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We calculate spatially and temporally periodic standing waves using a spectral bound-
ary integral method combined with Newton iteration. When surface tension is ne-
glected, the non-monotonic behaviour of global wave properties agrees with previous
computations by Mercer & Roberts (1992). New accurate results near the limiting
form of gravity waves are obtained by using a non-uniform node distribution. It is
shown that the crest angle is smaller than 90◦ at the largest calculated crest curva-
ture. When a small amount of surface tension is included, the crest form is changed
significantly. It is necessary to include surface tension to numerically reproduce the
steep standing waves in Taylor’s (1953) experiments. Faraday-wave experiments in a
large-aspect-ratio rectangular container agree with our computations. This is the first
time such high-amplitude, periodic waves appear to have been observed in laboratory
conditions. Ripple formation and temporal symmetry breaking in the experiments are
discussed.

1. Introduction
Finite-amplitude standing waves in two-dimensional potential flow of infinite depth

were first considered by Rayleigh (1915). He neglected the effect of surface tension
and calculated a solution to third order as a power series in the wave amplitude.
A similar expansion was carried to fifth order by Penney & Price (1952). The
effects of finite depth (Tadjbakhsh & Keller 1960; Vanden-Broeck & Schwartz 1981)
and of surface tension (Concus 1962; Vanden-Broeck 1984) were later included.
Schwartz & Whitney (1981) corrected and improved the expansion of Penney & Price
to 25th order. They obtained more accurate results for standing waves of relatively
large amplitude in the absence of surface tension. The validity of the expansion
procedure used by Schwartz & Whitney was proved by Amick & Toland (1987). The
substantial literature on nonlinear water waves, including standing waves, is reviewed
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by Schwartz & Fenton (1982). More recent studies on standing water waves include
Mercer & Roberts (1992, 1994) and Tsai & Jeng (1994).

We use a time-marching spectral boundary integral method for potential-flow prob-
lems to obtain exponential accuracy (Schultz, Huh & Griffin 1994). Both gravity and
surface tension are included in the formulation. As in Mercer & Roberts (1992), we
calculate standing waves in water of infinite depth using Newton iteration to find
appropriate ‘initial conditions’ for periodicity. More precisely, we determine the wave
profile that reproduces itself after one temporal period such that the spatially peri-
odic free-surface elevation and velocity potential are symmetric and antisymmetric,
respectively, about the peak of the standing wave. This more restrictive definition
eliminates travelling waves and combination standing/travelling waves (Bridges &
Dias 1990) that would otherwise satisfy the spatial and temporal periodicity condi-
tions. Furthermore, the nonlinear standing waves analysed here start from rest (as
in all previous nonlinear studies, e.g. Schwartz & Whitney 1981) and at no time in
the time cycle is the free surface flat. Starting from rest (§ 3.2) excludes the class
of standing waves where the kinetic energy is never zero during the cycle. Recent
experimental evidence (Jiang et al. 1996) suggests that these standing waves exist in
a Faraday wave system.

Using prescribed horizontal nodal movement, we obtain sharper-crested gravity
standing waves than those previously calculated by Mercer & Roberts (1992). We
show that the temporal period is not a monotonic function of the wave amplitude
close to its limiting form, in agreement with Mercer & Roberts (1992). A similar
result for travelling waves was obtained by Longuet-Higgins (1975), showing that the
highest progressive wave is not the fastest.

Penney & Price (1952) suggested that the limiting standing wave is characterized by
a sharp crest of 90◦. Taylor’s (1953) experimental results showed a near-limiting wave
with a crest of nearly 90◦ and a wave profile similar to that predicted by Penney & Price
(1952). We shall show that surface tension has to be included to obtain waves as high as
those of Taylor (1953) and our computations without surface tension do not support
the conjecture of a 90◦ crest. Note in passing that Hogan (1980), considering the effect
of small surface tension on travelling gravity waves, found a reduced maximum height
and monotonically increasing wave properties. While we (and Debiane & Kharif 1996)
question this result, we show the opposite effect in standing waves, i.e. the limiting
wave height is extended and the non-monotonicity is maintained.

We pose the problem in § 2 for standing waves periodic in space and time and
present the formulation and technique in § 3 for spectral computation. Numerical
results on steep standing waves without surface tension are presented in § 4 with an
emphasis on the limiting wave properties. Surprisingly steep waves can be achieved
with only weak capillarity as shown in § 5. Experiments presented in § 6 are generated
through Faraday-wave resonance in a large-aspect-ratio tank to maintain periodicity
and two-dimensionality, and the results confirm the effect of weak capillarity as
predicted by our calculations.

2. Problem formulation
We consider time-periodic two-dimensional potential flow of a fluid of infinite

depth bounded above by a free surface. As stated in § 1, we assume the motion to
be periodic in the horizontal direction. The dimensionless variables are introduced
such that the primary wavenumber k, the acceleration due to gravity g, and the fluid
density ρ are all equal to one. Therefore the wavelength λ in the calculation is always
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Figure 1. (a) The physical domain of the problem and (b) the mapped computational domain.

2π and the wave height is denoted by H . A Cartesian coordinate system is adopted
such that gravity acts in the negative y-direction and the undisturbed surface is y = 0
(figure 1a).

