (4a)

Finally, the fiber is "wound up" at its end, so that the velocity field
is known there:

u = uw{r), W = ww{r) on z = 1. (4b)

In conditions (4a) and (4b), the cross-sectional averages ofw/ and Ww
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(5a)

(5b)

(5c)

(5d)

(5e)

a = In(wwlw/),

e = rIlL.

log of the extension ratio

scaling parameter

are, respectively, WI and ww. In the above system subscripts T and
z denote partial differentiation. The five parameters are

Reynolds number Re = wirs!»,

Froude number Fr = witsr«.

capillary number Ca = WII.t/U,

In the above g is the gravitational acceleration; JL and II are the dy
namic and kinematic liquid viscosities, respectively; and a is the
surface tension coefficient of the liquid-gas interface.

We shall seek asymptotic solutions for slender jets having f ---+ °
with all other parameters fixed.

VISCOUS-ONLY PROBLEM: LEADING-ORDER
SOLUTIONS

We first consider the case when inertial, gravitional, and surface
tension forces are negligible, i.e., we set Re = 0, Fr-1 = 0, and Ca- 1

= °in Eqs. (1)-(3).
We suppose that a is fixed and e is small and write for all dependent

variables !p,

(6)

where we have noted that for this case the small parameter € appears
only in even powers.

If forms (6) are substituted into Eqs. (1)-(3), we obtain at order
unity in E,

1
uOr +- Uo + woz = 0,

r
(7a)

1 1
UOrr + -uor - 2UO - POr = 0,

r r
(7b)

1
wOrr + - WOr = 0,

r
(7c)
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with boundary conditions,

uo - woRo, = 0

WOr = 0

Po - 2(uor - Ro,wor ) = 0

Iuo!.1 wo!.IPol < co

on r = Ro,

on r = Ro,

on r = Ro,

on r = O.

(Sa)

(8b)

(8c)

(9)

(lOa)

The interfacial conditions (8) are obtained by expanding the boundary
conditions (2) about € = 0 and so evaluating the interfacial conditions
at the position Ro.

As mentioned earlier, the end conditions (4) can be satisfied by
posing boundary layers at z = 0 and z =1 and matching. This gives
rise to equivalent conditions at z = 0 and z = 1 on the outer variables
uo, wo, Po, and Ro. However, the boundary-layer equations appro
priate here are essentially the full governing equations which cannot
be solved except by numerical means. We thus reformulate the end
conditions (4) by stating conditions that can be posed on the outer
equations. We shall regard the end conditions as statements on the
cross-sectional average values of w. Thus, we write

2 rR(z)
R2(z) Jo rw(r,z)dr = 1 on z = 0,

with

and

R (z) = 1 on z = 0, (lOb)

(lOc)
2 J:R(Z)

-- rw(r,z)dr = e" on z = 1.
R2(Z) 0

We have thus abandoned the pointwise conditions on u and w in (4)
since such conditions are determined by matching. This procedure
has been used by all previous authors though they have not stated it
in the same way.

If the expansion (6) is substituted into forms (10), we obtain at order
unity in €,

2 .(1 rwodr =Ro = 1

2 J:Ro- ruudr = e'"R5 0

onz = 0,

on z = 1.

(l1a)

(lIb)
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We now find the leading-order solution. Equation (7c) and the
boundedness condition (9) give

Wo = Wo(z), (12)

where W0 is an arbitrary function at this stage. Ifwe solve continuity
(7a) for Uo and use boundedness (9) and form (12), we find that

Uo = -(1/2)rW~(z), (13)

where a prime denotes differentiation. Then, using forms (12) and
(13), we can solve for the pressure from Eq. (7b) and boundary con
dition (Sc),

Po = - W~(z). (14)

At this point, the analysis shows that to leading order in £ the axial
velocity and pressure are independent of r, These are the two main
assumptions used by Matovich and Pearson," Glicksman," and others
to develop the one-dimensional equations. Therefore, our leading
order equations will be identical to those of others for the present case:
He = Fr- l =Ca-1 =O.

