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Abstract We concentrate on the rich effects that surface tension has on free and
forced surface waves for linear, nonlinear, and especially strongly nonlinear waves
close to or at breaking or their limiting form. These effects are discussed in the context
of standing gravity and gravity-capillary waves, Faraday waves, and parasitic capillary
waves. Focus is primarily on post-1989 research. Regarding standing waves, new
waveforms and the large effect that small capillarity can have are considered. Faraday
waves are discussed principally with regard to viscous effects, hysteresis, and limit
cycles; nonlinear waveforms of low mode numbers; contact-line effects and surfac-
tants; breaking and subharmonics; and drop ejection. Pattern formation and chaotic
and nonlinear dynamics of Faraday waves are mentioned only briefly. Gravity and
gravity-capillary wave generation of parasitic capillaries and dissipation are consid-
ered at length. We conclude with our view on the direction of future research in these
areas.

I. INTRODUCTION

In a recent review Dias & Kharif (1999), in their section 7, consider capillary-
gravity waves in addition to gravity waves, concentrating on nonlinear effects,
including those of spectra, amplitude equations, and bifurcation phenomena.
Here, we wish to concentrate our discussion on the rich effects that surface tension
has on free and forced surface waves for linear, nonlinear, and especially strongly
nonlinear waves close to or at breaking or their limiting form. We discuss these
in the context of standing gravity and gravity-capillary waves, Faraday waves,
and parasitic capillary waves.

The inclusion of surface curvature (with surface tension) means that the free-
surface boundary condition itself requires further boundary conditions (edge con-
straints). These constraints are typically contact-line conditions where the
interface meets a solid surface. The contact line conditions are more formally
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understood in relation to Stokes flow (Dussan 1979) but can have large dissipative
effects even in an inviscid system (Hocking 1987a, Miles 1990). Indeed, contact-
line dissipation effects are dominant in many containers of low viscosity fluid.
The high Reynolds (Re) limit has even more complicated singular behavior at the
contact line. For most water waves, there are at least three small parameters that
lead to singular behavior: the slip length, nondimensional surface tension (j), and
nondimensional viscosity (1/Re). Here, we discuss contact line problems with
Faraday waves primarily in the context of potential flow, and high Reynolds
number viscous contact-line effects.

Surface tension also facilitates richer dynamics through altered resonance con-
ditions. For instance, one-dimensional waves exhibit resonances when a capillary
wave and a capillary-gravity wave of the same wavelength have the same phase
speed. This occurs when the dimensionless surface tension j is equal to 1⁄2, 1⁄3,
1⁄4, etc. The most celebrated of these is the ripple found by Wilton (1915) at j 4
1⁄2, where the trough or the crest has a dimple formed by the first superharmonic
with an amplitude that becomes one half that of the primary wave in the limit of
small amplitude. For these cases, nonlinear resonances can occur for wave ampli-
tudes ka , 0.05 that would otherwise be considered linear (Perlin & Ting, 1992).
Hence, commonly observed wave problems with small surface-tension effects are
singular in more than one way: Not only do they require the extra edge condition
mentioned in the paragraph above, but they have resonances with ripples of large
wavenumber N when j 4 1/N r 0. This leads to many computational difficulties
in calculating these waveforms (Huh 1991). Capillary-gravity waves also have
rich instabilities leading to two-dimensional waves, as previously reviewed by
Hammack & Henderson (1993).

Not only can waves of relatively small amplitude become nonlinear due to
surface tension as described above, waves with large nonlinearity also exist (i.e.
much steeper waves occur prior to breaking). This is seen directly by noting that
the pure capillary (Crapper 1957) wave steepness limit is about five times that of
a pure gravity wave (Stokes 1880, Schwartz & Fenton 1982). More importantly,
small surface tension inhibits the 1208 cusp of the Stokes wave and allows the
wave to become much steeper.

