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Abstract 

Most previous welding simulations are based on a flat weld pool surface and become 

unmeaningful when the surface deformation is significant.  In recent years, some researchers 

have developed numerical models capable of simulating free surface motion in welding 

processes, but they focus on the discussions of physical equations, boundary conditions, and 

solutions, rather than the numerical algorithms.  Engineers may find it difficult to reproduce 

these studies without considerable effort.  In this paper, we develop an easy to follow numerical 

procedure for the simulation of fusion welding processes.  Recommendations are made on the 

selection and implementation of numerical algorithms, while alternative methods are also 

reviewed.  The simulation algorithms posed here are efficient and robust.  They can simulate gas 

metal arc welding, gas tungsten arc welding, laser welding and plasma arc welding. 
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Nomenclature 

B
v

 Magnetic field [Tesla] 

θB  Circumferential magnetic field [Tesla] 

c  Specific heat [J/kg·K] 

D  Wire diameter [m] 

e  Internal energy [J/kg] 

f  Fractional fluid volume in a cell 

f
v

 Body force vector [N] 

F  Fractional fluid volume 

h  Enthalpy [J/kg] 

I  Current [A] 

J
v

 Current density vector [A/m2] 

k  Thermal conductivity [W/m·K] 

n Distance in normal direction [m] 

n
v

 Normal direction 

L  Latent heat [J/kg] 

p  Pressure [Pa] 

*p  Pressure prediction [Pa] 

p′  Pressure correction [Pa] 

arcp  Arc pressure [Pa] 

q  Heat flux [W/m2] 

q ′′′  Heat generation rate [W/m3] 

r  Radial coordinate [m] 

1R  Principle radius of curvature in r-z plane [m] 

2R  Principle radius of curvature in azimuthal direction [m] 



 

 4 

Re  Reynolds Number  

s  Distance in tangential direction [m] 

s
v

 Direction vector of integration path 

t  Time [sec] 

T  Temperature [K] 

lT  Liquidus temperature [K] 

mT  Melting temperature [K] 

roomT  Room temperature [K] 

sT  Solidus temperature [K] 

u  Velocity on the boundary of two cells [m/sec] 

*u  Velocity prediction [m/sec] 

u ′  Velocity correction [m/sec] 

v
v

 Velocity vector [m/sec] 

feedv  Wire feed rate [m/sec] 

U  Welding voltage [V] 

V  Electric potential (voltage) [V]  

z  Axial coordinate [m] 

z ′  Vertical distance to the arc root (starting point of current density) 

z ′  Vertical distance to the starting point of heat input 

ϑ   Artificial diffusion constant [ sec3mOhm ⋅ ] 

γ  Surface tension coefficient [N/m] 

+fδ  Fluid flux from left cell to right cell 

−fδ  Fluid flux from right cell to left cell 

hδ  Grid size of square cells [m] 

jiδ  Kronecker delta 

tδ  Time increment in each computational step [sec] 

η  Arc efficiency 
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dη  Ratio of heat absorbed by the wire tip to the total absorbed by the metal 

pη  Ratio of heat absorbed by the weld pool to the total heat absorbed by metal 

µ  Dynamic viscosity [kg/m·sec] 

0µ  Permeability of free space [ mH610256637.1 −× ] 

ν  Kinematic viscosity [m2/sec] 

ρ  Density [kg/m3] 

jiτ  Stress tensor [Pa] 

dragτ  Gas drag stress [Pa] 

σ  Electrical conductivity [1/Ω·m] 

jσ  Distribution radius of current density [m] 

qσ  Distribution radius of heat flux [m] 

Subscripts 

nb   Neighboring cells 

ewsn ,,,  The north, south, west and east faces of a cell 

EWSN ,,,  The centers of the north, south, west and east neighboring cells 

P   The center of a cell 

sl,   Liquid, solid 

zr,   Radial and axial components 

1. Introduction 

Fusion welding is a complex physicochemical process.  Numerical simulation appears to 

be the only practical method to fully understand its thermal, fluid and electromagnetic 

phenomena.  In the past, many simulation models have been developed for one fusion welding 

method or another [1-17].  However, in most of these models, the deformation of the molten 

metal free surface was either ignored or greatly simplified.  While the models can analyze the 

weld pool dynamics in gas tungsten arc welding (GTAW) or laser welding, they cannot describe 
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the surface deformation due to the arc pressure in all arc welding methods, the filler metal 

addition as in GTAW, the droplet impingement as in gas metal arc welding (GMAW), and the 

electron bombardment as in electron beam welding.  These models are also incapable of 

predicting the weld reinforcement produced on the workpiece.  According to a recent study [18], 

droplet transfer causes heavy deformation of the weld pool surface and is the most significant 

factor that determines the convection pattern in the weld pool of GMAW.  Without proper 

modeling of the surface motion and the merging of multiple surfaces, the simulation will not be 

realistic. 