We use forms (12) and (13), the end condition (Lla), and the
kinematic condition (8) to find that

WoR6 = 1. (15)

In order to determine W0, we proceed to the order £2 problem. This
takes the form

1 1
U2 rr +- U2, - "2U2 - P2, = -uozz'

r r

(16a)

(16b)

(16c)

with boundary conditions,

U2 - W2R oz = R2zWo - R2Uo,

w2, = 2R oz(woz - uo,) - uOz

onr=Ro, (17a)

on r = Ro, (17b)

P2 - 2(U2r - R O,W2,) = -PoR5z + 2Roz(Rozwo, - uo,)
on r = Ro,

on r = O.

(17c)

(18)
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(19a)on z= 0,1,

Interfacial conditions (17) have been simplified using solution (12).
The end conditions (10) become at this order

2 fRo
Rg Jo rW2dr = 0

and

Rz = 0 onz = O. (19b)

We solve for Wz from (16c) using forms (12) and (14) and boundedness
(18):

Wz = -(1/2)r2W~ + W2(z), (20)

where W2 is an arbitrary function. Form (20) represents the first
radially dependent axial velocity. We now substitute forms (12), (13),
and (20) into the shear-stress boundary condition (17b) to obtain

RoW~+ 2R~~ = O. (21)

We thus have a pair of ordinary differential equations, (15) and (21),
that determine both Roand Wo. If we eliminate Robetween these,
we have

W~Wo= W'J (22a)

subject to

Wo(O) = 1 (22b)

and

Wo(l) = ea. (22c)

Conditions (22b) and (22c) are the simplified forms of (lIa) and (Ub)
using the fact that Wo depends on z only.

This is the standard system given in Matovich and Pearson." gov
erning steady, one-dimensional, isothermal fiber flow in the (New
tonian) viscosity-dominated regime. The solutions are

(23a)

and

Ro = e-(l!2)az. (23b)

We thus see that the fiber becomes exponentially more slender (while
the speed increases) as one moves from the orifice toward the
winder.
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Given the simple form of the leading-order solutions, we can obtain
corrections relatively easily.

We solve continuity (l6a) by using form (20) and boundedness
(18):

(24)

If we use forms (13) and (24), and use the normal stress condition
(17c), we can find the pressure correction:

(25)

where we have used the solutions (23). The kinematic boundary
condition (l7a) simplifies to yield,

Rz= (~a2 - ~ W 2)e-<3/ZJaZ, (26)

where we again have used solution (23).
In order to determine W Z and R2, we need to examine the order (4

equations. We shall not give the details here, but straightforward
analysis gives

W z = (l/8)a2[1 - z(l - e-a)]eaz + (1/8)a2 (27a)

and

R 2 = (1!I6)a2[e-az - 1 + z(1- e-a»)e - (l/2Jaz, (27b)

where we have used W2(O) = W2(I) = a2/4 obtained from conditions
(I9a) and (19b).

It can be shown easily that R2 :::; 0 when a > 0 (i.e., for an acceler
ating jet). Hence, the leading-order solution overestimates the fiber
diameter and neglects radial variations of pressure and axial velocity,
A summary of the appropriate solutions follows:

w = e az {I + E2a 2[- ~r2 + ~ (1- z + ze:» +e-aZ)] + O(f4a 4>}.
(28a)
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u = - ~ orev- {1 + E2a 2[- ~ r2 + ~ (1 - z + ze:«

- ~ +~ e-a
) ] + O(E4 a 4>}. (28c)

p = -aeaz{1 + E2a 2 [~(e-az - r2 )

+ ~ (1 - z + ze :» - ~ + ~e-a)] + O(E4a 4>}. (28d)

CRITERION FOR VALIDITY OF ONE-DIMENSIONAL
SOLUTIONS

One benefit of using an explicit perturbation procedure to deduce
the one-dimensional equations from the axisymmetric ones is the
capacity to calculate higher-order corrections. These can then be
used to determine the conditions under which the one-dimensional
solutions are an adequate description of the flow.