Since interest in shorter waves is often associated with small- to medium-sized
containers, wave reflection may be dominant. In the limit of large reflection, pure
standing waves result, and hence it is appropriate to place a greater emphasis on
standing waves for shorter waves. In general, standing waves can be obtained
most cleanly by Faraday resonance (i.e. by oscillating a container vertically and
hence parametrically changing the effective gravity). This Faraday wave reso-
nance has proven to be an ideal (experimental, computational, and analytical)
laboratory to study nonlinear systems, bifurcation, and pattern formation, which
has created a wealth of studies largely ignored here. Contact-line effects can
dominate in the low wavenumber (perhaps primary) limit, while the high wave-
number limit used in pattern formation studies necessarily creates waves domi-
nated by capillarity.
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The equations for irrotational standing waves are straightforward. In addition
to the requirement that the velocity potential satisfy the Laplace equation and
Neumann condition at all solid surfaces (or decay to zero at infinite depth), the
inviscid flow kinematic and dynamic boundary conditions on a free surface
described by z 4 n(t) are

Dn dw*
4 (1)

Dt dz

and

2Df 1 dw x8y9 1 x9y8
4 1y ` 1 j . (2)) ) 2 2 3/2Dt 2 dz (x8 ` y8 )

Here, w 4 f ` i w is the complex potential as a function of z 4 x ` i y, *
denotes the complex conjugate, and D/Dt is a material derivative. The dimen-
sionless surface tension is given by the inverse Bond number j 4 k2r (qg)11

where k is the wavenumber, t the surface tension, q the mass density, and g the
acceleration of gravity. The damping terms are set to zero for freestanding waves
(i.e. not shown in Equation 2) and are described in the next paragraph. We write
the boundary conditions in this form because computational nodes are often cho-
sen to follow material particles, especially when breaking waves are being exam-
ined (Schultz et al 1994). When j is not equal to zero, edge constraints are
required at the contact lines. The Neumann condition, ]n/]n 4 0, where n is the
normal from the solid surface, is satisfied naturally, while special intervention is
required to satisfy the pinned condition Dn/Dt 4 0 or a mixed condition such as
that used in Hocking (1987b) or Miles (1990). Finally, for standing waves we
require that the free surface elevation and potential be periodic in time and space,
with symmetry conditions posed to exclude traveling waves.

Faraday (1831) forced the wave by vertical acceleration. A coordinate system
fixed to the container leads to a periodic variation in gravity, so the coefficient of
the first term on the right-hand side of the dynamic boundary condition (2) is
replaced by (1 ` e sin xt). For this type of forcing, computations (and experi-
ments!) solve an initial value problem. For the solution to become independent
of the initial conditions, damping must be imposed. A simple linear Rayleigh
damping (i.e. adding a term proportional to f to the right-hand side of Equation
2) is usually applied, although many other possibilities can be used to model
damping such as a term proportional to the second derivative of f (Jiang et al
1996). These parametrically excited waves need not be periodic in time. We have
seen that the addition of damping to the irrotational equations adequately predicts
the correct surface profiles even for parasitic capillaries where vorticity is present.

The above description highlights many differences between free and Faraday
waves. Experiments, however, require some forcing to overcome dissipation, and
we have found that Faraday resonance is the best way to provide this forcing.
When damping is small (water in modest- to large-scale containers), these exper-
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iments match the standing wave calculations and analysis better than the sidewall
forcing of Taylor (1953). We do not make a strong distinction between the two,
but Faraday waves offer richer behavior because, in addition to prescribing the
amplitude as is done for standing waves, one also prescribes dissipation and
forcing frequency. We show that dissipation can change some of the temporal
symmetries of free waves.

The inclusion of viscosity and variable surface tension gives rise to shear
stresses that can drive or retard the flow. This surface tension variation can come
from temperature or concentration variations. For nearly inviscid surface waves,
the variation is almost always caused by surfactants that act to dampen short
waves—usually considerably. This emerging topic is substantial and beyond the
scope of this review. We refer to it primarily to remind the reader that care must
be taken to clean the fluid as is described in the experiments discussed here.
Unfortunately, detergents used to minimize contact-line effects and flow-
visualization dyes and particles have surfactant-like effects.

