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High Reynolds number oscillating contact lines
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Abstract

For the eventual use as regards wave generation and damping, we investigate oscillating contact lines on vertical walls.
Stainless steel is used rather than the glass of Ting and Perlin [J. Fluid Mech. 295 (1995) 263] for the vertically sinusoidally
oscillating plate over a large range of Reynolds numbers. The non-wetting stainless steel minimizes the static meniscus ignored
in our analysis. Other than the change in static contact angle serving as an initial condition, the dynamic features in both
cases are similar. In low Reynolds number oscillation, a pinned-edge condition can appropriately describe the contact-line
motion. Higher Reynolds number oscillatory contact-line behavior becomes non-linear and very complicated. The resulting
periodic, non-sinusoidal oscillation of the contact line exhibits three types of apparent motion: stick (associated with contact
angle hysteresis), partial stick where only portions of the oscillation cycle exhibit stick, and total slip. Increasing the Reynolds
number reduces hysteresis phenomena, however, it still cannot be ignored. It is seen that the static contact angle is unimportant;
it is the dynamic contact angle that is consequential.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

We study an oscillating contact-line; the tri-junction of a liquid, gas/vapor, and solid that moves to and fro.
The interaction/generation of surface waves by surface-piecing bodies has been the subject of many investiga-
tions. Often, the effect of surface tension can be ignored safely. When waves are short waves or when the grav-
itational effect is reduced, capillarity must be included. The presence of capillarity adds an extra term to the
dynamic-free surface boundary condition proportional to the free surface curvature and thus increases the order
of the dynamic-free surface boundary condition. Hence extra conditions are required at the ends of a finite do-
main. These conditions determine the position or slope of the free surface at its intersection with the container
boundary.

Without surface tension, the idealized-free surface of potential flow is always orthogonal to a vertical wall.
However, this condition may be inappropriate if capillarity is present. The extension of an orthogonal condition to
waves with capillary forces is a free-end edge condition, implying that the contact angleθ (seeFig. 1) is fixed at
π/2, and that the contact line moves freely along the solid boundary. This is not the case.

∗ Corresponding author. Tel.:+1-734-7634754; fax:+1-734-9368820.
E-mail address: perlin@umich.edu (M. Perlin).

1 Present address: CSO-Aker Engineering Inc., Houston, TX 77079, USA.

0165-2125/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.wavemoti.2003.12.011



42 M. Perlin et al. / Wave Motion 40 (2004) 41–56

02 =

x
pV

),(ˆ tx

y

Stainless steel plate

air 

water

Fig. 1. Sketch of the BVP and the coordinate system.

Several alternative boundary conditions for the edge of a free surface have been proposed. Benjamin and Scott
[2] proposed a pinned-end edge condition for a rim-full container. They argued that the same condition could
be applied to the interface when the contact angle is within the static range even if the container is not rim-full.
Graham-Eagle[3] used the same condition to determine the frequencies of capillary-gravity waves in a rim-full
circular cylinder.

Dussan[4] described a model of the relative velocity between a contact line and a solid plate as a function
of the contact angle, primarily for a very viscous fluid (high capillary number). InFig. 2, θa and θr represent
the advancing (relative to the plate, the contact line advances in the direction of the gas when the contact an-
gle is greater thanθa) and receding (relative to the plate, the contact line recedes from the gas when the contact
angle is less thanθr) contact angle, respectively. When the contact angle is within (θr, θa), this model predicts
no relative motion between the contact line and the plate; beyond that range, relative motion occurs. Based
on the model shown inFig. 2, Davis [5] discussed five types of contact-line problems and also stated how
to pose the contact-line boundary conditions for each, but none of these problems involved oscillating contact
lines.