We wish to estimate when the order E2 corrections to the one-di
mensional solutions are negligible. Clearly, many criteria are possible.
We shall use a criterion insuring that the fiber axial-velocity profile
is sufficiently flat; this occurs when

Iw[R(z),z]- w(O,z)1 (29)
Iw(O,z)1 «1.

Ifwe use the two- term solution (28a) to evaluate w, and note that Wo

is independent of r, then inequality (29) measures the r-dependent
W2 in terms of woo This estimate has the form

(30)
or alternatively,

(31)

since max Ro = 1. We thus see that the natural small parameter in
this problem is not E2 itself but E2a 2 as is emphasized in forms (28).
Many calculations have shown that Ro » E2R 2 when the "stricter"
criterion (31) is satisfied. In fact the steady solution (23) is stable (see,
e.g., ref. 13) only for a < 3.01. Thus, whenever the steady fiber flow
is stable, criterion (31) is

E«0,47. (32a)
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If we write the dimensional interfacial position as f' =Ihi), then the
slope dRldi is measured by f and condition (32a) translates to

max I~~I « 0.71. (32b)

Condition (32) also guarantees E2R z« Ro for a stable fiber. Condi
tions (32) are, indeed, not very limiting; the one-dimensional solutions
are normally excellent approximations.

GRAVITATIONAL, INERTIAL, AND SURFACE
TENSION EFFECTS: LEADING ORDER

We wish now to include gravity, inertia, and surface tension in the
fiber flow expansion. To be consistent with small E, these quantities
must be limited in precise ways.

If we include gravitational effects in the fiber and Re/Fr = 0(1) as
E -. 0 in Eq, (Ic), then Wo of the modified equation (7c) would be
parabolic in r. However, this form would be incompatible with the
shear-stress boundary condition (8b). If, instead, Re/Fr = O(d as
E-. 0 in Eq. (Lc), expansion (6) would be replaced by an expansion
in powers of E. This time the O(d shear-stress boundary condition
could not be satisfied. It turns out that gravity can be included in
the analysis only if Re/Fr = 0(E 2) so we write

G ;: Re/E2F r = 0(1) as E -. O. (33)

Likewise, if we wish to include inertia and surface tension in the
present formulation, we must assume that

and

Re ;: Re/E = 0(1) as E-. 0 (34)

Ca ;: ECa = 0(1) as E-. O. (35)

Thus, if forms (33)-(35) are substituted into system (1)-(3) and
expansion (6) assumed, then we can develop solutions in powers of
f2.

The only change at leading order is that the normal stress boundary
condition (Sc) is replaced by a surface-tension-dependent form,

Po - 2(uo, - Rozwor) = (Ca RO)-l on r =Ro. (36)

By making gravity and inertia small according to assumptions (33)
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and (34), we ensure that these effects are postponed to the order £2

equations. Thus, Wo is still independent of r, Wo = Wo(z), and the
order f2 axial momentum equation (16c) is replaced by

WZrr + (I!r)wzr =Poz - WOzz - G + Re wowoz (37)

whose solution, subject to the appropriate boundary conditions, takes
the form

Wz = ~r2 (Re WoW~ - G - 2W6 + ~Ca-l W~WOll2) + Wz(z).

(38)

If result (38) is substituted into shear-stress boundary condition (I7b)
and Ro is eliminated using result (15), we obtain a single ordinary
differential equation for Wo,

3(W~ZWOl - W~) +! Ca-1 W~WoI/2 + Re WoW~ - G = 0 (39a)
2

subject to the same end conditions as before, viz.,

and

Wo(O) = 1

Wo(I) = ea.

(39b)

(39c)

(40)

System (39), if expressed in dimensional form, is precisely that of Eq,
(34) of Matovich and Pearson? who derive the result by presuming
one-dimensional flow a priori.

One can obtain corrections to system (39) in powers of f2 and test
for validity. Instead of doing so for fibers that are wound up at z =
I, we shall do so for a related fiber problem where the end at z = 1 is
force free and the fiber flow is generated by the action of gravity acting
axially along the fiber.