Often capillary effects enter unintentionally through scale reduction as in tow-
ing tank ship experiments. At other times, capillary effects naturally dominate
because of the small scales as in ink jet printers or in the microgravity of space.
On the other hand, surface tension plays an important role in ocean spectra. It
causes the Helmholtz problem describing the initial generation of ripple by wind
to be well posed. Inhibiting short waves gives the appropriate wave number selec-
tion (Sobey 1986). It also can take an important role in frequency downshifting
as described in Dias & Kharif (1999). Finally, longer gravity waves at or close
to breaking produce short waves that are important in remote sensing, in increas-
ing dissipation, and in affecting the fluxes at the air-water interface. Since we
choose to review flows with free surfaces (avoiding wind effects) and because
the frequency downshifting has been recently reviewed, for progressive longer
waves we concentrate on the generation of ripples.

In this review we begin with post-1989 research. We proceed by discussing
progress on standing gravity and gravity-capillary waves especially with regard
to surface-tension effects. A discussion follows on several aspects of Faraday
waves. Generation of and dissipation by parasitic-capillary waves is the subject
of the next section. We conclude with our view of the future research direction
in these areas.

II. ADVANCES ON STANDING GRAVITY AND GRAVITY-
CAPILLARY WAVES

Schwartz & Fenton (1982) review the substantial literature on nonlinear water
waves, including some discussion of standing waves and capillary effects. Stand-
ing waves have received far less attention because they are perceived as having
only secondary importance in analyzing ocean spectra. Additionally, standing
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waves are much more analytically and numerically challenging because the non-
stationarity makes the inverse method (writing the complex spatial variable in
terms of the complex potential) no longer possible. A temporal Fourier-series is
often used, although time-marching has been found to be more successful
computationally.

II.A. New Waveforms

Of course, a standing wave is sinusoidal in the linear limit, as it is just a super-
position of its traveling counterpart. In this sense, other than providing possible
resonances, the capillarity only serves to change the dispersion relationship. We
wish to examine the strongly nonlinear limit to ascertain the limiting form of
standing gravity waves and determine the effect of small capillarity on these
waveforms.

Rayleigh (1915) first considered finite amplitude standing waves in two-
dimensional potential flow. He neglected surface tension and finite-depth effects
and calculated a power series solution to third order in the wave amplitude. Pen-
ney & Price (1952) carried a similar expansion to fifth order. Schwartz & Whitney
(1981) corrected and improved to 25th order the expansion of Penney & Price.
They obtained more accurate results for standing waves of relatively large ampli-
tude in the absence of surface tension. Their expansion procedure was not capable
of approaching the highest wave because the limiting wave is not the highest
wave. More recent studies on standing water waves include Mercer & Roberts
(1992) and Tsai & Jeng (1994).

Inspired by Stokes’ (1880) analysis showing a 1208 crest at the limiting form
of a steady gravity wave, Penney & Price (1952) tried to find the limiting form
of the gravity standing wave. The 1208 crest for the traveling wave is theoretically
possible, and some have been seen experimentally, if only ephemerally. Usually,
the limiting wave will not be approached due to breaking, spilling, capillary wave
generation, and cross-wave instabilities. However, the quest for the limiting form
of the standing wave has been more controversial. Penney & Price determined
that the limiting waveform would have a 908 crest. Based on this premise, they
also ascertained the approximate wave height at this condition by extrapolating
their expansion until an angle of 5458 was obtained.