Some numerical models simulate the free-surface-related droplet transfer and weld pool 

dynamics in GMAW [14-15,19-24].  Although these algorithms can be extended to other fusion 

welding processes, such as GTAW, laser welding and plasma-arc welding, the authors focused 

on the physical equations and boundary conditions, rather than discussion of the numerical 

methods.  For example, most of these papers use Neumann boundary conditions on the free 

surface for heat flux or current density, but none explain how these boundary conditions are 

incorporated into the computation based on a staggered grid layout.  The numerical models 

developed in these papers are either two-dimensional or axisymmetric, but do not explicitly 

explain how three-dimensional features, such as the welding speed, are integrated into the 

calculation.  Computational efficiency is key to successful implementation.  All surface tracking 

algorithms have limitations or numerical difficulties, but these papers rarely discuss possible 

algorithm improvement. 

Without knowledge of the numerical details, others will find it difficult to implement 

these methods or duplicate their results.  The high cost of the algorithm development will delay 

further improvement of these algorithms and prohibit the acceptance of numerical simulation as 

a standard alternative to the expensive experimental trial and error approach. 

In this paper, an easy-to-follow numerical procedure is developed for the simulation of 

fusion welding processes where the influence of free surface motion is significant.  This method 

can simulate the dynamic variations of the fluid, thermal and electromagnetic fields with high 
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resolutions with satisfactory computational expediency.  It can also be integrated with 

microstructure and dendrite growth algorithms to generate a more sophisticated model to suit 

different applications. 

This paper is organized as follows. Section 2 discusses some of the available surface 

tracking methods and fluid flow algorithms for fusion welding. Section 3 introduces the thermal 

and electromagnetic models. Section 4 shows a computation example of metal transfer and weld 

pool dynamics in gas metal arc welding. Section 5 summarizes the major contributions of this 

paper. 

2. Surface tracking and fluid flow algorithms 

In this section, available free-surface tracking methods and fluid flow algorithms are 

reviewed.  Recommendations are made on their selection and improvement. 

2.1. Overview of free surface tracking methods 

As described earlier, modeling weld pool oscillation requires tracking the molten metal 

free surface.  Numerous methods developed to track free surfaces all have their strengths and 

weaknesses.  Based on the nature of the mesh, these methods can be grouped into two categories: 

Lagrangian and Eulerian. Lagrangian methods use a deformable mesh that moves with the fluid.  

Each computational cell always contains the same fluid element as it moves and deforms [25,26].  

With Eulerian methods, the numerical mesh is fixed in space and separate algorithms describe 

the position of the free surface.  Popular methods in this category include the Marker-and-Cell 

(MAC) [27], the Volume-of-Fluid (VOF) [28], Front-Tracking [29] and level-sets [30,31]. 

While most recent GMAW models are based on the VOF method [14,15,20-22], the 

MAC and Front-Tracking methods have also simulated welding [19,23].  We recently conducted 

a benchmarking study to compare the VOF method and the Front Tracking method.  While the 

Front Tracking method has the advantage of treating the entire domain as “one field” and its 
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explicit tracking of the fluid front seems more accurate than advection of marker functions, the 

following advantages of the VOF method makes it more suitable for modeling welding 

processes: 

1) Its algorithms naturally conserve the mass of fluid. 

2) It can easily handle large property variations across a free surface. 

3) It automatically handles the topological changes of free surfaces, such as the breakup 

of liquid column into droplets and the merger of two fluid regions. 

In this paper, numerical methods are developed primarily based on the two-dimensional 

and axisymmetric VOF algorithms.  With some modifications, these methods can also model 

steady three-dimensional welding processes. 

2.2 Fluid flow governing equations 

The welding simulation solves a set of coupled partial differential equations governing 

the fluid, thermal and electromagnetic fields.  The equations include the continuity and Navier-

Stokes equations.  By assuming the molten metal is an incompressible fluid with constant 

viscosity, the fluid mechanics equations in axisymmetric swirl-free form are: 
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2.3. Generation of computational mesh 

Using the finite-difference method, we discretize the equations on an Eulerian mesh of 

square cells covering the computational domain.  Figure 1 shows the mesh layout generated for a 

GMAW process.  Outside the physical domain, an extra layer of “ghost cells” ensures the 

boundary conditions are properly applied. 