To study capillary-gravity wave damping at a vertical wall (one of our eventual objectives), for low capillary
number Hocking[6] proposed the simplest, non-trivial contact-line model for oscillating flows: a linear relationship
between the contact-line velocity and the surface slope at the contact point. Two models with and without contact
angle hysteresis were presented. Assuming a static or mean-dynamic contact angle ofπ/2, the advancing and
receding contact angles are given byθa = π/2 + αh andθr = π/2 − αh, where the magnitude of the surface
slope at the wall,|∂η̂/∂x|x=0, is assumed small. The simple model to be applied atx = 0 (shown inFig. 3) is
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Fig. 2. Contact angle vs. contact-line velocity for unidirectional flow.
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Fig. 3. Contact-line condition with (dash line) and without (solid line) hysteresis (after Hocking[6,7]).

given by

vr = ∂η̂
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(1)

whereη̂ is the surface elevation,vp the plate velocity andβ−1 the slope of the two line segments ofFig. 3. In the
remainder of the paper,vr, η̂, vp are taken as complex variables of a complex exponential representing the temporal
oscillation where the real part is physically significant. Henceforth, all variables have been made dimensionless by
the length scalek−1

0 and the time scaleω−1, whereω is the angular frequency of the wall (wavemaker) andk0 the
linear wavenumber implicitly given by the dispersion relation

ω2 = gk0 + σ

ρ
k3

0. (2)

Hereσ is the liquid-gas surface tension,ρ the liquid mass density andg the gravitational acceleration.
The special linear case of no contact angle hysteresis[7] is recovered whenαh = 0. This simplification ofFig. 2

has the same form used by Young and Davis[8] for creeping flows.
These models neglect the static meniscus effect by assuming aπ/2 static contact angle, significantly simplifying

the analyses. However, experimental evidence indicates that the static contact angle is not unique and can be far from
π/2 depending on the properties of the three phases. In this sense, Miles’[9] inviscid analysis improved Hocking’s
model by allowing a non-flat static meniscus.

In the model given by (1), the slip coefficientβ is a real constant. For oscillating flows, Miles[9] modeled a
possible phase shift between the surface slope and the relative velocity at the contact-line using a complex-valued
coefficient,c, when the plate motion is described by eit . This represents a different type of hysteresis than that
described in Hocking. Miles imposed the following (Navier) slip condition along the plate associated with an edge
condition similar to (1)

v − vp = ls
∂v

∂x
alongx = 0, y < yc (3)

wherels is a dimensionless slip length, also a complex function ofω; yc the elevation of the contact-line andv
the vertical speed of the fluid. According to Miles[9], the compatibility condition between his complex-valued
representation of (1) and (3) is

c = 2ils. (4)
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Fig. 4. Miles’ model of contact angle vs. relative contact-line velocity for oscillatory flow,vr = c ∂η̂/∂x; c is a complex-valued constant. The
modulus ofc determines the slope of the ellipse, the phase ofc determines the area of the ellipse. The ellipse is centered aboutθs (i.e. the static
contact angle) on the vertical axis. Note thatθ − π/2 = tan−1(∂η̂/∂x).

To simplify his analysis, Miles assumed thatls is a complex constant although he acknowledged that this was
unrealistic. His assumption of complex constantc leads to a model shown schematically inFig. 4. The slope of the
ellipse major axis isβ−1 (β = |c|) while the area is due to the phase. Since the range ofvr is not known a priori the
value ofc must be iteratively adjusted, unlike the Hocking model.

Our experimental results exhibit a more complicated relationship between the contact angle and contact-line
relative velocity. Besides the varying phase shift between the contact angle and the relative velocity of the contact
line, β = |c| is not constant. Both static and dynamic behavior of the contact line is exhibited during oscillation,
requiring the imposed boundary condition to be phase-dependent. We determineβ by measuring the relationship
between the dynamic contact angle and relative contact-line velocity for stainless steel over a large range ofRe (=
â2ω/υ = âVp max/υ), whereâ is the dimensional plate stroke amplitude,ω the radian forcing frequency,υ the
liquid kinematic viscosity andVp maxthe maximum plate velocity (âω). The experimental results of a stainless steel
plate in contact with a water–air interface show that except for the different static contact angle, the contact-line
behavior exhibits similar dynamic features to those of a glass plate in contact with water–air studied earlier by
Ting and Perlin[1]. In high Reynolds number oscillation, the contact-line behavior becomes very complicated
with three types of motion (slip, partial slip and stick) existing over one period. The dynamic contact angle range
exceeds the static range. Contact angle hysteresis decreases with increasing Reynolds number; however, it is never
negligible.