Several studies (for example, Taylor 1953, Mercer & Roberts 1992, Tsai &
Jeng 1994) have attempted to verify these claims. Taylor (1953) found waves that
approximately confirmed the height and shape predicted by Penney & Price. He
also observed higher standing waves but determined that these waves were three-
dimensional. Using a spectral boundary integral method combined with Newton
iteration to enforce temporal periodicity, Schultz et al (1998) showed that Penney
& Price (1952) overpredicted the limiting height that can be achieved without
surface tension. Mercer & Roberts, using essentially the same numerical method,
could have come to the same conclusion but did not. Schultz et al (1998) dem-
onstrated that Taylor (1953) found dimensionless peak-to-peak wave heights
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Figure 1 Comparison of peak standing wave profiles. The symbols are data from Figures
11 and 12 of Taylor (1953). The solid line is a calculated gravity-capillary wave with
j 4 0.0027, corresponding to a wavelength of 32.9 cm in Taylor’s experiments; the dash
line is Penney & Price’s 1952 gravity-wave solution at Hmax 4 ymax1ymin 4 1.37; and
the dash-dot line is the highest possible gravity wave at Hmax 4 1.2403. (Reprinted with
the permission of Cambridge University Press.)

greater than 1.24 largely due to capillarity. The size of Taylor’s experimental
apparatus made capillarity very important for large amplitude waves.

There are two problems that lead to unsupported conclusions in the crest anal-
ysis of Penney & Price. The first is that temporal periodicity is not satisfied.
Unlike the assumption of stationarity by Rayleigh for traveling waves, this con-
straint is not easily enforced. Secondly, they assume a Taylor series expansion
about the crest that is not appropriate if the solution is singular. Another challenge
is that this limiting form could occur when the flow momentarily becomes sta-
tionary, and hence (other than the curvature singularity if surface tension is con-
sidered) the flow singularity would be modified.

A more appropriate (but not definitive) analysis would be to determine the
existence of a small time solution for various crest angles and crests. This has
not been performed. The computations of Schultz et al become unreliable close
to the limiting wave, and so no numerical proof is available. These computations
do show, however, a very good approximation of the highest wave that is con-
siderably smaller than that predicted by Penney & Price and seen by Taylor. The
computations also infer a limiting crest angle of smaller than 908 with the pos-
sibility of a cusp (08 angle crest) formation. The wave profile comparison is shown
in Figure 1 (Figure 7 of Schultz et al 1998).

Defining a standing wave profile as temporally and spatially periodic such that
the free-surface elevation and velocity potential are symmetric and antisymmetric,
respectively, about the peak of the wave eliminates the traveling waves and com-
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bination standing/traveling waves of Dias & Bridges (1990). Furthermore, all
nonlinear standing waves (for example, Schwartz & Whitney 1981) analyzed to
date examine only the class where the kinetic energy is zero at one time during
the cycle with temporal symmetry about this time. This class has nonlinear wave-
forms without nodes (Schwartz & Fenton 1982). This property allows computa-
tions to be performed for one half of a temporal and spatial period. However,
experimental and numerical evidence (Jiang et al 1996) shows that this temporal
symmetry is broken in Faraday wave systems as described in the next section.

As demonstrated in Mercer & Roberts (1992), the total energy, wave period,
and wave height all reach their maxima before the formation of the sharpest wave.
The limiting form is better described by the crest curvature (Schultz et al 1998)
or the crest acceleration (Mercer & Roberts 1992). The limiting form is difficult
to obtain computationally. An estimate of a ‘‘crest angle’’ can be obtained from
the included angle given by the maximum slope on either side of the crest. The
computations suggest that these angles become less than 908.

II.B. Large Effects of Small Capillarity

The sharp crest of steep waves discussed in the last section will not appear in
experiments, even for large wavelengths, because of surface tension effects. This
local effect at the crest has global implications. Surface tension was first included
in wave analysis/calculations by Concus (1962) and Vanden-Broeck (1984), who
avoided the troubling limit of small surface tension mentioned in the introduction.
Mercer & Roberts (1992) had computational difficulties adding surface tension
in general. The successful introduction of large amplitude waves with small sur-
face tension showed nonmonotonic behavior near the limiting wave as in the
gravity case, but even small surface tension significantly increases the highest
wave amplitude as shown in Figure 2 (Figure 6 of Schultz et al 1998). For small-
amplitude waves, these surface-tension effects are diminished and linear theory
is adequate. Capillarity becomes important when the wave height approaches and
then exceeds the gravity-wave limit, and inhibits a possible singularity at the crest.