Although the VOF method has the capability to handle variable mesh sizes for local mesh 

refinement, we have found that the accuracy of variable meshes is often outweighed by 

complications that increase computational effort.  As will be discussed later in the FLAIR 

algorithm, using variable meshes will also greatly increase the number of possible combinations 

of numerical situations at interfaces that make algorithms complex.  For these reasons, uniform 

square meshes are used in this paper. 

The transient fluid equations are solved using a “staggered grid” [32].  As shown in 

Figure 2, all the scalar field variables, including the fractional fluid volume F , the pressure p , 

the enthalpy h , the temperature T , the electric potential V  and the circumferential magnetic 

field θB , are placed at the center of the cells; all vector field variables, including the velocity v
v

, 

the current density J
v

 and the body force f
v

, are placed at the midpoints of the cell boundaries.   

2.4. Surface representation and reconstruction 

In the VOF algorithms, a function F  is defined as a scalar field variable for each 

computational cell to specify the fractional volume of a fluid occupying that cell.  7.0=F , for 

example, means 70% of the volume is occupied by the fluid.  Away from interfaces, all cells will 

have either 0=F  or 1.  Figure 3 illustrates how the F  function is distributed in relation to a free 

surface.  By analyzing the F  functions in one cell and its 4 immediate neighboring cells, the 

algorithms judge which corner of the cell, if not full, is occupied by the fluid and where the free 

surface is located.  The slope and curvature of the free surface can also be calculated by 

comparing the F  functions in its neighboring cells. 
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As the position of the free surface is specified by the F  function in each cell, the motion 

of the free surface can be tracked by updating F  in each cell according to the solution of the 

following transient equation: 

0=∇⋅+
∂
∂= Fv

t

F

Dt

DF v
 (4) 

where DtD is the material derivative defined within the equation. F  moves with the fluid, and 

(4) acts as the kinematic boundary condition (KBC) for a free surface.  When the KBC equation 

is integrated over a computational cell and a time step tδ , the change in F  reduces to fluxes 

across its boundaries. 

The original VOF algorithms [28] use a donor-acceptor algorithm to flux the fractional 

F  across cell boundaries.  If a cell is located on the upstream side of a velocity vector, it is 

considered a donor cell; if it is on the downstream side of the velocity vector, it is an acceptor 

cell.  Using the nomenclature of Hirt and Nichols [28], we call the radial direction horizontal and 

the axial direction vertical.  Depending on whether the surface is more horizontal or vertical, the 

F  function is advected from the donor cell to the acceptor cell either horizontally or vertically in 

the amount given by the solution of the KBC equation, as shown in Figure 4(a).  Because of this 

algorithm, the surface with a 45º slope is more likely to generate numerical errors and require 

bookkeeping techniques that will be discussed later. 

Since the information about slope (first-order) and curvature (second-order) is not used 

during the fluid advection, the donor-acceptor algorithm only has zeroth-order accuracy.  Since 

the introduction of the VOF method, many higher-order algorithms have been proposed, such as 

the first-order FLAIR [33] and Youngs’ methods [34] and some second-order methods [35], 

where first- and second-order polynomials are employed to reconstruct the free surface.  These 

methods partially correct errors caused by surfaces with a 45º slope. 

We use the FLAIR method in this paper since it improves the accuracy in the advection 

of F and its algorithms are more efficient and easier to implement than second-order methods. 
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In the FLAIR method as shown in Figure 4(b), the free surface is represented by a set of 

line segments fitted at the boundary of two neighboring cells.  The possible arrangements of the 

two cells are classified into nine cases.  Criteria is developed to distinguish these cases, and a 

separate algorithm computes the flux across the boundary between the two cells for each case. 