Employing a boundary condition similar to (1) with an undetermined slip coefficient model, we solve the 2D
inviscid linear boundary value problem inSection 2. Comparing to Miles’ solutions[9], two additional terms appear
in our surface elevation equation; however, these two terms sum to zero, and therefore we recover Miles’ result
through a different approach. Retaining all three terms, however, has advantages to be discussed. As expected,
comparison to our experimental data indicates that the fixed contact-line boundary condition predicts the contact
line behavior well for small Reynolds number oscillation flows only.

In Section 3, we discuss the experimental investigation, including the setup, parameters, and results. Our mea-
surements explore the unique features of the contact-line behavior during high Reynolds number oscillation. One
interesting observation is that the static contact angle measured after each experiment is close to the averaged
dynamic contact angle over one period.

Finally, we discuss the viscous effect, the non-linear effect, and the material effect on contact-line behavior.
According to our experimental parameters, the viscous force can be neglected, i.e. the inviscid assumption is
valid. Generally, the nonlinear effects associated with large amplitude or high frequency cause slip, dramatically
changing the contact-line behavior. In a reduced gravity environment the nonlinear effect is mitigated, while in a
gravity-dominated environment, the non-linear effect is amplified. In spite of the different static contact angles on
stainless steel and on glass, similar dynamic features of the contact line are exhibited. This confirms our conjecture
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that the material characteristics affecting the static contact angle can be separated from the dynamic surface boundary
condition to simplify analysis greatly.

2. An alternate derivation of Miles’ [9] equations

In this section, we derive the inviscid 2D boundary value problem for a vertically oscillating upright flat plate with
both pinned-contact-line and slip-contact-line conditions. Employing the Fourier-cosine transformation, Hocking
[7] solved the inviscid 2D boundary value problem with a linear relationship between the surface slope at the
contact point and the relative contact-line velocity (i.e. no hysteresis). From his surface elevation equation, the
surface slope at the contact point always equals zero, giving aπ/2 dynamic contact angle, in contrast to the more
complex physical phenomenon typically observed. We employ the same method as Henderson and Miles[10] for
studying the surface-wave damping in a circular cylinder with a fixed contact line, providing a dynamic contact
angle dependent on the slip coefficientc and the capillary numberκ that is identical to Miles[9].

We consider an upright plate oscillating vertically and sinusoidally in deep water,

vp = ia eit at x = 0, (5)

wherea is the prescribed dimensionless oscillation amplitude. A definition sketch with dimensional variables is
shown inFig. 1.

Pursuing temporally periodic solutions, we write the velocity potential asφ(x, y)eit and the surface elevation as
η(x)eit . The dimensionless linearized 2D inviscid boundary value problem for small amplitude is

governing equation : ∇2φ = 0, (6a)

wall condition :
∂φ

∂x
= 0 onx = 0, y ≤ 0, (6b)

kinematic surface condition :
∂φ

∂y
= iη onx > 0, y = 0, (6c)

dynamic surface condition : iφ = κ2

1 + κ2

∂2η

∂x2
− 1

1 + κ2
η on x ≥ 0, y = 0, (6d)

contact-line condition : η = −ic
∂η

∂x
+ a on x = 0, y = 0, (6e)

with a deep water condition requiring wave motion to decay asy → −∞, and a radiation condition requiring only
right-going waves asx → ∞. Here we have imposed a contact condition at the intersection of the free surface
and the solid surface with an undetermined complex-valued slip coefficientc that becomes a no-slip boundary
condition in the limitc → 0. The parameter,κ, is an inverse Bond number defined asκ = (σ/ρg)1/2k0, wherek0
is a dimensional wavenumber and the term multiplying it is a capillary length. This parameter represents the ratio
of capillary to gravitational forces. The details of the solution are similar to those in Henderson and Miles[10] and
are given in[11]. The velocity potential and surface elevation are:

φ = 2i(a − icϑ)κ

πI

∫ ∞

0

cosk x eky dk

(1 − k)(κ2k2 + κ2k + κ2 + 1)
, (7)

η = 2(a − icϑ)κ

πI

{∫ ∞

0

k cosk x dk

(κ2k2 + κ2k + κ2 + 1)(1 − k)
+

∫ ∞

0

cosk x dk

1 + κ2k2

}
− a − icϑ

I
e−x/κ, (8)

wherek is the dimensionless wavenumber andI is given by

I = 2κ

π

∫ ∞

0

k dk

(1 − k)(κ2k2 + κ2k + κ2 + 1)
.
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The last two terms in (8) sum identically to zero. Then (7) and (8) are Miles’[9] equations; however, in its present
form, (8) has two advantages: the two integrals within the braces are simpler to compute numerically and the
contact-line condition is explicitly met by the final term. Taking the derivative of (8) with respect tox yields the
free surface slope at the wall

ϑ = ∂η

∂x
= a

κI + ic
onx = 0. (9)

In most analyses, aπ/2 static contact angle is assumed implying a flat static surface. Miles[9] provided the inviscid
solution with a static meniscus correction valid for|η| � 1. Forκ � 1, his solution of the dynamic contact angle
simplifies to

ϑ = (â/ lc)eiωt

I + iγ − ycM
, (10)

whereâ is the dimensional wave amplitude,I = −1+ ((κ/π)(2 lnκ+ 1))+ 2πi + O(κ2),M = 0.222+ O(κ), γ =
c/κ andlc = √

σ/ρg.

According to the slip condition (1), the slip coefficientc, is defined as

c = ∂η̂/∂t − vp

∂η̂/∂x
= vr

∂η̂/∂x
. (11)

Hence,β, the modulus ofc, is a model parameter specifying the relationship between the contact-line relative velocity
and the surface slope at the contact point. Hocking used a real constantβ in his linear slip condition, which was
determined for slow unidirectional flow but applied it to oscillatory flow. Although there are no universal contact-line
models, experiments and analysis for capillary spreading demonstrate more complicated relationships between the
contact angle and contact-line velocity than shown inFig. 1. Miles [9] argued that the Hocking realβ assumption
is inappropriate for oscillatory flows and suggested the complex constant,c, to allow a phase shift. However, our
experimental data show that the contact-line model for the oscillatory flow is also much more complicated than
Miles’ contact-line model.

3. Experimental investigation

3.1. Experimental setup and parameters

We measure the dynamic contact angle and the free surface position along a vertically oscillated, upright plate
partially immersed in a rectangular tank. The laboratory experiment utilizes a 5 W Argon-Ion laser; attendant optics
(a spherical lens, a cylindrical lens, and several dielectric mirrors); a rectangular glass tank; a stainless steel plate;
an electrodynamic shaker with feedback; a water treatment system; and a high-speed intensified video imager. The
tank is 610 mm× 305 mm× 495 mm(length× width × height). The plate size is 289 mm× 187 mm× 2 mm
(length×width× thickness), immersed approximately 160 mm into the water. To help avoid surface contamination,
the tank and the plate are scrubbed with ethyl alcohol before filling the tank with treated water (i.e. 5�m particulate
pre-filtration, carbon adsorption, de-ionization, and 0.2�m particulate filtration). The shaker control includes a
Mac PPC computer enhanced with National Instruments’ LabVIEW software and data acquisition and output
boards.