The fluid motion is described by a complex potential w(ξ) = φ + iψ, where φ is
the velocity potential, ψ is the stream function and ξ = x + iy represents the two
spatial coordinates. At every time step, the unknown boundary values of the velocity
potential (half of the values are known from the boundary conditions) are solved
using the Cauchy integral formula:∮

∂Ω

w(ξ)

ξ − ζk
dξ = iαw(ζk), (2.1)

where α is 0 or 2π if the location of the kernel singularity, ζk , is outside or inside
the boundary, respectively. If the kernel singularity is on the boundary (ζk ∈ ∂Ω), α
is equal to the included angle, and the integral is treated as principal-valued. For the
smooth contour considered here, α = π.

The kinematic and dynamic boundary conditions on a free surface for an inviscid
flow are given as

Dξ

Dt
=

dw∗

dξ
(2.2)

and

Dφ

Dt
= −y +

1

2

∣∣∣∣dw∗dξ

∣∣∣∣2 − p. (2.3)

Here, ∗ denotes the complex conjugate and D/Dt is a material derivative. We write
the boundary conditions in this form because node locations are often chosen to
follow material particles, especially when examining breaking waves (Schultz et al.
1994). We often find it desirable to prescribe the horizontal motion of the nodes and
hence replace the material derivative above with a derivative d/dt that follows a node,

d

dt
=

D

Dt
− (v − vn) · ∇, (2.4)

where v = ∇φ is the fluid velocity and vn is the velocity of the node. These two
derivatives are identical when nodes follow material particles. With a prescribed
horizontal velocity vnx, the vertical node velocity is calculated by satisfying the
kinematic condition (2.2),

vny = vy + (vnx − vx)
∂y

∂x
. (2.5)
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In the case of zero surface tension, we prescribe the horizontal position of the nodes,

xk =
2πk

N
− S sin

2πk

N
cos

2πt

T
, k = 1, · · · , N, (2.6)

where S is a ‘squeezing factor’. The temporal wave period is denoted by T and
the total number of nodes is represented by N. For S → 1, the grid spacing is
O(1/N2) at the two ends of the domain for t = 0, T , 2T , · · · and at the middle
of the computational domain for t = 1

2
T , 3

2
T , · · ·. Therefore this nodal distribution

(0 < S < 1) provides denser nodes at the crests for gravity-dominated waves with
appropriate initial conditions.

The prescribed pressure p in (2.3) is normally zero unless surface tension or wind
effects are included. In this study we include surface tension so that

p =
1

Bo

x′y′′ − x′′y′
(x′2 + y′2)3/2

, (2.7)

where the prime indicates differentiation with respect to a free-surface parameter
s. This parameter can be arclength, but as in Baker, Meiron & Orszag (1982), our
computations use node number as the parameter. Then, by definition, the parameter is
evenly spaced and a Fourier transform is easily applied. The Bond number is given by
Bo = ρg(k2σ)−1, where σ is the surface tension coefficient. The inverse Bond number
κ = 1/Bo is usually very small (for example, κ = 0.0027 in Taylor’s experiments). We
show in § 4 and § 5 that this weak capillarity has surprising effects that cannot be
neglected at large wave steepness.

We complete the formulation by applying a periodic boundary condition in the
horizontal direction, w(ξ) = w(ξ+2π), symmetry conditions at x = π for the potential
and free surface elevation, the deep water condition w → 0 as y → −∞, and
appropriate initial conditions.

3. Numerical procedure
Based on the kernel desingularization of Roberts (1983), our spectral formulation

results in exponentially accurate integration and solutions as shown in Schultz et
al. (1994). After discretization this leads to a system of nonlinear equations for the
unknown initial profile. This system is solved by Newton’s method with the Jacobian
evaluated numerically by finite differences.

3.1. Spectral complex-integral method

The physical domain is mapped to an approximate unit circle (see figure 1b) using
the conformal transformation:

ζ = e−iz. (3.1)

This eliminates the periodic boundary conditions and sharp computational corners
used by Vinje & Brevig (1981). In the limit of vanishing waves, the mapped domain
becomes a unit circle. All derivatives are taken in the spectral space of the conformed
representation.

Roberts (1983) used a desingularized kernel in his vortex formulation. Generally, it
is difficult to find a suitable desingularized form of a kernel in an integral equation,
but in the complex formulation it is relatively simple. The Cauchy integral equation
(2.1) can easily be rewritten as

−
∫

w(s)− w(ζk)

ξ(s)− ζk
dξ

ds
ds = 0, (3.2)



Highly nonlinear standing water waves with small capillary effect 257

where the principal value integral can be replaced by the closed contour integral since
the integrand is no longer singular – when ξ approaches ζk , the integrand approaches
dw/ds at the kth node point. The continuous free-surface parameter s is equal to the
node number at each nodal location. The integral equation (3.2) is converted to the
following algebraic system:

N∑
j=1

Ijk = 0 for k = 1, . . . , N, (3.3)

where N is the number of nodes, and Ijk is represented by

Ijk =


wj − wk
ξj − ξk

(
dξ

ds

)
j

if j 6= k(
dw

ds

)
k

if j = k.

