
M.R. Schumack 
Mem. ASME 

Jin-Bok Chung 

W. W. Schultz 
Mem. ASME 

E. Kannatey-Asibu, Jr. 
Mem. ASME 

Department of Mechanical Engineering 
and Applied Mechanics, 
University ot Michigan, 
Ann Arbor, Ml 48109 

Analysis of Fluid Flow Under a 
Grinding Wheel 
Fluid flow under a grinding wheel is modeled using a perturbation scheme. In this 
initial effort to understand the flow characteristics, we concentrate on the case of a 
smooth wheel with slight clearance between the wheel and workpiece. The solution 
at lowest order is that given by standard lubrication theory. Higher-order terms cor
rect for inertia! and two-dimensional effects. Experimental and analytical pressure 
profiles are compared to test the validity of the model. Lubrication theory provides 
good agreement with low Reynolds number flows; the perturbation scheme provides 
reasonable agreement with moderate Reynolds number flows but fails at high 
Reynolds numbers. Results from experiments demonstrate that the ignored 
upstream and downstream conditions significantly affect the flow characteristics, 
implying that only a model based on the fully two- (or three-) dimensional Navier-
Stokes equations will accurately predict the flow. We make one comparison between 
an experiment with a grinding wheel and the model incorporating a one-dimensional 
sinusoidal roughness term. For this case, lubrication theory surprisingly provides 
good agreement with experiment. 

1 Introduction 
Application of fluid to the region between a grinding wheel 

and workpiece serves four principal purposes: cooling, 
lubrication, removal of worked particles, and chemical protec
tion of the work-piece surface. Studies have only touched 
upon aspects of the flow mechanisms under a grinding wheel; 
no one has yet developed a comprehensive flow model. Hahn 
[8] discusses how the lubrication equation applies to the tiny 
clearances between the grit and work surface. Andrew [1] 
presents a model developed by Powell [13] that describes the 
fluid flow through a porous wheel when applied by a shoe. 
Others have presented roughness models for lubrication flows 
[10, 11, 17]. The phenomenon of "starved" lubrication flow 
has been investigated by Constantinescu [3] and Lauder [9]. 

In this paper, we restrict our analysis to bulk fluid behavior 
and do not model the local lubrication phenomenon at the 
grinding wheel grains. We apply the basic lubrication equation 
(Reynold's equation) with appropriate modifications to 
analyze the fluid flow and pressure distribution under condi
tions similar to surface grinding. We concentrate on a two-
dimensional formulation where we neglect flow in the z-
direction (in the direction of the wheel width, Fig. 1). Most 
derivations of the lubrication equation assume that fluid iner
tia, pressure gradients across the fluid film, and velocity gra
dients other than those across the fluid film can be neglected 
and that the fluid is incompressible. Due to the high wheel 
speeds in the grinding process, the assumption of no inertial 
effects may be invalid. Therefore, in our analysis, we in
troduce a scaling into the incompressible two-dimensional 
Navier-Stokes equations that allows calculation of inertial and 
two-dimensional corrections to the lubrication equation. Mit-

suya [10] developed a perturbation solution including two-
dimensional viscous effects, but neglected inertial terms. 
Reinhardt's [14] perturbation scheme included small inertial 
terms but neglected two-dimensional viscous effects and the 
entire .y-component of the Navier-Stokes equations. Our per
turbation scheme includes both inertial and two-dimensional 
effects from both the x- and ̂ -components of the Navier-
Stokes equations. 

In this initial effort to understand the bulk behavior of 
grinding fluid flow, we concentrate on flow under a smooth 
wheel with a small clearance between the wheel and 
workpiece. We do, however, add a sinusoidal roughness to the 
model for comparison with a grinding wheel experiment (see 
section 4). Although viscosity can be affected by the large 
amount of heat generated during actual grinding, we ignore 
temperature effects in this analysis because no significant con
tact occurs between the wheel and workpiece in our ex
periments. Pressure is small in grinding situations and hence 
does not influence the viscosity. 

b 
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Although our perturbation scheme leads to calculation of 
inertial and two-dimensional corrections to the lubrication 
equation, it cannot account for velocity boundary conditions 
at the ends of the fluid region where the fluid is injected and 
where it exits the area under the wheel. In section 3 we present 
experimental results showing how the flow under the wheel is 
affected by the end boundary conditions, therefore 
demonstrating the need for a model based on the full two- (or 
three-) dimensional Navier-Stokes equations. Finally, in sec
tion 4, we make comparisons of pressure profiles from ex
periments with our perturbation model. Comparisons are 
made with both smooth and real grinding wheels. 