The setup is shown inFig. 5. To avoid a reflected image from the water surface, the imager view angle is
elevated about 10◦ above the surface. We record images of a precise target to determine the image distortion
and the system resolution. Results show that the distortion is negligible and the present resolution is 55.4�m/pixel.
Fig. 6 is a typical image of the dynamic contact angle and the results of the plate and surface position
detection.
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Fig. 5. Experimental setup (not to scale).

The position of the stainless steel plate, the contact line, and the contact angle are required for subsequent analysis,
and are determined from the recorded images as follows. A reference point of silicone mixed with rhodamine dye
that fluoresces red under the laser light was affixed to the plate immediately above the highest point achieved by
the fluid during any of the oscillatory motions of the plate. This referenced the plate position as a function of
time. The fluid was dye laden with fluorescein so that it fluoresced blue-green when illuminated by the Argon-Ion
laser, thus facilitating location of the meniscus and hence the position of the contact line as a function of time. A
protractor was used to measure the apparent contact angle from the laser-illuminated free surface in the recorded
images.

In our experiments, six frequencies, 2, 4, 6, 8, 12 and 16 Hz, are selected with seven stroke amplitudes, 0.5, 1, 2,
3, 4, 5 and 6 mm to cover a large range of Reynolds numbers (seeTable 1).

Abundant experimental evidence indicates that a unique static contact angle does not exist in general. It varies
within a certain range, depending on the material characteristics and the Young–Laplace angle. When the stainless
steel plate is placed in quiescent water, its static contact angle is approximately 90◦. Slowly lifting or immersing the
plate slightly causes a decrease or increase in the contact angle, respectively. We measure the static hysteresis range

Fig. 6. A snapshot of the surface profile during a 4 Hz–1 mm oscillation. The white solid line and curve indicate the image processing locations
of the plate and surface elevation.
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for the stainless steel plate by moving the plate up and down very slowly (i.e. quasi-statically). We also measure the
static contact angle at the conclusion of each experiment. Measurements show that the static contact angle of each
experiment at its conclusion is approximately 30–40◦ (seeTable 2), much smaller than the centered-angle (62◦) of
the static hysteresis range, but close to the average value of the dynamic contact angle over one period.

Fig. 7. Surface variation during one period of oscillation. The plate motion isŷ = â cosωt̂, whereâ = 2 mm andω = 32π rad/s.
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Fig. 7. (Continued )
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Fig. 7. (Continued ).
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Table 1
Reynolds number for each experiment, defined as(âVp max)/υ

Frequency (Hz) Approximate stroke amplitude (mm)

0.5 1 2 3 4 5 6

2 2.57 10.27 41.15 95.86 175.6 276.5 385.1
4 5.60 21.31 88.10 193.7 351.6 517.1 780.0
6 8.47 31.68 122.9 287.5 500.3 812.6 1198.0
8 10.81 42.62 177.1 415.8 727.3 1107.0 1630.0

12 16.22 62.39 257.6 586.0 1081.0 – –
16 20.99 72.11 330.3 543.0 – – –

Vp max is the maximum plate velocity,̂a the dimensional stroke amplitude andυ the kinematic viscosity of the water–fluorescein mixture.
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Fig. 8. Dynamic contact angle θc variation for a 6 Hz oscillation: (�) glass plate [1]; (�) stainless steel plate. Stroke amplitudes: (a) 1 mm, (b)
4 mm and (c) 5 mm.
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Table 2
Static contact angle (◦) at the conclusion of each experiment

Frequency (Hz) Approximate stroke amplitude (mm)

0.5 1 2 3 4 5 6

2 – 40.36 39.34 38.71 36.11 35.38 35.20
4 37.64 43.37 37.01 36.04 33.73 37.47 38.84
6 38.34 38.80 32.28 32.71 32.96 32.79 31.29
8 39.01 33.85 33.82 31.86 32.54 36.28 33.16