THE GRAVITY-DRIVEN FIBER

In this section we replace the imposed winder-speed condition (IOe)
by a condition of zero imposed external force. While this condition
is difficult to apply in the laboratory, it is a quasisteady limit of a fiber
with a free end at L (where L is increasing with time). This free-end
condition takes the form

2 J:RO2 rwozdr = 0 on z = 1.
Ro 0
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(41a)

We can find a solution of Eq. (39c) for Wo in which the fiber experi
ences only viscous and gravitational forces, and satisfies at leading
order conditions (lOa) and (lOb) and (40). This solution is

_ W ( ) _ sin 2 [K + z(G/6)l/2 sinK]
Wo - 0 z -

sin2K '

where

K + (G/6)l/2 sinK = 1r/2. (41b)

To determine limits of validity on solution (41), we must calculate a
first correction. This is done by paralleling the analysis of the vis
cous-only case. After a good deal of analysis, we find for Ca-1 =Re
= 0 but G ~ 0 that

W; = 2')'W~ + (')'2 + ~)W2 = l ')'4 + ~ ')'2~ + 202, (42a)
8 2

where

(42b)

and

o=(l/6)GWOl . (42c)

When G =0, ')' =a, and 0=0, Eq. (42a) reduces to form (27a). Sys
tem (42) is subject here to (19a) and (19b) and the order e2 equivalent
of Eq. (40) giving

W 2 = (l/24)W0
1(G + 6W<fW( 1) on z =0 (42d)

and

W2 = (l!8)WOW02 (4WOW01 - G) onz = 1. (42e)

We have solved system (42) numerically for various values of G and,
using the free-end equivalent of relation (26), obtained R 2• The plots
shown in Figure 2 show that IR2 1 is largest close to z =O. It can be
seen that when G becomes large, say greater than 100, the value of R 2

is comparable to Roand e2 must be very small for the correction to be
small. If we use criterion (29) for neglect of the corrections, we find
that we must have

(1!4)e2 Wo
2 [~G + 2W?Wo1

] « 1. (43a)

If (43a) is evaluated at z = 0, the inequality is guaranteed if
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0 0
0 Z D

R. R,------
- 0.005 - 0.05

(8) (0)

0 z 0
D D

R. R,

- D.5 (C) -5 (d)

Fig. 2. Numerical solutions for R2(z ) of system (42) for (a) G = 1, (b) G = 10, (c)
G = 100, (d) G = iooo.

(1!12)€2G « 1,

which translates through definition (33) to

RelFr« 12.

(43b)

(43c)

Unlike the condition (31) for validity ofthe one-dimensional solutions
for fibers with a winder and G = 0, condition (43) can be very re
strictive. The value of RelFr must be unity or smaller or the radial
variation in the axial velocity becomes appreciable and the standard
one-dimensional model breaks down.

DISCUSSION AND CONCLUSIONS

We have used a procedure to derive systematically the one-di
mensional approximate systems plus their corrections from the
steady, free-surface, axisymmetric equations of a liquid jet. These
corrections allow parameter estimates for the validity of the one
dimensional flows. Only the "outer" region sufficiently far from the
fiber ends has been treated carefully, the "inner" boundary-layer
behavior near the orifice has been studied numerically by Fisher,
Denn, and Tanner.P They find that the lowest-order one-dimensional
solution is valid to within one diameter of the orifice.

We have discussed two types of fiber systems, viz., ones having
applied tensions at their ends and ones having free ends but driven
by axial gravity. A fairly strict limitation on the magnitude of gravity
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term was found to be consistent with one-dimensional flow assump
tions.

We have examined here only the simplest of fiber systems. That
is, steady, Newtonian liquid jets with uniform properties that enter
into passive gaseous environments. Thus, our conclusions on the
validity of one dimensionality are limited by these features. However,
the procedure presented here is a basis for treating much more
elaborate fiber systems, especially nonisothermal jets and polymer
jets having complex rheological behavior.

The authors wish to acknowledge the support of Owens-Corning Fiberglas Corpo
ration. They also thank Dr. N. E. Greene.for critically reading an earlier version of
this article.
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