2 Analysis 

Flow under a grinding wheel is unsteady because the flow 
domain changes constantly due to wheel roughness (the 
workpiece is considered smooth). We usually restrict our 
analysis to a smooth wheel, which results in a steady flow. 
However, to incorporate roughness into a steady model, we 
make the critical assumption that the wheel can be held sta
tionary while the table moves at the peripheral wheel speed. 
This has the effect of translating the wheel instead of rotating 
it and greatly simplifies the algebra of the perturbation solu
tion. We have tested this assumption for several of our smooth 
wheel computations and found it to be quite adequate—the 
main constraint is that the wheel radius is much larger than the 
clearance between the wheel and workpiece. (In grinding, the 
table speed itself is usually much smaller than the wheel 
peripheral speed and thus can be ignored.) Hence, in our 
analysis, the constant velocity of the lower surface (y = 0), U, 
is the peripheral wheel speed. 

We define the fluid flow field region under the wheel in the 
x-direction using the locations revealed by our experiments, 
—Lu<x<Ld, as shown in Fig. 1. These locations are deter
mined from where the gage pressure starts to increase from 
zero upstream (x = —Lu) and where the gage pressure abrupt
ly increases to return to zero downstream (x = Ld). The abrupt 
increase in pressure in the downstream region of the flow has 
been modeled by Coyne and Elrod [6]; we, however, do not 
model this rupture phenomenon. 

All variables are hereafter presented as dimensionless. The 
length scales in the x and y directions are the wheel radius R 
and minimum clearance h0, respectively. The stream function 
is scaled on Uh0. 

The two-dimensional stream function form of the dimen
sionless Navier-Stokes equations for steady, incompressible 
flow is 

where subscripts denote partial differentiation, and 

V 4 = ^ ?<=2 1- <= 4 • 

dy4 
+ 2e2 

+ e" (2) 
dx2dy2 ' " dx4 

The Reynolds number, Re, is defined as pUR/p. The quantity 
e = h0/R is a small parameter to be used in the expansion pro
cedure. This scaling implies that derivatives are small in the 
horizontal direction as compared to the vertical one. The 
boundary conditions are 

and 

,/, = ,/, - 1 = 0 at y = 0 

i*-Q = ty=0 at y = h. 

(3) 

(4) 
The parameter Q = J J u dy is the dimensionless volumetric 
flow rate per unit wheel width, scaled on Uha. Later we 
describe how we determine Q iteratively. 

The solution procedure will not allow arbitrary velocity 
boundary conditions at x = Ld and x- —Lu since we have 
scaled the problem as slowly varying in x. The flow near the 
two menisci are two-dimensional boundary corrections and 
must be solved by a fully computational method [4, 15]. We 
do not know the end boundary conditions; thus we assume 
that the expansion solution is valid everywhere. Since e ap
pears in the equations of motion in even powers, we expand 
the stream function as 

t = i,0 + e2js2 + e4xP4+ . . . 

The slowly varying expansion succeeds since the scaling re
quires that the boundary conditions (3) and (4) be applied as if 
h is nearly a constant. Variations from the standard parabolic 
velocity profile caused by larger variations in h then come in at 
higher orders. The equation at order unity becomes 

(5) <Ao = 0 , 
yyyy 

with the boundary conditions 
<Po = <t'o-l=0 at y = 0 

and 

+0-Q 
The solution to (5) is simply 

i0y=0 at y = h. 