12 31.52 32.56 35.32 31.98 34.57 – –
16 37.26 39.94 32.15 32.81 – – –
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Fig. 9. Dynamic contact angle θc vs. contact-line relative velocity Vr for a 6 Hz oscillation: (�) glass plate [1]; (�) stainless steel plate. Stroke
amplitudes: (a) 1 mm, (b) 4 mm and (c) 5 mm. Arrows in (c) indicate increasing time.
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Fig. 10. Vr/θ variation over a period of a 6 Hz oscillation: (�) glass plate [1]; (�) stainless steel plate. Stroke amplitudes: (a) 1 mm, (b) 4 mm
and (c) 5 mm.
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3.2. Experimental results

The primary goals of these experiments are to determine the slip coefficient and to compare the contact-line
dynamic behavior of water and a stainless steel plate to water and a glass plate. The dynamic features of the
contact-line and contact angle behavior are studied over a large range of Reynolds number. In general, three modes
of contact-line motion are observed. First, stick motion, the contact line is fixed relative to the plate. Stick occurs
for low amplitude or low frequency oscillations. In this mode, the dynamic contact angle changes within the static
range (i.e. Vr = 0) and there is no relative displacement between the plate and the contact line. Second, partial
stick-slip motion, relative displacement appears between the liquid and the solid surface accompanied with rapidly
changing dynamic contact angle. Third, slip motion, the contact line moves freely along the plate with a barely
varying contact angle. Usually stick motion is associated with small Reynolds number oscillation, while in high
Reynolds number oscillation all three motions and hysteresis are observed. Images of one period of 16 Hz–2 mm
oscillation are shown in Fig. 7 with all three motions observed: slip occurs near the plate maximum position; stick
occurs near the plate minimum position; between is the transition (partial slip) motion. Note that the associated
surface wave is generated essentially by contact-line motion.

Fig. 8(a)–(c) shows three typical measurements of the dynamic contact angle variation over one period of os-
cillation for both the stainless steel plate and glass plate [1]. Our measurements show that the receding contact
angle changes gradually while the advancing contact angle changes more rapidly as also shown by Ting and Perlin.
In the slip mode, the contact angle barely changes. The corresponding dynamic contact angle versus contact-line
relative velocity Vr is presented in Fig. 9(a)–(c), where Vr is scaled by the maximum plate velocity. The Reynolds
numbers of the stainless steel plate experiments are 31.68, 500.3 and 812.7, respectively; the Reynolds numbers of
the glass plate experiments are 40.1, 648.3 and 1023.1, respectively. The contact line exhibits distinct features in
these three cases; however, our stainless steel plate measurements and those of Ting and Perlin show remarkable
characteristic agreement. In Fig. 9(a), the small amplitude oscillation, no obvious dynamic behavior of the contact
line is observed. The contact angle varies within the static range, and the relative velocity between the contact line
and the plate is almost zero. Increasing the stroke amplitude causes all three modes of motion over one period, see
Fig. 9(b) and (c). When slip occurs, the dynamic contact angle range exceeds the static range. The measurements
also show that the contact-line motion is non-sinusoidal, but still periodic in high-Reynolds number oscillations.
The relationship between the contact angle and relative contact-line velocity is very different from the complex
constant model suggested by Miles [9], see Fig. 4.

The slip coefficient β, the relationship between the contact angle and the contact-line slope, can be determined
experimentally. The β corresponding to the data in Fig. 8 is presented in Fig. 10. Results show that in low Reynolds
number experiments β is zero when only stick motion exists; in high Reynolds number experiments β changes form
with the different types of motion. It is a function of time, stroke amplitude and frequency during the slip interval
and becomes zero during stick motion.