Figure 5 shows an example flux calculation in the FLAIR algorithms.  This type of 

surface structure appears when ba ff 3≤  and 23 ≤− ba ff .  When the free surface is represented 

by bxay += and the velocity on the boundary of the two cells, u, is in the positive x direction, 

the flux of fluid from the left cell to the right cell is: 









−+=+

h

tua

h

b
a

h

tu
f

δ
δ

δδ
δδ

2
 (5) 

where yxh δδδ ==  is the grid size.  If the velocity u is in the negative x direction, the flux of 

fluid from the right cell to the left cell is 









++=−

h

tua

h

b
a

h

tu
f

δ
δ
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2
. (6) 

A problem of the VOF method is that nonphysical voids or fluid filaments are often 

generated and propagate throughout the computational domain.  Wang and Tsai [22] discussed 

the “particles” above the weld pool and the “voids” in the weld pool and concluded that they 

were caused by numerical errors.  To suppress these voids and filaments, two bookkeeping 

strategies can be used.  One strategy improves the advection algorithms to prevent the creation of 

the filaments and voids.  This can be achieved by using higher-order reconstruction algorithms 

such as the FLAIR method or by limiting the fluid fluxed to an empty cell.  The second strategy 

fine-tunes the F  values when the advection is completed.  This can be achieved by setting upper 

and lower bounds for the partially filled cells or by filling the interior cells with the fluid in the 

surface cells. 
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2.5. Surface stress 

The stress tensor in an incompressible Newtonian fluid is 












∂
∂

+
∂
∂

+−=
i

j

j

i
jiji x

v

x

v
p µδτ  (7) 

indicating the momentum flux in the j th-direction normal to the i th-direction. 

The major surface forces in welding processes include the surface tension, the arc 

pressure, the Marangoni stress and the gas drag.  The surface tension and arc pressure are in the 

normal direction while the Marangoni stress and gas drag are in the tangential direction.  

Therefore, the normal and tangential surface stresses can be written as: 
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In a two-dimensional space, the surface stresses take the following form [36]: 
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Application of surface stress in the VOF algorithms sets pressure values at surface cells 

and velocity values at locations adjacent to the surface cell.  If a surface cell has only one side 

open to an empty cell, the free surface is considered either horizontal or vertical [37], and the 

surface stresses become: 
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Figure 6(a) shows an example where the surface cell P  has one side open to an empty 

cell and the free surface is considered horizontal.  The pressure j
iP  and velocities 21+j

iV , 1
21

+
−
j

iU  

and 1
21

+
+
j

iU  need to be specified such that the surface stress conditions (8) and (9), as well as the 

continuity equation, are satisfied: 
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If a surface cell has two sides open to empty cells, the normal direction of the free surface 

is assumed to be at 45º between the open sides [37].  The normal and tangential stresses become: 
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where the sign in (18) is chosen equal to the sign of yx nn .  Figure 6(b) shows an example of this 

case, where the surface cell P  has two sides open to empty cells and the normal direction of the 

free surface is considered as 
2

1==− yx nn .  The pressure j
iP  and velocities 21+j

iV  and j
iU 21−  

are specified as follows: 
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A cell with three sides open to empty cells is rare.  In that case, we simply allow the 

velocities at the two opposite empty sides to take on the values of the adjacent velocities inside 

the fluid, and compute the velocity at the third empty side and the pressure of the cell based on 

the continuity equation and (15). 

2.6. Solving the continuity and  momentum equations 

The original VOF algorithms [28] use two steps to solve the coupled momentum (Navier-

Stokes) and continuity equations.  The first step predicts the velocity components using the 

momentum equation, and the second step corrects the pressure term and the velocity components 

using the continuity equation.  A weakness of this method is that when successive iterations 

correct the pressure and velocity components, the momentum equation is not involved.  

Therefore, when a converged solution is found, the momentum equation is not accurately 

satisfied.  In addition, the method requires a large number of iterations in each time step and is 

not considered efficient. 

The most widely used method that simultaneously solves the momentum and continuity 

equations is Patankar’s SIMPLE (Semi-Implicit Method for Pressure Linked Equations) method 

[32].  Later improvements to the SIMPLE algorithms include the SIMPLER method [32], the 

SIMPLEC method [38] and the PISO method [39].  While benchmarking studies [40,41] show 

that each of the improved methods has its own advantages, Chao, et al. [42] indicates that 

SIMPLEC is the most efficient and stable method for solving complex turbulent flow.  Although 
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the flow in a fusion welding process is considered laminar ( 2000Re max <= µρ Dv ), we find 

SIMPLEC requires the least modification to the SIMPLE algorithm and is easier to implement. 

2.7. Some numerical techniques 

In the development of numerical algorithms, we find it convenient if two flag variables 

are defined for each cell to identify the physical entity and its surface that the cell is located.  We 

use OBJECT_NAME(i,j) to identify the cell object , such as the top-layer workpiece, the bottom-

layer workpiece, the welding wire or the molten droplet.  We use SURFACE_NAME(i,j) to 

identify the surface of  the object , such as the top or bottom surface of a workpiece.  By doing 

so, different boundary conditions and algorithms are easily applied to improve efficiency. 