(6) 

(7) 

\l*0=A+By + Cy2+Dy3, (8) 

where A, B, C, and D are functions of z determined by 
boundary conditions (6) and (7), resulting in 

This result to leading order is that given by the one-

N o m e n c l a t u r e 

P = 

h = 
/* = 
p = 
V = 

U = 

R = 
x = 

y = 

pressure, nondimen-
sionalized with ixUR/h0

2 

minimum clearance under 
the wheel 
absolute viscosity 
density 
kinematic viscosity 
circumferential wheel 
speed 
wheel radius 
coordinate axis in horizon
tal direction, nondimen-
sionalized with R 
coordinate axis in vertical 
direction, nondimen-
sionalized with h0 

z = coordinate axis in direction 
of wheel width, 
nondimensionalized with R 

h = height of wheel above 
workpiece, nondimen
sionalized with h0 

Q = flow rate per unit wheel 
width, nondimensionalized 
with Uh0, model input 

Q* = experimentally measured 
flow rate under the wheel 
a t x = 0 

\p = stream function, non
dimensionalized with Uh0 

Re = Reynolds number, pURZ/x 
Re„ = Reynolds number as de

fined in [7] and [18] 

e = 
L = 

u = 

b = 

Subscripts 

x, y = 

0, 2, 4 = 
u = 
d = 

slenderness ratio h0/R 
length of fluid region 
under wheel from meniscus 
to wheel center, nondimen
sionalized with R. 
velocity in x-direction, 
nondimensionalized with U 
wheel width 

differentiation with respect 
to 
order of solution 
upstream 
downstream 
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dimensional lubrication equation. At the next order, 0(e 2 ) , 
the equation becomes 

*hm = ~ 2*°*cyy + R e ( S *°xyy ~ *°x Hyy) (10) 
with the boundary conditions 

^ = ^ = 0 aty = 0 (11) 

and 

^ , = ^ = 0 at y = h. (12) 

The solution to (10) through (12) given by the symbolic 
manipulator REDUCE is 

iA2 = Re h'y2[l/\A{Q/h)- \/A2(y/h)-3/35(Q/h)2 

- l/10(Qy/h2) + l/6( y2/h2) + 9/35(Q2y/h3) 

- l/2(Qy2/h3) -7 /30( y3/h3) + 9/\Q(Qy3/h4) 

+ 2/15( y4/h4) - 3/5(Q2y3/h5) - 3/5(Qy4/hs) 

- l/35( y5/hs) + 3/S(Q2y4/h6) + l/7(Qys/h6) 

-6/35(,Q2y5/h1)-l/10]+y2{-l/5(Qh"/h) 

+ l/\5(h"y/h)-\/5(h"Qy/h2)-\/3(y2h"/h2) 

+ Qy2h"/h3 + l/5(h"y3/h3)-3/5(Qy3h"/h4) 

+ \/\5{h")-%/\5{h'2/h)+9/5(Qh'2/h2) 

+ l/\5(h'2y/h2)-6/5(Qyh'2/h3) + 2/3(y2h'2/h3) 

-3Qy2h'2/h4-3/S(y3h'2/h4)+12/5(.Qy3h'2/h5)]. (13) 

Here, the prime indicates differentiation with respect to x. 
This correction shows the first effects of inertia and two-
dimensional viscous forces. The pressure can be determined by 
examining the scaled Stokes equations to order e2: 

Px=iyyy + i1i>xxy-<=1 ^ ( ^ x y ~ tx^yy) (14) 

and 

Py=-eHxyy + 0{e4). (15) 

The pressure scale is ixUR/h0
2. Expanding pressure in the even 

power series, substituting (9) and (13) into (14) and (15), and 
integrating gives the standard lubrication equation at lowest 
order: 

p0 = 6^dx-2Q^dx, (16) 

where the constant of integration is chosen so that 
p(x= — L „ ) = 0 . The next order shows dependence on the 
Reynolds number andy as well: 

^ 2 = Re[-27/35(Q 2A 2) + 3 / 3 5 ( Q / ^ ) - l / 7 1n(/!)] 

+ 2/5(h '/h)~ 6/S(h' Q/h2) - Ayh' /h2 

+ l2Qyh'/h3+6y2h'/h3 - 18Qy2h'/h4 

-48/5(Q\h'2/h3dx)+16/5(\h'2/h2dx\ (17) 

Two parameters are unknown, Q and the upstream position 
Lu where the pressure begins to rise from ambient. Others 
have suggested methods for determining these parameters for 
a "starved" lubrication flow (upstream [9] and downstream 
[6]). We do not formally apply the above pressure boundary 
conditions, but instead we manipulate the values for Q and Lu 

until reasonable agreement with experiments is obtained. If 
suitable values of Q and Lu cannot be found, we conclude that 
the model fails. As will be seen, our perturbation solution (16) 
and (17) describes low and moderate Reynolds number flows 
well, but cannot accurately predict higher Reynolds number 
flows regardless of the chosen values for Q and Lu. 