(3.4)

The algebraic system (3.4) effectively becomes a differential system because Ijk includes
the derivative of w. To evaluate these derivatives spectrally, we use a cardinal function
representation of w (Boyd 1989):

w(s) =

N∑
j=1

Cj(s)wj, (3.5)

where

Cj =
1

N
sin π(s− sj) cot

π

N
(s− sj), (3.6)

and the derivative of Cj is

dCj
ds

(si) =


π

N
(−1)i+j cot

π

N
(si − sj) if i 6= j

0 if i = j.
(3.7)

Then, equation (3.4) becomes

N∑
j=1

Γjkwj = 0 for k = 1, . . . , N, (3.8)

where the influence coefficients Γjk are now

Γjk =


1

ξj − ξk

(
dz

ds

)
j

+
dCj
ds

(sk) if j 6= k

−
N∑

i=1,i6=k

1

ξi − ξk

(
dξ

ds

)
i

if j = k.

(3.9)

The above algebraic system is solved iteratively using a generalized minimum
residual method (GMRES). This variation of the conjugate gradient method for non-
symmetric matrices works very well on the diagonally dominant matrices of (3.8) or
the equivalent piecewise-linear implementation (Schultz et al. 1994) that we use for
extreme waves. Fourth-order Runge–Kutta–Gill and Hamming predictor–corrector
methods with an automatic step-size adjustment (controlled by a marching-error
tolerance εt) were both used, with the predictor–corrector method showing the greater
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computational efficiency, especially for the higher-accuracy computations. Filtering as
discussed in Schultz et al. (1994) may be necessary to calculate near-breaking travelling
waves, although none was needed nor used here to obtain steep standing waves.

3.2. Newton iteration method

We start by considering static initial conditions with a deformed interface. Therefore,
the standing wave solutions always have zero kinetic energy at its crest phase. In
addition to the spatial and temporal periodicity, the inherent symmetries further
simplify the solution procedure: the N unknowns of the initially stationary surface
profile are reduced to N/2 + 1 due to spatial symmetry about the crest and trough. If
a standing wave solution is initially stationary, the wave profile is again stationary at
t = T/2 due to temporal symmetry. We thus require that each node returns to φ = 0 at
t = T/2. This ensures that the elevation profile repeats itself with a π-horizontal shift
as we have verified for typical cases. Marching for one half-period also reduces the
computational cost. An additional constraint on the initial conditions comes from any
of the following: wave amplitude, amplitude of the first Fourier component, potential
energy, or crest curvature. The resulting N/2 + 2 nonlinear algebraic equations are
solved by the Newton–Raphson method (Schwartz & Vanden-Broeck 1979) for the
N/2 + 1 unknown elevations and an unknown period T .

We restrict the number of nodes N to powers of two and use a FFT to spectrally
estimate the spatial derivatives in the free surface conditions. The matrix problem is
solved using a linpack conjugate gradient iterative technique. This technique solves
the problem in O(UVL) operations, where U is the number of unknowns, V is the
number of equations, and L is the number of iterations. Both the influence matrix
and the error vector are updated with each iteration. For most of the cases discussed
herein, only three to five iterations are required. Even with a homogeneous initial
guess, a typical solution for a non-singular matrix requires less than 10 iterations. The
convergence of the spectral method is found (Schultz et al. 1994) to give essentially
double precision (16 digit) machine accuracy with N = 32 and marching error 10−13

for moderate amplitude waves. Therefore, a marching-error tolerance εt = 10−10 and
iteration-error tolerance εc = 10−8 are adopted. The error in the normalized energy is
less than 3× 10−10 in most calculations reported here.

As the initial iterate for the initial conditions, we use the second-order expansion
for standing gravity waves:

η = a cos x+
a2

2
cos 2x and φ = 0. (3.10)

The initial iterate for the period is

T =
2π

1− a2/8
. (3.11)

The amplitude is usually fixed by the total energy density E (energy per wavelength),
except in the neighbourhood of the highest waves. The total energy density E is of
course conserved, and is given by the following integrals along one wavelength on the
free surface:

E = Ep + Ek + Es =
1

2

∫ 2π

0

η2dx+
1

2

∫ 2π

0

φ
∂ψ

∂s
ds+ κ

[∫ 2π

0

ds− 2π

]
. (3.12)

These three terms – potential energy density (Ep), kinetic energy density (Ek), and
surface-tension energy density (Es) – are defined in such a way that all become zero
at zero wave amplitude.
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Figure 2. Gravity wave properties versus crest radius, 1/Γ . T: wave period; Ac: crest acceleration;
Slope: the maximum wave slope in the wave profile; × marks the maximum of the respective wave
property. Dashed lines represent results from a finite-difference scheme rather than the spectral
representation.

4. Steep gravity waves
4.1. Wave properties

We first discuss the non-monotonic behaviour of standing waves without surface
tension. As demonstrated in both Schultz & Vanden-Broeck (1990) and Mercer
& Roberts (1992), the dimensionless global wave properties, such as wave height
H = ymax − ymin at the moment the wave becomes stationary, wave energy E, and
wave period T are not monotonic functions as the standing wave approaches its
limiting form. A gravity standing wave is better characterized by a local property (in
space and time) at the wave crest, such as crest acceleration Ac, crest curvature Γ ,
or the maximum wave slope near the crest. To study the limiting gravity waves, we
choose crest curvature as the deciding parameter rather than the crest acceleration
used by Mercer & Roberts (1992). As the crest radius decreases in figure 2, the
maximum wave slope increases monotonically, and so does the crest acceleration.
The total energy, wave period, and wave height all reach their maxima before the
formation of the sharpest wave crest and then decrease.