In VOF algorithms, a flag variable NF(i,j) indicates whether a cell is a surface or an 

interior cell, and, if it is a surface cell, the cell side adjacent to the bulk fluid.  In some complex 

situations, we need to know which side of a non-surface cell is adjacent to the main fluid body.  

Since computer memory is no longer a big concern in today’s computing environment, we 

recommend that each variable only have one function.  In this case, we split the variable NF(i,j) 

into two field variables: one called POSITION(i,j) to indicate if the cell is on the free surface, 

inside a fluid, or outside the fluid; and the other called NEIGHBOR(i,j) to indicate the 

neighboring cell in the main fluid body.  With this arrangement, all cells near the free surface 

have NEIGHBOR(i,j) values, whether they are surface cells or interior cells. 

3. Integration of thermal and electromagnetic models 

Fusion welding is not only a fluid problem, but also involves complex thermal and 

electromagnetic phenomena.  Simulation of the process requires an integration of the thermal and 

electromagnetic models into the fluid flow and surface tracking algorithms. 
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3.1. Thermal equation and phase change problem 

For an incompressible substance, the energy equation is: 

qTk
tD

hD ′′′+∇⋅∇=
 (23) 

where h is the enthalpy, k is the thermal conductivity and q ′′′ is heat generation .  Equation (23) is 

known as the enthalpy formulation of the energy equation, and for constant specific heat at 

constant pressure cp it can be transformed to a temperature formulation as: 

qTk
tD

TD
c p ′′′+∇⋅∇=ρ  (24) 

where only one unknown, T , remains. 

The temperature formulation (24) was used by Chan, Mazumder and Chen to model a 

laser melted weld pool [4].  Solution of the equation typically requires three steps: 

(1) Determining the location of the solid-liquid interface based on the temperature 

distribution obtained in the previous time step; 

(2) Applying a heat balance boundary condition on the interface [43]: 

 nvLnTknTk llss

vvvv ⋅=⋅∇−⋅∇ ρ ; (25) 

(3) Solving the energy equation for solid and liquid separately. 

In addition to the complexity of the procedure, the discretized representation of solid-

liquid interface may introduce extra numerical temperature errors. 

The enthalpy formulation, on the other hand, eliminates the need to explicitly track the 

solid-liquid interface or apply heat interface balance conditions because energy is conserved over 

the entire solid-liquid system.  This method used here was introduced to the modeling of weld 

pools by Kou and Sun [5]. 

For a material whose phase change occurs at a constant temperature, the temperature-

enthalpy relationship is: 
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where Tm is the melt temperature, L is the latent heat, and the subscripts s and l on c indicate 

specific heats for the solid and liquid, respectively. For those materials whose phase change 

occurs over a temperature range, the relationship becomes: 
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The enthalpy formulation (23) contains two dependent variables, the enthalpy h and the 

temperature T.  Due to the nonlinearity in the h-T relationship, some strategies, such as those 

developed by Voller, et al. [44] and Cao, et al. [45], should be used to solve the equation.  In this 

paper, we use Cao, et al.’s method for its numerical simplicity. 

When the position of the free surface (both the liquid-gas interface and the solid-gas 

interface) is determined using the VOF (or FLAIR) method, boundary conditions can be applied 

on the surfaces and the momentum, energy and current equations can be solved within the 

generalized liquid phase.  A large effective viscosity [5] can be used for the cells that have 

temperatures lower than the melting (or the liquidus) temperature.  We set the large artificial 

viscosity at 108 times the viscosity of the nearby liquid to virtually eliminate the relative motion 

in the solid phase. 
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3.2. Simulation of the electromagnetic field 

In the arc welding process, the current-carrying molten metal, under the influence of self-

induced magnetic field, generates an electromagnetic force that affects the motion of the molten 

metal.  The electromagnetic force per unit mass is determined by the Lorenz force law: 

BJf
vvv

×= . (28) 

For welding applications where the electromagnetic field is considered quasi-steady, the 

magnetic field can be solved using a simplified Maxwell’s equation: 

IsB 0d µ=⋅∫
vv

 (29) 

stating that the line integral of the magnetic field around any closed path equals to the total 

current passing through the closed path. 