The results obtained from the perturbation technique are 
identical to those presented in Mitsuya [10] in the limit of zero 
Reynolds number. Our analysis indicates that the Reynolds 
number effects at 0(e 2 ) are more important than the two-

dimensional noninertial effects. Therefore, we will compare 
our method with a model where inertia effects are added less 
formally [14, 18] (see section 4). Rather than using numerical 
integration of (16) and (17), the pressure profiles are obtained 
by the equivalent procedure using a Runge-Kutta-Fehlberg 
technique to integrate (14) using exact expressions for height. 
To determine the effect of wheel roughness, we add a 
sinusoidal term of the form A COS(COAT) to the smooth wheel 
height expression (see section 4). 

A different form of the standard lubrication equation ac
counting for circumferential and axial flows under the wheel 
(flow in x and z directions) is given by [12, 16] 

— (h3dp/dx) + — (h'dp/dz) =6 —— . (18) 
ox oz ox 

Here, z is scaled on the radius R. This form of the lubrication 
equation models side leakage from under the wheel. Equation 
(18) was solved using finite differences, with/? = 0 at x= —LU 

and Ld and z= ± (b/R)/2, where b is the wheel width. The 
results for the pressure along the wheel centerline (z = 0) are 
nearly identical to those for the lubrication equation ignoring 
axial flow (16) and add nothing new to our understanding of 
grinding flows. Therefore, in section 4 we present only the 
results from (14). 

3 Experiments 

We designed experiments to test the influence of end 
boundary conditions (at x=Lu, Ld) and to verify the 
preceding analysis. Data were obtained mainly for a smooth 
wheel on a surface grinder with low clearance between the 
wheel and workpiece. Some data, however, were obtained 
with grinding wheels to determine the effect of surface 
roughness. Three wheel types were used: a relatively fine-grain 
grinding wheel (SA120M10V3W), a relatively rough-grain 
grinding wheel (23A60), and a smooth plastic wheel. The fine-
grain wheel was 349 mm diameter and 25.4 mm wide, the 
rough-grain wheel was 356 mm diameter and 25.4 mm wide, 
and the smooth wheel was 318 mm diameter and 23.8 mm 
wide. 

The varied parameters included the nozzle position, nozzle 
jet velocity, nozzle volumetric flow rate, type of grinding 
fluid, and type of wheel (smooth or grinding). Measured 
parameters were the fluid pressure and volumetric fluid flow 
rate under the wheel. 

A reciprocating table grinder with variable speed was used 
for the experiments. All measured signals were first sampled 
using a 12-bit data acquisition system and stored on a personal 
computer for subsequent analysis. 

The grinding fluids included water, oil/water mixtures, pure 
oil, and a detergent/water mixture. The oil/water mixtures 
had viscosities approximately equal to water. The pure oil 
(Chrysan Industries type G7-2) had a viscosity of approx
imately 70 times that of water as measured with a Brookfield 
Couette viscometer. 

Pressure measurements were made using a pressure 
transducer inserted beneath a hole drilled in the workpiece 
(Fig. 2). The effect of hole size on the measured pressure was 
investigated using two different hole diameters, 0.79 mm and 
2.38 mm. Table 1 shows that the maximum values from the 
pressure profile differed only slightly for the two hole 
diameters. The larger hole resulted in lower negative 
pressures, possibly due to more recirculation in the larger cavi
ty. However, hole diameter made little difference on positive 
pressure readings. We used a 2.38 mm diameter hole for the 
remaining measurements presented here. 

Tests showed that strains applied to the workpiece did not 
influence the pressure readings by distorting the transducer 
but vibrations added significantly to the pressure signal noise. 
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Table 1 Pressure vs. hole diameter (smooth wheel), small clearance, 
water as grinding fluid, 1900 rpm, pressures accurate to ±1 kPa 

HOLE DIA. MAX. PRESS. MIN. PRESS. 