A laser-sheet technique (Jiang et al 1998) showed that a rounded crest and a
large wave slope characterize most of the large-amplitude standing waves with
large Bond numbers, demonstrating the importance of surface tension near the
crest. Sometimes the protuberant crest is replaced by a flat/dimpled crest that can
be thought of as a modified, highly nonlinear Wilton dimple at the crest. As long
as the waves are not too close to their limiting form, the comparisons to com-
putations are good. As the crest radius goes to zero, the crest acceleration goes
to the gravitational limit, as predicted by a min-max principle first described in
Schwartz & Whitney (1981).

Jiang et al (1998) found that Faraday waves (with forced vertical oscillation
at approximately twice the natural frequency) produced cleaner waves than
horizontal flap-type wavemakers (Taylor 1953) that change the wavelength peri-
odically during a wave cycle and generate extra superharmonics that cause
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Figure 2 Potential energy versus wave height for different inverse Bond numbers, j; the
numbers refer to the value of j for each curve. Dash lines represent results with increased
errors. The inset is an enlarged portion of the curves. (Reprinted with the permission of
Cambridge University Press.)

instability and irregularity in steep waves. There also appears to be more vorticity
generation with this type of forcing. In moderate amplitude Faraday experiments,
the wave achieved a profile with almost-zero kinetic energy (the profile changes
little in a short time interval) and the maximum wave elevation at the tank center.
In addition, only 16 or 32 nodes were used in most of the Schultz et al (1998)
calculations to avoid resonance for small j. Large forcing amplitude generates
different waveforms as the external forcing alters the mode interaction in a
standing-wave system. Overdriven Faraday waves in the Schultz et al (1998)
experiments exhibited two major differences compared with the calculation of
free, inviscid standing waves: temporal-symmetry breaking and ripple formation.
Still higher excitation caused subharmonic temporal behavior (period tripling)
and breaking.

III. PROGRESS ON FARADAY WAVES

In this section we begin where the review of Miles & Henderson (1990) con-
cluded; we discuss the subsequent progress on Faraday waves (without reference
to cross waves and edge waves). Specifically we discuss parametrically forced
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standing waves in terms of surface-elevation profiles; damping and contact-line
effects; breaking and drop ejection; and pattern formation. Throughout we use
‘‘Faraday waves’’ and ‘‘parametric resonance’’ (with effective gravity the param-
eter) synonymously.

III.A. Viscous Effects, Hysteresis, and Limit Cycles

Miles & Henderson (1990) apparently overlooked Nagata (1989), who investi-
gated Faraday resonance in a square-based cylinder. Ignoring the effect of surface
tension, using multiple scales, and following Miles (1984a), he used a Lagrangian/
Hamiltonian approach and included weak linear damping in treating the Faraday
wave problem while retaining the inviscid assumption. He developed coupled
evolution equations at third order and discussed their stability. For the case of a
slosh mode, when one half the forcing frequency is less than the natural frequency,
a mixed (corner-to-corner) mode was shown to occur, while a so-called general
mode occurred when one half the forcing frequency exceeded the natural fre-
quency. This waveform is similar to the ‘‘twist wave’’ of Umeki (1991) and
Decent (1997) discussed below.

Faraday waves in 2:1 internal resonance were investigated by Henderson &
Miles (1991). This ratio has two distinct meanings: The forcing frequency gen-
erates a subharmonic (Faraday) wave that resonates with its own subharmonic,
in which case the latter frequency is 1⁄4 of the forcing frequency. Also, the Faraday
wave resonates with its own first superharmonic, in which case the latter fre-
quency is commensurate with the forcing frequency. Physical experiments pri-
marily in circular cylinders measured wave amplitude over time with a single
probe. Complex-demodulation estimates of growth rates and steady-state ampli-
tudes were used to generate stability diagrams and phase space between the
respective primary amplitudes. These quantities were compared to their theoret-
ically derived counterparts. For resonance of the Faraday wave and its subhar-
monic, essentially all possible outcomes occurred: steady; modulated with one or
two periods of the modulation; quasi-periodic; and chaotic motions. Resonating
superharmonics never achieved amplitudes comparable to that of the Faraday
wave. Effective damping rates taken from experiments were used where required,
and the detergent Photo Flo was used in all experiments to reduce contact-line
effects.