From the analysis above, we find that both terms in (28) require knowledge of the current 

density distribution within the molten fluid.  The current flow in the fluid with no ability to store 

charge is governed by the Laplace equation: 

( ) 0=∇⋅∇ Vσ  (30) 

Although this equation has a very simple form, it is the most time-consuming equation in the 

entire simulation.  The slow convergence of the numerical iteration is caused by the following 

two factors: 

(1) The numerical iteration is very sensitive to the Neumann boundary conditions located on 

a curved and moving free surface whose shape can be arbitrary; 

(2) Unlike the energy and momentum equations, electric potential is not a function of time.  

Any topological change on the boundary instantly affects the electric potential 

everywhere. 

To increase the computation speed, we introduce an artificial transient term to the 

Laplace equation and make it a diffusion equation: 

( )V
t

V ∇⋅∇=
∂
∂ σϑ  (31) 
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where ϑ  is a positive diffusion constant with a unit of sec3m⋅Ω .  For given boundary 

conditions, the unique solution of a diffusion equation evolves to a steady state as ∞→t  

regardless of its initial conditions. 

Selection of ϑ  value is determined using numerical trial-and-error.  ϑ  should be large 

enough to ensure acceleration of the iteration, without affecting the result. 

3.3. Applying boundary conditions on curved surfaces 

In welding simulations, Neumann boundary conditions are often applied on the fluid 

surfaces.  For example, Choi et al. [15] assumed that the current density passing through the free 

surface of molten metal is zero, or 0=∂∂ nV .  Fan and Kovacevic [21] assumed the thermal 

condition on the weld pool surface without arc heating is )( ∞−=∂∂− TThnTk c  and that the 

free surface current flux nV ∂∂  obeys a Gaussian distribution. 

Neumann conditions are applied by interpolating the variable, e.g. the voltage, near the 

fluid surface, as shown in Figure 8.  Suppose the dark line is a free surface that passes through a 

cell o and its slope m is known.  We first reorient the cell such that the fluid is below the surface 

and its right neighboring cell contains more fluid than its left neighboring cell, as shown in the 

figure.  During the reorientation, the slope may change sign or take its reciprocal value.  We 

designate the cell below the surface cell as b, and the cell next to b on the right as a.  The goal is 

to determine the voltage of cell o ( oV ) such that the current density normal to the free surface 

satisfies a prescribed value ( nJ ).   To achieve this, we need to interpolate the voltage at cells a 

and b.  Suppose letters o, a and b also represent the center points of the cells.  After drawing two 

lines to connect ob  and ba , we draw another line starting from o and perpendicular to the free 

surface and designate the point where the new line intersects with ba  as point c.  Letting 

α=∠ boc , then m1tan −=α .  Interpolation on ba  gives: 

ba

VV

cb

VV babc −
=

−
 (32) 
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or 

x

ym
VVVV babc δ

δ
)( −+=  (33) 

where all terms on the right hand side are known, and so is cV .  Since ca  is normal to the free 

surface, we can approximate nJ  by: 

co

VV
J oc

n

−
= σ  (34) 

or 

ασ
δ

σ cos

y
JV

co
JVV ncnco −=−= . (35) 

Therefore, the voltage in the surface cell becomes: 

ασ
δ

δ
δ

cos
)(

y
J

x

ym
VVVV nbabo −−+=  (36) 

The same procedure can also be applied to determine the enthalpy in surface cells. 

4.  Simulation procedure and example 

To simulate a fusion welding process, we consider the problem as a two-phase system: 

one is the gas phase, including the arc plasma, the shielding gas and the air; the other is a 

generalized liquid phase, including the melted and unmelted metals.  The two phases are 

separated by one or more free surfaces, whose positions are dynamically tracked by the VOF or 

FLAIR algorithms.  In the generalized liquid phase, enthalpy-based energy equation determines 

the temperature distribution.  If a cell has a temperature lower than the melting point (or the 

solidus temperature), it is considered as an unmelted (or solidified) cell and its viscosity is 

replaced by an effective-viscosity, 108 times that of the surrounding fluid.  With the effective-

viscosity, when the Navier-Stokes Equation is solved for the generalized liquid phase, the 

relative motion in the solid region is virtually eliminated.  The electromagnetic equations are also 

solved in the generalized liquid phase.  The electromagnetic force moves the fluid and the Joule 
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heating increases the local temperature.  Surface stresses, including the surface tension, arc 

pressure, Marangoni effect and gas drag are applied on the surface cells as boundary conditions 

to the governing equations of the generalized liquid phase.  These boundary conditions may be 

Dirichlet, Neumann or mixed.  The enthalpy formulation with effective viscosity requires no 

interface conditions at the solid-liquid boundaries.  We do not even need to know the actual 

locations of the boundaries.  For a two-dimensional model, the welding speed is considered as a 

function that causes the external heat source to gradually move into the welding area and 

gradually move out of the welding area. 