3000 

(mm) 

2.38 

.79 

Flow meter 

(kPa, gauge) 

12.20 

12.34 

(kPa, gauge) 

-6.00 

-2.27 

pressure transducer t a b , e 

Fig. 2 Experimental set-up 

2000 

o 
1000 

1000 
RPM 

2000 

Fig. 4 Q* vs. wheel rpm for varying nozzle flow rate, fine-grain grinding 
wheel, jet velocity = 3.54 m/s, water, high nozzle position, o 2 l/min • 
4.1 l/min 

1500 

1000 

o 
500 

1200 

0 1 2 3 4 5 6 7 
Nozzle flow rate (lit/min) 

Fig. 3 Q* vs. nozzle flow rate for different heights, smooth wheel, 1920 
rpm, 5 percent oil/water mix, high nozzle position, o .025 mm • .076 

The pressure data was not filtered other than that in the 
digitization process. 

A table position indicator with its base fastened to the mov
ing table and an arm connected to the stationary wheel hous
ing indicated when the pressure tap passed under the grinding 
wheel, to within 2 mm. An electric circuit was broken when 
the pressure tap passed under the wheel centerline; the circuit 
was completed 25 mm beyond the wheel centerline, allowing 
determination of both the location of wheel centerline (x=0) 
and the average table speed. 

Flow rate under the wheel at x=0—denoted as Q*—was 
measured using the collection tray illustrated in Fig. 2. A side 
tray collected fluid flung off the wheel against the wheel 
guard; this flow was included in Q*. A scraper along the side 
of the wheel flush with the workpiece surface ensured that any 
fluid leaving the area under the wheel prior to the wheel 
centerline (x=0) was not added to Q*. The collection system 
ensured that nearly all flow traveling under the wheel at x=Q 
was measured. 

I 
J. 
* 
o 

600 

0 1000 2000 
RPM 

Fig. 5 Q* vs. wheel rpm for varying jet velocity, smooth wheel, nozzle 
flow rate = 3.5 l/min, 1 percent oil/water mix, low nozzle position, 
height = .076 mm, o 1.55 m/s • 3.02 m/s • 6.03 m/s 

It was difficult to quantify the minimum clearance between 
the wheel and the workpiece due to irregularities of the wheels 
and inaccuracies in the height adjustment mechanism of the 
grinder. Centrifugal forces also "stretched" the plastic wheel 
slightly (= .025 mm) during high-speed operation. In addition, 
discrepancies existed between the height indicated by the 
height controller of the grinder and as needed in the model to 
achieve reasonable agreement with experimental pressure pro
files. For instance, in one case the height controller read 0.025 
mm while an input of h0 = 0.15 mm was necessary to provide 
reasonable agreement with the experimental pressure profile. 
All of the experiments with the grinding wheels (except for 
those involving pressure measurements) were done under flush 
grinding conditions, i.e., at a height where the wheel just 
sparked against the workpiece surface. 

Error Analysis for Flow Rate and Pressure Measurements. 
For measurements of flow rate under the wheel, we estimate 
an accuracy of ±150 ml/min for the smooth wheel and ±250 
ml/min for the grinding wheel. There was greater inconsisten
cy at low speed than at high speed for both wheels: at low 
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3000 

2000 -

I 
* o 

1000 

3000 

1000 
RPM 

2000 

Fig. 6 Q* vs. wheel rpm for varying jet velocity, fine-grain grinding 
wheel, nozzle flow rate = 4.1 l/min, water, high nozzle position, a 6.03 
m/s o 3.02 m/s 

1500 

1000 -

500 -

0 2000 1000 
RPM 

Fig. 7 Q* vs. wheel rpm for varying nozzle position, smooth wheel, noz
zle flow rate = 2.5 l/min, jet velocity = 4.14 m/s, 10 percent oil/water mix, 
height = .076 mm, o low nozzle position • medium nozzle position • 
high nozzle position 

speed, there was an irregular ejection of water from under the 
wheel, while at high speed, the flow became steady. We 
estimate an accuracy of ± 1 kPa for pressure measurements. 