At large crest curvature, the spectral method becomes less accurate because of the
nearly singular behaviour at the crest. Therefore we use a finite-difference (piecewise-
linear) estimate of (3.2) and obtain results valid to graphical accuracy for 1/Γ as small
as that shown by the small-1/Γ end of the dashed line in figure 2. Computational
results with smaller crest radius have a normalized energy error larger than 10−6 with
64 nodes. The finite-difference prediction at 1/Γ =1/30 (where the solid and dashed
lines meet in figure 2) is within graphic accuracy of the spectral method prediction.
Table 1 shows that the maximum values of wave height, energy, and period obtained
with a 64-node mesh agree with Mercer & Roberts (1992) to three significant digits. A
convergence study shows that our values are accurate to at least the digits shown for
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Global maxima Limiting local properties

Hmax Emax Tmax/2π Ac θ(deg.) Γ

Present study 1.2403 0.4882 1.0414 0.9923 78.0 64.6
Mercer & Roberts (1992) 1.2404 0.4885 1.0415 0.9800 89.4 —

Table 1. Comparison of limiting gravity-wave properties with Mercer & Roberts (1992). The
limiting local properties represent the limit of accurate computations (in our case represented by
the small-Γ end of the dashed line of figure 2. The maximum crest curvature is not available in
Mercer & Roberts (1992). The limiting crest angle is represented by θ.

the maximum values. The maximum crest angle is the included angle obtained from
the calculated maximum wave slope near the crest. Hence θ is twice the arctangent
of the maximum slope.

In figure 3(a), the crest curvature continues to increase following the Ep, H curve
beyond the maximum point (Ep=0.4882). Adopting Ep as the determining parameter
causes our calculation to jump from the branch with a more rounded crest to the
branch with a sharper crest before reaching the maximum Ep. A superharmonic
instability found by Mercer & Roberts (1992) occurs for solutions near the maximum
Ep in figure 3(a), and therefore may correspond to the existence of two solutions
at the same potential energy. The computations for sharper crests gradually become
less reliable as the curve progresses past the maximum Ep. Figure 3(b) shows an
essentially linear relationship between T and Ep for all wave steepnesses with zero
surface tension. This strong correlation between Ep and the wave period T is also
shown in figure 2 and both reach their maxima at the same crest curvature.

4.2. Singularity formation at the crest

The crest angle of a limiting form standing wave is often conjectured to be 90◦ as first
suggested by Penney & Price (1952). They started their analysis by stating that the
pressure must be a minimum at the surface as the fluid ‘cannot withstand tension’.
The limiting form would be such that the vertical pressure gradient at the crest is
zero. The pressure gradient at the free surface was then expanded in a Taylor series
about the crest to give

dp =
∂p

∂x
δx+

∂p

∂y
δy +

∂2p

∂x2

δx2

2
+
∂2p

∂y2

δy2

2
+

∂2p

∂x∂y
δxδy + . . . = 0.

They then state that the first and fifth terms are zero because of symmetry and that
the second term is zero for the ‘tension’ reason referred to above. Finally, they argue
that at the moment of singularity formation, the fluid is temporarily stationary so the
pressure satisfies the Laplace equation. This forces the remaining terms to satisfy

δx2 = δy2 or δx = ±δy.

Hence, they expect a ±45◦ slope on either side of the crest.
Taylor (1953) first questioned their analysis, in particular the lack of a temporal

periodicity requirement, but his experiments were inconclusive. All analyses to date of
the limiting crest form have neglected temporal periodicity and the unsteady nature of
standing waves. In this respect, the analysis of Stokes (1880) for the limiting travelling
waves is simpler because of the steady assumption. Schwartz & Whitney (1981)
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Figure 3. (a) Ep vs. wave height H , (b) wave period T vs. Ep for standing gravity waves. Dots in
(b) correspond to the same data as those shown in (a). The line in (b) is a linear fit between the end
points at zero Ep and at the maximum Ep.

pointed out that the regular expansion used by Penney & Price may be invalid if the
crest is singular in the limiting form. However, extrapolation of Schwartz & Whitney’s
numerical results implies a square-root singularity, corresponding to the same 90◦ crest
angle. These studies could not prove or disprove the 90◦ conjecture as their choice of
expansion parameter ka reaches a maximum before the extremal values of the crest
curvature and the crest angle are reached.

Using a denser node distribution at the crest (0.5 < S < 0.8) improves our
calculation beyond the steepest wave calculated by Mercer & Roberts (1992) (table 1).
In figure 2, the wave slope increases rapidly beyond one as the crest radius (1/Γ )
approaches zero, while the crest acceleration Ac approaches one. Of the five quantities
plotted in figure 2, the slope is the only one that appears singular as Γ → ∞. This
suggests the formation of a cusp.

The stationary profiles shown in figure 4(a) represent three different crest curvatures
(Γ = 10, 30, 64.6). The profile changes only locally near the crest when the crest
curvature approaches 64.6, the largest crest curvature we computed for zero surface
tension. An enlarged view of the crest region (figure 4b) shows little change in crest
elevation for Γ > 30, but the crest angle becomes smaller than 90◦. This figure
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Figure 4. (a) Stationary profiles for different crest curvatures Γ = 10, 30, 64.6 with zero surface
tension. (b) Magnified view of the crest. The 45◦ angle is included for comparison with the conjecture
of Penney & Price.

also suggests a cusp singularity formation at the crest with further increase in crest
curvature.