Although Milner (1991) and Miles (1993, 1994) are cited in the sub-section
on pattern selection, some of the ideas they originated are required at present.
Specifically these papers showed that third-order damping, and third-order damp-
ing and forcing, respectively, model important physics. In his investigation of
capillary-wave pattern selection, Milner (1991) included nonlinear damping terms
with Hamiltonian equations by calculating the viscous dissipation in the bulk.
Miles extended the Milner formulation by including third-order forcing (which
he argued is required for consistency since third-order damping was included)
and finite-depth effects, and extended the results to gravity-capillary Faraday
waves.
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In a peripherally related paper, Generalis & Nagata (1995) included cubic-order
interactions but treated a two-liquid-layer system in which one (chosen) layer is
excited through Faraday resonance and the other layer through wave-wave inter-
action (internal to surface wave or vice versa). Their analysis is restricted to two
dimensions (one surface dimension).

In a series of papers contributed in various parts by ADD Craik, SP Decent,
and JGM Armitage, the authors demonstrated that including higher-order terms
in the model equation partially explained measured hysteresis. In Craik & Armi-
tage (1995), experiments were presented where the frequency was held constant
while the forcing amplitude was increased until the inception of linear waves in
the water-Photo Flo mixture. Then, once finite-amplitude waves were established,
the forcing amplitude was decreased until the surface returned to a quiescent state.
The trend in the results depended significantly on the liquid depth. The hysteresis
was attributed to nonlinear damping and forcing. The evolution equation of Miles
(1993) that included the effects of cubic damping and cubic forcing was shown
to more accurately describe the measured hysteresis. Decent & Craik (1995)
extended their model equation to include the conservative fifth-order frequency
shift terms (i.e. quintic nonlinearity }A|A|4, where A is the slowly varying com-
plex wave amplitude) along with cubic terms in wave-amplitude for damping and
forcing. Although this improved their predictions of the hysteresis observed in
their experiments and others, they were still unable to describe the experimental
results of Simonelli & Gollub (1989) that included waves in both surface dimen-
sions. In a third paper, Decent & Craik (1997) exploited this same evolution
equation to investigate limit cycles.

Jiang et al (1996) investigated moderate and steep Faraday waves of the fun-
damental mode. Here we discuss their stability measurements and their hysteresis
and response diagrams. They definitively showed that contact-line effects increase
the frequency (phase speed) and hence change the stability diagram in a way
opposite to that usually attributed to friction. Further, they demonstrated that the
addition of the wetting agent Photo Flo that reduces significantly the contact-line
effects returns the stability diagram for the fundamental mode close to that
obtained by the Mathieu equation for an inviscid fluid. For a small sideband-
perturbation in frequency, strong modulations of the Faraday waves occurred in
numerical simulations and analysis (using Rayleigh damping), and in experi-
ments. New waveforms were reported as discussed in sections III.B and III.D.
Unlike the hysteresis experiments by Henderson & Miles (1990) with fixed forc-
ing frequency and amplitude, and quiescent initial conditions, or by Craik &
Armitage (1995) with constant frequency and varying forcing amplitude, Jiang
et al (1996) varied the forcing frequency in steps with fixed forcing amplitude
and without returning to quiescent conditions. A soft-springlike hysteresis was
demonstrated; however, beginning from the high-frequency side of the dimen-
sionless frequency (forcing frequency divided by twice the natural frequency),
the wave amplitude bypassed the jump position and increased until incipient
breaking of the Faraday wave occurs. This effect was again attributed to the