Nozzle Flow Rate, Nozzle Flow Velocity, and Nozzle Posi
tion. For the smooth wheel at the lowest height 
h0 = .025mm, the nozzle flow rate had negligible effect on Q*, 
Fig. 3. However, for the smooth wheel at hQ = .076mm and for 
the grinding wheel under flush grinding conditions, the nozzle 
flow rate, nozzle flow velocity, and nozzle position all 
markedly affected Q*, Figs. 3 through 8. The "high" nozzle 
position indicates experiments where the nozzle flow was 
directed against the wheel edge, the "medium" nozzle posi
tion directed the nozzle flow into the gap between the wheel 
edge and the workpiece surface, and the "low" position 
directed the nozzle flow mainly against the workpiece surface. 
The "high' and "low" positions described arcs of approx
imately + 9.5 mm and -9.5 mm, respectively, away from the 
"medium" position. The figures show that increasing the noz
zle flow rate, nozzle jet velocity, and nozzle height all resulted 
in increased flow under both the smooth and grinding wheels, 

2000 

1 
* 
o 

1000 -

0 
0 2000 1000 

RPM 
Fig. 8 O* vs. wheel rpm for varying nozzle position, fine-grain grinding 
wheel, nozzle flow rate = 3.5 l/min, jet velocity = 6.03 m/s, water, o low 
nozzle position, a medium nozzle position o high nozzle position 

800 

c I 
si, 
# 

400 -

0.00 0.16 0.08 
Height (mm) 

Fig. 9 0 * vs. height for water and detergent/water mix, smooth wheel, 
1920 rpm, nozzle flow rate = 2.4 l/min, jet velocity = 3.02 m/s, medium 
nozzle position, • water o detergent/water mix 

especially at high wheel speeds. Figure 5, which shows Q* ver
sus speed for different nozzle jet velocities, also suggests that a 
critical wheel speed exists beyond which Q* begins to decrease 
(this is especially evident for the lowest jet velocity). This may 
indicate that increased pressure due to inertial effects causes 
more fluid to escape by the sides rather than passing under the 
region of minimum clearance. 

Surface Tension, Water has more surface tension and less 
viscosity than oil. In an attempt to isolate the effect of surface 
tension on flow characteristics, we tested for Q* with pure 
water and a 1:75 liquid detergent/water mixture. A 
detergent/water mixture has less surface tension than pure 
water, but the viscosity is essentially unaffected. As seen in 
Fig. 9, pure water resulted in 18 percent to 35 percent higher 
Q*, especially at higher clearances. The differences between 
pure water and a detergent/water mixture with a grinding 
wheel under flush grinding conditions was negligible (Fig. 10). 

The experimental results show that inlet conditions in the 
form of flow rates, flow entry angle, and surface tension all 
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3000 

2000 

i 
o 

1000 -

0 1000 
RPM 

2000 

Fig. 10 0 * vs. wheel rpm lor water and detergent/water mix, fine-grain 
grinding wheel, nozzle flow rate = 4.1 l/min, jet velocity = 7.07 m/s, high 
nozzle position, • water o detergent/water mix 

0 . 0 4 

0 .02 

o- 0 . 0 0 

- 0 . 0 2 -

- 0 . 0 4 
-0.2 -0.1 0.0 

X 
0.1 0.2 

Fig. 11 Comparison of pressure profile for model and experiment, oil 
0* = .O627 N.s/m2, p = 852 kg/m3), smooth wheel, 220 rpm, Re = 7800, 
height = .152 mm, e = .00096, Q = .64. Solid line: experiment, L„ = .17. 
Dashed line: lubrication theory, L„ = .4. Dotted line: lubrication theory 
plus corrections, Lu = .4 

affect the amount of fluid traveling under the wheel and 
presumably other flow variables such as pressure and 
velocities. Our perturbation model does not incorporate these 
boundary conditions, hence the experiments discussed above 
emphasize the inadequacy of our analysis and suggest that a 
two- (or three-) dimensional analysis based on the full Navier-
Stokes equations is needed. 