Experimental evidence shows that for high amplitude or high frequency oscillations, both the static and dynamic
behavior should be included in the edge condition, requiring the imposed boundary condition change form during
the motion. Neglecting the frequency effect, Ting and Perlin [1] proposed a piecewise slip coefficient model that
was difficult to implement. An alternative method, suggested by Davis [12], is to neglect the static hysteresis when
its range is negligible, which is not appropriate here. According to our experimental data, neither the range of the
hysteresis nor its time duration is negligible for high Re (= â2ω/υ) oscillations.

4. Discussion and concluding remarks

To better physically approximate the linear problem, materials are chosen to minimize the meniscus. By comparing
experimental results for a stainless steel plate with Ting and Perlin’ s measurements [1] with a glass plate, we find
that in spite of the different static contact angles, contact lines in both experiments exhibit similar dynamic features.
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This confirms our conjecture that material characteristics associated with the static contact angle do not significantly
affect the dynamic solution. Hence, the oscillating lubricating liquid layer isolates the flow from the solid material
surface.

Our experiments explore the unique oscillating contact line behaviors as affected by surface tension, gravity,
inertial force and viscous force. The contact line exhibits both slip (σ → 0) and stick (σ → ∞) behavior over
one oscillation period. To determine the dominant forces in each experiment, first we calculate the parameter

p = υ

√
k3

0/g, measuring the primary viscous effect of the Stokes layer on the plate, as in the study of the waves
produced by a vertically oscillating plate [7]. Viscosity is negligible provided that p � 1. The viscous effect
parameter of our experiments is much less than one in each case, indicating that the inviscid approximation is valid.
Second, we calculate another parameter Rsgi = ρâ2(g+ âω2)/σ, the ratio between the combination of gravity and

Fig. 11. Experimental evidence of the stick, partial stick and slip motions during one period. (a) Dynamic contact angle θc and (b) relative contact
line velocity Vr variation over one period.
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Table 3
Rsgi number for each experiment

Frequency (Hz) Approximate stroke amplitude (mm)

0.5 1 2 3 4 5 6

2 0.034 0.137 0.555 1.268 2.289 3.630 5.305
4 0.035 0.143 0.607 1.443 2.704 4.441 6.707
6 0.036 0.154 0.693 1.735 3.396 5.793 9.043
8 0.038 0.169 0.814 2.144 4.365 7.686 12.31

12 0.043 0.212 1.161 3.312 7.134 – –
16 0.051 0.273 1.645 4.948 – – –

inertial forces to the surface tension. Both Ting and Perlin’ s and our experiments observe more obvious contact-line
slip as the Rsgi number increases as shown in Table 3, and is evident in Fig. 9 where â is increasing from the top
graph to the bottom graph and hence so is Rsgi. (In graphs of contact angle versus relative velocity, data points not
located on the Vr = 0 ordinate represent at least partial slip.)

Within one oscillation period, our experiments show that slip occurs mostly near the top of the plate stroke. This
position is associated with the maximum acceleration in the same direction as gravity. Due to the opposite directions
of the maximum acceleration and gravity, the possibility of slip at the bottom of the plate stroke is reduced. Fig. 11
shows that for oscillating flows a phase shift exists between the contact-line and plate motion. When slip occurs, the
contact line moves freely along the plate and the contact angle barely changes. Between the highest and the lowest
positions is the transition motion with the contact angle varying rapidly. Our experiments show that the advancing
contact angle changes more rapidly than the receding contact angle.

Our experimental results of low Reynolds number oscillations are consistent with Benjamin and Scott’ s assump-
tion that when the dynamic contact angle varies within the static range, the contact line is fixed. The pinned-edge
condition can provide a good prediction.

For high Reynolds number oscillatory flows, a slip model with a time-dependent slip coefficient c is required.
The results show that the inviscid model with pinned-edge condition and the real static contact angle predicts the
experimental data well; however, it fails to predict the contact line behavior adequately when slip occurs.
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