The min-max principle for harmonic functions shows that the pressure is smallest
at the free surface (Schwartz & Whitney 1981). Then it is simple to conjecture that the
pressure gradient goes to zero at the crest for the limiting case. This leads to a crest
acceleration of −g (free fall), as confirmed by extrapolations of the computations
in figure 2. Neglecting gravity in the free surface conditions, Longuet-Higgins (1993)
also shows possible cusp formation at finite time for certain initial conditions. To
resolve the possible singularity in our calculation, we would need a singular mapping
rather than just clustering nodes at the crest (Schultz, Lee & Boyd 1989).

Tsai & Jeng (1994) calculated standing waves in water of finite depth. Their
computational approach is similar to Vanden-Broeck & Schwartz (1981) except that
only the velocity potential was expanded in a double Fourier series while Vanden-
Broeck & Schwartz expanded both the velocity potential and the surface elevation.
A finite difference representation of the free surface elevation enabled Tsai & Jeng
(1994) to calculate waves of higher amplitudes. The solution of the limiting wave was
obtained assuming a crest acceleration of −g. Extending their numerical solution to
infinite depth, they find a limiting crest with a 90◦ corner. Truncation errors contribute
to the discrepancies with our results as well as those of Mercer & Roberts (1992)
since Tsai & Jeng (1994) used only 24 nodes per wavelength and 24 time steps per
wave period. They also provided a proof for the 90◦ limiting crest angle based upon
the derivative of the Fourier solution as x approaches the wave crest. L’Hospital rule
is used to estimate the wave slope in spite of the questionable convergence of the
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Figure 5. Surface profiles for a half wave cycle with a time interval of 0.1T for κ = 0.0005,
T = 3.268, Ep = 0.4748, and H = 1.29. The wave profile with the sharpest crest (Γ = 64.6) in
figure 4(a) for zero surface tension is shown as dashed line for comparison.

expansion near the singular crest. Therefore their argument suffers from the same
difficulties encountered in the Taylor series expansion in Penney & Price’s conjecture.

5. Weak capillary effect
The sharp crest of steep waves will not appear in experiments, even for large

wavelengths, owing to surface tension effects. While the local effect at the crest is
expected, we shall show that it has global implications. For instance, Taylor (1953)
observed standing waves higher than predicted by Penney & Price (1952). We have
already shown that Penney & Price (1952) overpredicted the limiting height that can be
achieved without surface tension. In the following, we demonstrate that Taylor (1953)
found Hmax > 1.24 largely due to capillarity.

A typical half-cycle of surface profiles is shown in figure 5 for inverse Bond number
κ = 0.0005. At the maximum wave elevation (H=1.29 and Ep = 0.4748), the crest is
more protuberant than the limiting gravity wave we calculated in § 4.2 (the dashed line
in figure 5). A rounded crest and a large wave slope characterize most of the large-
amplitude standing waves with large Bond number, demonstrating the importance of
surface tension near the crest region.

Figure 6 shows the potential energy density versus wave height for κ = 0.0001
to 0.01 in addition to the κ = 0 curve reproduced from figure 3(a). These inverse
Bond numbers correspond to wavelengths from 170 cm to 17 cm for pure water. The
non-monotonic behaviour remains, but small surface tension extends both Hmax and
the maximum Ep. The difference between κ = 0 and κ 6= 0 only becomes significant
close to the limiting height for a gravity wave. For all the results shown in figure 6,
the surface-tension energy density Es is small relative to the potential energy density
Ep, i.e. Es/Ep = O(κ). However, small capillarity suppresses the crest singularity as
shown in figure 5, and a gravity–capillary standing wave can be much higher than a
gravity standing wave.

We obtain a maximum wave height of H = 2.344 at κ= 0.002 before our compu-
tation loses accuracy. This maximum height is almost twice the gravity-wave limit of
H = 1.240. Therefore, it is not surprising that Taylor (1953) obtained steep stand-
ing waves at a similar inverse Bond number of κ = 0.0027. A calculated profile
at κ = 0.0027 agrees well with the data from Taylor (1953) as shown in figure 7.
Only 16 nodes are needed in the calculation and ymax = 0.943 is used to match
Taylor’s experiments. Unlike the prediction of Penney & Price, the highest gravity
wave (Hmax = 1.2403 from table 1) plotted in figure 7 is lower than the experimental
results. Since this truncated expansion is applied to too high an amplitude, the agree-
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Figure 6. Potential energy versus wave height for different inverse Bond numbers κ; the number
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enlarged portion of the curves is shown in the insert.

2.0

1.5

1.0

0.5

0 p 2p

y 
– 

y m
in

Figure 7. Comparison of wave profiles. The symbols are data taken from figures 11 and 12
of Taylor (1953). ——, A calculated gravity–capillary wave with κ = 0.0027, corresponding to a
wavelength of 32.9 cm in Taylor’s experiments; - - - - -, Penney & Price’s (1952) gravity-wave solution
at the overpredicted Hmax=1.37; — ·—, the highest possible gravity wave (Hmax = 1.2403, Γ = 13).

ment between Taylor’s experiments and the expansion of Penney & Price (1952) is
fortuitous. Schwartz & Whitney (1981) also pointed out fourth-order errors in Penney
& Price’s solution, although this error does not qualitatively change the comparison
in figure 7.