4 Comparison of Experiment and Analysis 

We present comparisons of analytical and experimental 
pressure profiles for low, moderate, and high Reynolds 
number flows. As mentioned in section 2, our model does not 
account for the film rupture phenomenon in the downstream 
(diverging) part of the flow; the following comparisons 
therefore concentrate on the upstream (converging) part of the 
flow. 

Figure 11 shows low Re flow (e2Re=.007) using oil. The 

0 . 10 

0 .05 

0 .00 

-0 .05 
-0.4 -0.2 0.0 0.2 

X 
Fig. 12 Comparison of pressure profile for model and experiment, 
water (/> = .000896 N.s/m2), smooth wheel, 220 rpm, Re = 6.45x105 , 
height = .076 mm, € = .00048, Q = .67. Solid line: experiment, Lu=.15. 
Dashed line: lubrication theory, Lu =.4. Chain-dashed line: lubrication 
theory plus corrections, Lu =.4. Dotted line: lubrication theory plus cor
rections, L„ = .2 

0 . 3 

0 . 2 -

Q- 0 . 1 -

0 . 0 

- 0 . 1 

• 

/ 

I 

y -
i 

-0.2 -0.1 0.0 
X 

0.1 0.2 

Fig. 13 Comparison of pressure profile for model and experiment, 
water, smooth wheel, 1339 rpm, Re = 3.9x106 , height = .076 mm, 
e = .00048, Q = .67. Solid line: experiment, Lu = .12. Dashed line: lubrica
tion theory, Lu = .4. Dotted line: lubrication theory plus corrections, 
L„=.15 

corrections in the perturbation expansion are small for this 
flow, and lubrication theory does a good job of modeling the 
pressure profile. Note that the analytical upstream boundary 
condition isp = 0 at x= -0.4 (i.e., LU = .4), and would be the 
appropriate inlet condition for a flooded geometry, because 
the pressure gradient as given by the Reynold's equation is 
negligible at this location for the cylinder-plane geometry. The 
sudden pressure increase in the upstream part of the ex
perimental profile could be due to deceleration of the incom
ing fluid jet, similar to the phenomenon analyzed by Buckholz 
[2] for a plane slider bearing. 

Figure 12 compares results for a moderate Re (e2Re= .15). 
The perturbation corrections overpredict the experimental 
profile, but the corrected solution provides better agreement 
with experimental results than lubrication theory. If we set the 
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0 . 0 3 

0 . 0 2 -

0 . 0 1 -

o. 0 . 0 0 

-0 .01 

-0 .02 

- 0 . 0 3 

-0.10 

y4 1" 

1 

V 
1 

0 . 10 

-0.05 0.00 0.05 0.10 

Fig. 14 Comparison of pressure profile for model with roughness and 
experiment, water, 1154 rpm, Re = 4.24x106 , height = .076 mm, 
e = .00043, Q = .575 o experiment, Lu = .06. Solid line: lubrication theory 
with roughness, Lu = .4 

0 . 10 

0 .05 

0 .00 

- 0 . 0 5 

o 
o 

o / " \ o 

o / 'o 

o / '• 

°/' / X" 

1 e 

o 

-0.4 -0.2 0.0 0.2 
X 

Fig. 15 Comparison of pressure profile for model and Dowson's data, 
Re = 7787.5, f Re = .14, Re„ = 2 1 , Lu = .4, Q = .636 (all parameters apply 
both to Dowson's data and model), o Dowson's data. Solid line: lubrica
tion theory. Dashed line: lubrication theory plus corrections 

start of the analytical pressure rise closer to that of the experi
ment (i.e., p = 0 at x= -0 .2) , the agreement between the 
model and experiment becomes quite good. 

Figure 13 (corresponding to e2Re=.9) demonstrates the 
failure of the perturbaton model at high Re. The relatively 
high Reynolds number and low clearance are typical of 
grinding conditions. 