Figure 9 is a flow chart of the computational procedure. 

(1) Geometric, physical, material and control parameters, as well as the welding 

conditions, are first read into memory. 

(2) A computational mesh is generated and field variables are initialized based on 

initial conditions. 

(3) Navier-Stokes equations, as well as the continuity equation, are solved for velocity 

and pressure distributions using the SIMPLEC algorithm. 

(4) The FLAIR method determines the new positions of the free surface by solving the 

KBC equation. 

(5) Due to numerical instability, steps (3) and (4) may not give converging solutions.  

When that happens, the time increment is reduced by 20%, and steps (3) to (5) are 

repeated. 

(6) The free surface is assessed and the values of the identification variables for each 

cell are determined. 

(7) The surface curvature and stresses are calculated. 

(8) The Laplace equation determines the voltage distribution.  The current density, 

magnetic field and electromagnetic force are calculated based on Ohm’s law, the 

Maxwell Equation and the Lorenz force law. 

(9) The energy equation is solved for enthalpy and temperature distributions. 
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(10) Temperature-dependent material properties are updated and the large effective 

viscosity is assigned to cells whose temperatures are lower than the melting point. 

(11) The process advances to the next time step with intermediate results saved.  The 

new values of fractional volume, velocity, pressure and enthalpy are now 

considered as “old” values.  If the time increment was reduced previously, it is 

increased by 10% and gradually returns to the preset value.  Steps (3) to (11) are 

repeated until the desired termination time is reached. 

Figure 10 shows an example of the simulation for a GMAW process with a consumable 

electrode wire.  The material properties are listed in Table 1.  The process is modeled 

axisymmetrically with the following boundary conditions: 

 

The top computational surface is considered a fluid inlet, whose voltage equals the given 

welding voltage and temperature equals the ambient temperature due to its long distance to the 

melting tip: 

feedz vv −= , 0=rv , ambientTT = , and UV =  

The bottom surface is a free-slip wall that is adiabatic and electrically grounded: 

0=
∂
∂

z

vr , 0=zv , 0=
∂
∂

z

T
, and 0=V  

The inner surface is the symmetry axis: 

0=rv , 0=
∂
∂

r

vz , 0=
∂
∂

r

T
, and 0=

∂
∂

r

V
 

The outer surface is also a free-slip wall that is adiabatic and electrically grounded: 

0=rv , 0=
∂
∂

r

vz , 0=
∂
∂

r

T
, and 0=

∂
∂

r

V
 

On the free surfaces of the weld pool, we assume the current density and heat flux obey 

the Gaussian distribution: 
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On the free surface of the welding wire, we assume the current density and heat flux are 

linear along the vertical direction [24]: 

∫ ⋅
⋅−=

∂
∂

dAz

zI

n

Vσ  (39) 

∫ ⋅′
′⋅

=
∂
∂

dAz

zIU

n

T
k d ηη

. (40) 

The surface tension is included in the calculation, while other stresses are ignored. 

Figure 11 shows the simulated procedure of droplet growth and detachment in globular 

and spray modes.  For illustration purpose, only one transfer period is displayed in each figure, 

and irregular time intervals are used.  Figure 11 shows that melting front on the wire is not flat 

and its shape is determined by the heat convection between the wire and the droplet.  Since the 

wire is primarily melted by resistive heating, anode reaction, and arc heating, the wire surface 

directly exposed to the arc tends to melt faster than the interior metal.  Therefore, the melting 

interface usually turns out to be convex.  However, in the neighborhood of the detachment, the 

center of the melting interface is depressed due to an upward recoil flow caused by the 

unbalanced surface tension.  When that happens, the melting front becomes crater-shaped as 

shown in the last plot of Figure 11.   

Figure 12 shows a simulation of continuous droplet transfer and weld pool development 

in spray mode at 300A.  Through impingement the molten droplets transfer mass, momentum 

and energy to the weld pool.  It seems that while the convection of weld pool is driven by many 

factors, the impingement of molten droplets is the most significant one that determines the fluid 

motion in the weld pool. When a droplet impacts into the weld pool, the weld pool surface 
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deformed drastically and heat carried by the droplet is transferred towards the root of the weld 

pool, resulting in a finger-shaped geometry. Analogous to the forced vibration in dynamics, the 

surface oscillation of the weld pool is synchronized with the periodic excitation from the droplet 

impingement.  The simulation results presented here are in broad agreement with 

experiments[18]. 