The matching profile (solid line in figure 7) has a slightly different frequency than
Taylor’s experiments. Taylor (1953) stated that the maximum wave profile can be
obtained only as a transitory phenomenon, and that periodic oscillation degenerates
into three-dimensional motion after several periods. This is perhaps the result of
his choice of tank aspect ratio. In § 6, we use Faraday-wave experiments to achieve
both spatial and temporal periodicity to verify the predicted two-dimensional steep
standing waves at small κ.
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Figure 8. Experimental setup of the tank, illumination, and imaging system (not to scale). The
spherical lens has a focal length of 1000 mm, the cylindrical lens has a focal length of 18 mm.

6. Experimental study
6.1. Experimental setup and procedure

Subharmonic standing waves (Faraday waves) can be generated on the water surface
with forced vertical oscillation, i.e. the wave frequency is half the forcing frequency.
The approach of Taylor (1953) uses horizontal (flap-type) wavemakers that change
the wavelength periodically during a wave cycle. The extra superharmonics introduced
by such wavemakers could cause instability in steep waves. Faraday-wave resonance
is a ‘cleaner’ wave-generation mechanism as it better approximates spatial periodicity
by fixed endwalls. This approach is adopted in Jiang et al. (1996) and Jiang, Perlin
& Schultz (1998) and a similar setup used herein is shown in figure 8. The inner
dimensions of the rectangular glass tank are 10.5 cm long, 1.7 cm wide and 30 cm
deep. This 6.2 : 1 aspect ratio is chosen to eliminate transverse waves and maintain
a two-dimensional wave field. The water depth is 15 cm, more than satisfying the
deep-water condition.

A detailed description of the imaging system can be found in Jiang et al. (1996)
and is only briefly described here. Using a 5 W Argon-Ion laser and attendant optics,
a laser sheet is introduced from above the water and parallel to the longitudinal
direction of the tank. With fluorescein dye present, the centreplane of the water
body is illuminated by the laser sheet. We use a Kodak Ektapro CID intensified
imager/recorder and a 100 mm camera lens to capture the wave profile. The optical
axis is oriented perpendicular to the laser sheet and at about a 15◦ angle with respect
to the mean water level to remove the meniscus effect. There is no significant image
distortion in either direction. The imager is capable of recording full frames at a
speed of up to 1000 Hz. Since the linear natural frequency for a 10.5 cm wavelength
is fn = 3.91 Hz, a 125 Hz recording speed is sufficient and provides 36 frames of
surface profile per wave period. Each image is composed of 239 horizontal pixels by
192 vertical pixels with an average image resolution of 0.44 mm/pixel for this setup.

The tank is fixed to a programmable shaker, controlled by a Macintosh com-
puter with National Instruments’ LabVIEW software, data acquisition boards, and a
feedback transducer for vertical displacements of the tank. This mechanically driven
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shaker is probably not the best choice for high-frequency oscillation, but has been
found to produce satisfactory results for oscillations below 8 Hz, the upper frequency
limit in the present experiments. Since deep water wave resonance curves are of
the ‘soft-spring’ type (wave frequency decreases for increasing wave amplitude), only
Faraday waves with subcritical frequency are reported here (f < fn, f is the wave
frequency and 2f is the forcing frequency). A Faraday wave at subcritical frequency
can be excited either above or below the threshold forcing amplitude because of the
hysteresis effect (Decent & Craik 1995). To reduce the forcing effect, most of the
experimental data shown here are obtained below the threshold forcing amplitude
(i.e. outside the neutral-stability curve). However, finite-amplitude disturbances are
required to initiate Faraday waves below the threshold forcing. We achieve this initial
condition by disturbing the surface with a Plexiglas plate before the forcing starts.
This simple approach facilitates the generation of large-amplitude waves with the
least forcing and therefore reduces the external forcing influence on steep waveforms.
Once the wave is excited, we wait sufficiently long (typically more than 1000 wave
cycles) to ensure temporal periodicity.

To avoid surface contamination, the tank is scrubbed before and after each use
with ethyl alcohol. Our treated water is de-ionized, carbon-adsorbed, and filtered to
maintain a surface tension of 72 dynes cm−1, close to that for pure water at room
temperature (23 ◦C). The surface tension decreases to about 71 dynes cm−1 after the
addition of fluorescein. Contact-line constraints significantly influence the frequency
of small-amplitude waves as shown by Jiang et al. (1996) and the references therein.
Here, we study finite-amplitude waves where the contact line has much less influence.
Because of the narrow tank geometry, the imaging plane must be accurately located
at the centre of the tank to minimize the effect of menisci on the front and back glass
walls. Although care is taken to maintain a clean tank, leaving the tank uncovered
for several hours has little effect on the measured steep waves and hence the surface
contamination effect is insignificant.