Our analysis reveals that the dominant terms in the second-
order correction (17) are those associated with the Reynolds 
number; the other two-dimensional corrections contribute in
significantly. The parameter e2 Re is typically used as an in
dication of the importance of inertial effects in lubrication 
problems. Note that in the cylinder-plane geometry, this 
parameter is not solely descriptive of the magnitude of inertial 
effects. Towards the upstream edge of the lubrication region 
under the wheel, the pressure correction p2 increases approx
imately as Re In (ft). The parabolic approximation, 
h = l+x2/2e, shows that for any given x, h increases as e 
decreases. For grinding-type flows, with moderate-to-high 
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Comparison of pressure profile for our model and You's model, 
8.1, t^Re = .133, Re„ = 21, Lu = .4, Q = .67 (all parameters apply 

Fig. 16 Comp 
Re = 7398." 
to both models), o You's model. Solid line: our model 

Reynolds numbers and small e, the perturbation model fails 
even though e 2 R e « 1. 

Figure 14 compares our roughness model results with the 
pressure profile for a 356 mm diameter rough grain (23A60) 
grinding wheel at h0 = .076 mm. A roughness frequency of 60 
cycles per 25.4 mm and a roughness height of .025 mm corres
pond to o> = 2ir 60R and A=Q.025/h0 in the expression A 
cos(ox) that we add to the equation for the smooth wheel 
height. The case plotted is a high Re flow (corresponding to 
e2Re=.78). Somewhat unexpectedly, lubrication theory does 
a good job of modeling the pressure profile. The corrections 
grossly overpredict the pressure in the same manner as in Fig. 
13; we do not plot the corrections here because their exag
gerated oscillatory behavior would obscure the experimental 
and lubrication equation results. As is evident in Figs. 11 
through 14, the Reynolds equation gives a relatively narrow 
pressure profile compared to both the perturbation model and 
the experiments involving moderate or high Re flows. The 
high Re experimental profile under the grinding wheel, 
however, is confined to a relatively narrow region (compare 
the width of the experimental pressure profiles in Figs. 13 and 
14). Perhaps roughness of the grinding wheel results in partial 
deflection of the incoming coolant jet and a subsequent delay 
in the beginning of the fully flooded region. This smaller fluid 
region results in coincidental agreement with lubrication 
theory. 

We have assumed laminar flow in our analysis. Turbulence 
criteria are lacking for a grinding geometry, but if we apply 
the criterion for simple two-dimensional Couette flow with no 
pressure gradient (Uh/v> 1500) and use h equal to the height 
at x= —Lu, the flow described by Fig. 11 is not turbulent, 
while the flows described by Figs. 12-14 are turbulent. The 
same conclusion is reached if we apply the criterion for onset 
of Taylor vortices (Taylor Number = Uh/v (h/R)m>41.3 
[16]). The grinding problem, however, with its complicated 
boundary condition at the entrance to the flow field offers no 
simple turbulence criteria. 

Figure 15 compares our perturbation model to Dowson's [7] 
experimental pressure data for a slightly different geometry: a 
cylinder against a flat plate in a flooded environment. Our 
perturbation model shows good agreement with the data. 
Figure 16 compares our perturbation model to that of You 
[18], who in a perturbation solution from Reinhardt [14] 
neglected the d2/dx2 term in the ^-component and the entires-
component of the Navier-Stokes equations. You's equations 
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incorporated a rupture model for the fluid in the diverging sec
tion under the cylinder. Our perturbation model does not ac
count for rupture, but as shown in Fig. 16, good agreement ex
ists between our model and You's in the converging section. 

5 Conclusion 

For our comparisons involving flow under a smooth wheel, 
we find that lubrication theory is adequate for describing low 
Reynolds number flows, but inadequate for describing 
moderate to high Re flows. Our perturbation model—with 
two-dimensional and inertial corrections to the lubrication 
equation—adequately accounts for moderate Reynolds 
number effects, but not high Re effects. Somewhat surprising
ly, and we suspect coincidentally, the Reynolds equation 
describes the high Re flow under a grinding wheel rather well. 
We account for this agreement by postulating a reduced flow 
region under the grinding wheel due to fluid "scatter." 

Experiments show that nozzle jet velocity, nozzle angle, 
volumetric flow rate, and surface tension all affect flow 
behavior, indicating the significance of conditions at the ends 
of the fluid flow region. It is also expected that inertial effects 
would be especially pronounced near the outer regions of the 
flow field, where the height is much larger than h0. We con
clude that only a model based on the full two- or three-
dimensional Navier-Stokes equations incorporating the com
plex end boundary conditions can adequately model grinding-
type flows. 
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