5.  Conclusions 

This paper developed a numerical procedure for the simulation of fusion welding 

processes where free surfaces are involved.  The VOF method is used to track the motion of the 

molten metal free surfaces, but its surface advection and reconstruction algorithm (the donor-

acceptor algorithm) is replaced by the more accurate FLAIR algorithm.  Surface stresses, 

including the surface tension, Marangoni stress, arc pressure and gas drag, are applied on the free 

surface.  The SIMPLEC method is used to solve the coupled momentum and continuity 

equations.  Thermal equations are integrated in the algorithm using the Enthalpy method, 

eliminating the need for explicitly tracking the melting front.  Electromagnetic fields are 

calculated by first solving the Laplace equation for electrical potential, where an artificial 

transient term is introduced to expedite the computation.  Numerical techniques, such as the 

application of boundary conditions on curved surfaces, are also described.  Based on these 

details, a general numerical procedure is presented.  While a simulation example is shown for 

gas metal arc welding, the numerical methods can be also applied to gas tungsten welding, laser 

welding and plasma arc welding. 

Droplet growth and detachment in globular and spray modes are simulated using the 

numerical procedure presented in this paper.  It is observed that the shape the melting front on 

the wire is determined by the heat convection between the wire and the droplet.  Both convex 

and crater-shaped melting interfaces are presented in the same transfer cycle.  Effects of the 

droplet impingement on the weld pool development are studied for spray transfer.  The mass, 
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momentum, and enthalpy carried by the droplets significantly affects the heat convection mode 

in the weld pool and result in a finger-shaped geometry.  The simulation is in good agreement 

with experiments. 
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 (a) GMAW process (b) Mesh layout 
 

Figure 1.  Schematic of mesh layout. The figures indicate how the real and “ghost” cells are 

located; the actual mesh is typically 20 times finer. 
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Figure 2.  Layout of discretized field variables. 
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Figure 3.  Surface representation in the VOF method. Fraction numbers indicate the ratio of 

volume occupied by the liquid. 
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 (a) VOF Method (b) FLAIR Method 
 

Figure 4.  Comparison of surface reconstruction in VOF and FLAIR methods. 
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 (a) Surface structure                                (b) flux of fluid in one time step 
 

Figure 5.  Example of fluid flux calculation in FLAIR method. 
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(a) Nearly horizontal surface 

 

 

 

 

 

 

 

 

 

 

 

(b) Nearly 45° sloped surface 

 
Figure 6.  Velocity and pressure boundary conditions on free surface. 
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Figure 7.  The enthalpy-temperature relation. 

 

 

 

0
lTsT

T

h



 

 39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.  Applying Neumann boundary conditions on a surface cell. 
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Figure 9.  Flow chart of computational procedure. 
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Figure 10.  Axisymmetric modeling of gas metal arc welding. 
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 170 ms 260 ms 340 ms 342.75 ms 344 ms 

(a) Globular Transfer (200A) 

 

 

 

 

 

 

 

 34.0 ms 35.5 ms 36.3 ms 36.5 ms 37.0 ms 

(b) Spray Transfer (350A) 

 
Figure 11. Simulated procedure of droplet detachment in gas metal arc welding. 
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(a) Velocity distribution 
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 (b) Temperature distribution 

 
Figure 12. Simulated procedure of weld pool development in gas metal arc welding. 
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Table 1.  Material properties of workpiece and welding wire 

 

Property Symbol Value Unit Reference 

Density ρ  7200 3−⋅ mkg  [22] 

Melting Temperature mT  1727 K  [22] 

Latent Heat L  51047.2 ×  1−⋅ kgJ  [22] 

Specific Heat (solid) sc  700 11 −− ⋅⋅ KkgJ  [22] 

Specific Heat (liquid) lc  780 11 −− ⋅⋅ KkgJ  [22] 

Thermal Conductivity lk  22 11 −− ⋅⋅ KmW  [22] 

Dynamic Viscosity µ  0.006 11 sec−− ⋅⋅mkg  [22] 

Kinematic Viscosity ν  
7103.8 −×  12 sec−⋅m  Calculated 

Surface Tension Coefficient γ  1.2 1−⋅mN  [14] 

Electric Conductivity σ  
51014.7 ×  11 −− ⋅Ω m  [22] 

 