6.2. Steep wave with weak capillary effect

The forcing frequency 2f is varied between 6.8 Hz and 7.75 Hz (f/fn from 0.870 to
0.992, fn = 3.91 Hz) to obtain steep waves with a wavelength of 10.5 cm. Here, the
frequency ratio f/fn is equivalent to T0/T in our calculation (§ 4) where T0 = 1.0
is the dimensionless linear wave period. At each frequency ratio, as many as six
different forcing amplitudes are applied (denoted by F hereafter). In figure 9, these
experimental results agree qualitatively with the calculated resonance curve (§ 5). The
prediction of Penney & Price (1952) for pure gravity wave is also included in figure 9
(dashed line). Even with an error at fourth order, their solution for nonlinear wave
frequency is within graphical accuracy of the solution of Schwartz & Whitney (1981)
and differs only slightly from our calculation with weak capillarity (solid curve) below
its steepness limit. Their steepness limit (dashed line termination), however, is only half
of the maximum steepness measured, H/2π = 0.425. Thus, the gravity-wave solution
greatly underpredicts the maximum steepness at short wavelengths. This is consistent
with our calculation in § 5. The predicted lowest frequency (solid line termination in
figure 9) only represents the limit of accurate computation for the unforced waves.
We expect to find standing waves closer to the limiting form with more refined grids
and smaller time steps.

Figure 9 also demonstrate the effects of forcing amplitude on the wave steepness
at certain frequencies. For example, the measured wave steepness at f/fn = 0.947
(point A) is closest to the resonance curve of unforced waves with F = 0.6 mm,
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Figure 9. Resonance curve for κ=0.0265, corresponding to λ = 10.5 cm for water waves: ——,
unforced computation from § 5; - - - - -, prediction of Penney & Price (1952) without surface tension
effect. The symbols represent Faraday waves at different forcing amplitude F , ◦, 1.3 mm; � ,
1.1 mm; � , 0.9 mm; 4 , 0.75 mm; � , 0.67 mm; •, 0.6 mm. A–F denote data points corresponding
to images in figures 10 to 12.

i.e. the smallest forcing amplitude of those applied. It becomes difficult to further
reduce F at these frequencies and still excite the subharmonic wave since more time is
required to reach a steady limit cycle. Also, a minimum forcing amplitude is required
to overcome the viscous threshold. Forced standing waves of wavelength λ, either by
direct excitation or by subharmonic resonance, can be described by two independent
parameters: forcing amplitude and forcing frequency. Once a wavelength λ is chosen,
free standing waves have only one parameter: wave amplitude or wave frequency.
This difference between forced and free waves is responsible for the data scatter in
figure 9 at different forcing amplitudes. Furthermore, the forced wave profiles are
closer to the natural (free) waves when the forcing amplitude is small.

A set of stationary profiles for different forcing frequencies is shown in figure 10.
The three experimental profiles in figures 10(a) to (c) correspond to the data points
A to C in figure 9. Each profile corresponds to the smallest forcing amplitude at that
forcing frequency. In all three experiments, the wave reaches the displayed profile
with almost-zero kinetic energy (the profile changes little in a short time interval)
and the maximum wave elevation at the tank centre. From figure 10(a–c), the wave
height increases and the crest becomes flatter with a steep slope to each side. The
surface slope near the crest is so steep in figure 10(c) that the re-emitted laser light is
significantly reduced and the surface profile appears discontinuous in the laser-sheet
image. The calculated waves at the same frequency are shown in the second column
of figure 10 with the same scale as the experimental results. The calculated wave
heights are less than those obtained in the experiments as already shown in figure 9.
With the present nodal displacement and Jacobian procedure, we cannot calculate
solutions where ∂η/∂x is locally as large as in the laser-sheet image of figure 10(c). In
addition, only 16 nodes or 32 nodes are used in our calculation to avoid resonance
with small ripples (1/κ ≈ 38) as discussed in § 6.3. However, the calculated profile
with large wave slope and flat wave crest agrees qualitatively with the measured wave
profile.
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Figure 10. Comparison of wave profiles with Ek = 0 (κ = 0.0265). The left-hand column profiles
are laser-sheet images of Faraday waves with (a) f = 3.70 Hz (f/fn = 0.947), F = 0.6 mm;
(b) f = 3.60 Hz (f/fn = 0.922), F = 0.9 mm; (c) f = 3.50 Hz (f/fn = 0.896), F = 0.9 mm. The
laser-sheet images of (a) to (c) correspond to data point A to C in figure 9. The right-hand column
presents the calculated profiles at the same frequency ratios.

6.3. Temporal asymmetry and ripple generation in steep Faraday waves

As shown in the previous section, qualitative agreement between free standing waves
and Faraday waves is achieved when the excitation amplitude is small. A large wave
steepness can be obtained by simply increasing forcing amplitude, although it no
longer follows the theoretically predicted resonance curve (figure 9). A large forcing
amplitude generates different wave forms as the external forcing alters the mode
interaction in a standing-wave system. Overdriven Faraday waves in our experiment
exhibit two major differences with the calculation of free, inviscid standing waves:
temporal-symmetry breaking and ripple formation.

Figure 11 shows two sets of images for the same wave frequency, f = 3.875 Hz,
but with two different forcing amplitudes (data points D and E in figure 9). Three
different phases in a wave cycle are displayed with the phase of maximum crest
elevation designated by t = 0. At a small forcing amplitude F = 0.9 mm (figure 11a),
the time-reversal symmetry is approximately conserved – the wave assumes the same
profile during the ascending (t = −28 ms) and the descending phases (t = 28 ms). This
temporal symmetry, however, is broken at a larger forcing amplitude F = 1.3 mm
(figure 11b). The sharper crest at t = −28 ms is contrasted with a much flatter crest
at t = 28 ms. A similar observation in Jiang et al. (1996) has been attributed to
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Figure 11. Temporal symmetry breaking at f = 3.875 Hz (f/fn = 0.992). (a) F = 0.9 mm,
(b) F = 1.3 mm. The maximum steepness obtained at 0 ms for (a) and (b) corresponds to data
points D and E in figure 9, respectively.
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Figure 12. Ripple formation on a standing wave during a quarter wave period. The maximum
elevation (t = 0) is not shown. F = 0.9 mm, f = 3.8 Hz (f/fn = 0.973). This wave corresponds to
data point F in figure 9.

resonance between the first two temporal harmonics when the forcing parameters
are well within the neutral-stability curve. Both phenomena are related to the mode
interactions of standing waves introduced by large external forcing.

At f = 3.8 Hz and F = 0.9 mm, the forced wave height is 60% higher than
predicted for the free standing wave (see data point F in figure 9). Consecutive
wave profiles during a quarter wave period (figure 12) exhibit a crest instability. The
profile is relatively smooth before the central elevation reaches its maximum value
(again corresponding to t = 0). The crest rapidly becomes flat during the decreasing
elevation phase (t = 24 ms) and small ripples develop with wavelengths about 3 mm
to 6 mm. They disappear when the wave elevation decreases further (not shown)
but reappear in the next cycle. At f = 3.7 Hz (f/fn = 0.947) and a larger forcing
amplitude F = 1.3 mm, we also observe protuberance at the crest similar to some
profiles seen by Taylor (1953).

The cyclic appearance of ripples in figure 12 is unlikely to be a result of a Rayleigh–
Taylor instability even though the crest acceleration is higher than the gravitational
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acceleration based on our calculation.† Based on capillary–gravity wave theory, Wilton
ripples occur for inverse Bond number κ = 1/N where the fundamental harmonic
has resonant interaction with its Nth spatial harmonic. Therefore the solutions at
these critical values are not unique. This type of resonance is more likely to occur
here as κ = 0.0265 ≈ 1/38 is consistent with the observed 3 mm ripple wavelength.
The present calculation does not attempt to capture the solutions with these ripples.
Instead, this non-uniqueness problem is avoided by using a small number of nodes
to exclude the resonant superharmonics. A more sophisticated Jacobian procedure is
required to resolve all the solution branches when higher-order harmonic resonances
occur.

However, the agreement in figure 10 between numerics and experiments is not
coincidental. For those solutions with strong resonant ripples, the resonance curves
should be different from that for the solution without ripples. As our experiments
approximately follow the calculated resonance curve in figure 9, Faraday waves should
resemble the predicted free standing waves that neglect the small resonant ripples.
Furthermore, the free-surface boundary layer causes a viscous damping proportional
to k2 in the experiments, where k is the wavenumber. This viscous damping helps to
stabilize the standing wave with respect to superharmonic disturbances.

7. Concluding remarks
A spectral boundary-integral method has been used to study standing waves with

and without surface tension. Numerical experiments have found standing waves
that maintain both spatial and temporal periodicity. We show that the global wave
properties, including wave period, height, and total energy, become non-monotonic
as the standing gravity wave approaches its limiting form, therefore providing a
complementary analysis to Mercer & Roberts (1992). As the crest radius goes to zero,
the crest acceleration goes to the gravitational limit. In the process, the maximum
wave slope grows rapidly beyond one. Using denser nodes around the crest, we have
found crest angles smaller than 90◦, contrary to the conjecture of Penney & Price
(1952) and Schwartz & Whitney (1981). This suggests eventual singularity at the crest,
possibly a cusp.

We have demonstrated that the surface tension effect can extend the limiting
wave height for standing waves. However, the non-monotonic behaviour persists for
weak surface tension (κ < 0.001). Standing water waves with small surface tension
can be extremely high and a wave steepness of H/2π = 0.38 is easily achieved for
κ = 0.0027, the inverse Bond number for the experiments of Taylor (1953). The
findings of Taylor (1953) can only be explained by the effect of surface tension.
Capillarity becomes important when the wave height approaches and then exceeds
the gravity-wave limit, and inhibits a possible singularity at the crest. Most of the
steep gravity–capillary standing waves feature a flat or protuberant crest.

Using Faraday-wave resonance and a tank of 6.2 : 1 aspect ratio, we found similar
two-dimensional standing waves in laboratory experiments. For a wavelength of
10.5 cm (κ= 0.0265), we find a maximum steepness of H/2π = 0.425, corresponding
to a nonlinear wave frequency of 3.4 Hz (the linear wave frequency is 3.91 Hz). Wave
profiles measured using a laser-sheet technique show rounded crests and large slopes
close to the crest. Both the resonance curve and the wave profiles qualitatively agree

† For a clean water surface under free fall, surface tension stabilizes disturbances below a cut-off
wavelength of 1.7 cm (Chandrasekhar 1961). The observed ripples have much shorter wavelengths.
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with our calculations when the effect of forcing amplitude is minimal. We appear to
be the first to observe such steep standing waves in the laboratory.

For overdriven Faraday waves (large external forcing), time-reversal symmetry is
broken and ripples form at certain phases of the oscillation. The temporal asym-
metry reflects the strong forcing that alters the mode interaction as shown in Jiang
et al. (1996). The ripple generation is related to the existence of multiple solutions
of gravity–capillary waves at certain critical inverse Bond numbers, and is neglected
in the present calculation for weak capillarity. These highly nonlinear Faraday waves
require more elaborate analysis that considers both the nonlinearity and the force-
dissipation balance.
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