CAPILLARY EFFECTS ON SURFACE WAVES 251

Figure 3 Wave amplitudes (Jiang et al 1996) of subharmonic resonant waves with varied
forcing frequencies at a constant forcing amplitude of 2.5 mm. (a) Experiment conducted
with clean water. m and M represent the data measured with increasing and decreasing
frequencies, respectively; – – –: our prediction using Henderson & Miles’ theory (1990)
with measured damping rate 4 0.050 s11; ––––: numerical results. (b) Experiment con-
ducted using clean water with Photo Flo 200 in a ratio 100:1; v and V represent the data
measured with increasing and decreasing frequencies, respectively; – – –: our prediction
using Henderson & Miles’ theory (1990) with measured damping rate 4 0.058 s11; ––––:
numerical results. (Reprinted with the permission of Cambridge University Press.)

contact line as the hysteresis vanished upon treating the water with the Photo Flo
wetting agent and repeating the experiments. These results are reproduced in
Figure 3.

Using the linearized Navier-Stokes equations for a two-layer fluid, Kumar &
Tuckerman (1994) showed the system is not governed by a Mathieu equation
with additional linear damping terms. This is as expected owing to the singular
behavior at high Re. Their numerically generated stability map was compared to
that of the inviscid solution (Mathieu equation without damping), and for the
lowest tongues, they compared it also to the phenomenological model. More
importantly, their good agreement with the experiments of Edwards & Fauve
(1993) demonstrated that the amplitude threshold of instability is significantly
different than that of the Mathieu equation with damping; however, they also
showed that dispersion is only slightly affected. With less agreement, but essen-
tially equivalent conclusions, additional comparisons were made to the experi-
ments of Fauve et al (1992). Kumar & Tuckerman implicitly questioned many of
the aforementioned results in cases other than for sufficiently weak viscosity
because of an amplitude threshold issue. Kumar (1996) examined the problem of
a single finite-depth fluid layer by the same method as Kumar & Tuckerman
(1994). Finally, Lioubashevski et al (1997) investigated highly viscous fluids of
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Figure 4 Instability threshold for a circular cylinder with diameter 10 cm and depth 1.0
cm (Kumar & Tuckerman 1998). Solid lines are the predictions of the model with paraffin
oil at 218 and 23 8C and infinite depth and no lateral boundaries. The upper and lower
thresholds are the accelerations where the entire surface and the partial surface instability
occurred respectively as a function of frequency. The dashed line is the Mathieu equation
prediction with phenomenological damping. (Reprinted with permission of Cambridge
University Press.)

shallow depth under parametric forcing and found similarities to the Rayleigh-
Taylor instability. They discussed non dimensionalization of the problem and
found that a parameter that characterizes the upward acceleration better collapses
their data.

Bechhoefer et al (1995) used paraffin oil (non polar, low–surface tension fluid
to reduce surface contamination) in circular and square cylinders to demonstrate
that cylinders of sufficient size essentially remove the effects of lateral boundaries.
They found that the Kumar & Tuckerman (1994) viscous approximation well
predicts the stability threshold. They argued that a container is effectively infinite
if ‘‘the damping length of surface waves must be less than the container size.’’
A stability tongue effect appears as the container size is decreased, or equivalently
as the forcing frequency is decreased with fixed container size. To demonstrate
that an experiment could duplicate the theoretical result that assumes infinite
depth and width, we reproduce their Figure 6 as Figure 4. A circular container
of depth 1.0 cm and diameter 10 cm was oscillated vertically, and the threshold
acceleration for partial-surface instability (lower bound) and complete-surface
instability (upper bound) are shown in the graph. The solid lines represent theo-
retical predictions based on Kumar & Tuckerman (1994) with temperature vari-
ation of 218 to 238C. The dashed line is a solution to the Mathieu equation with
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phenomenological damping |2mk2|. However, their study is unclear how contact-
line dissipation could be discounted because of sidewall wetting by the oil.

In a recent comprehensive paper, Cerda & Tirapegui (1998) investigated Far-
aday resonance with larger viscosity. Their discussion naturally follows that of
Kumar & Tuckerman (1994), who also linearized the Navier-Stokes equations.
Because numerical solutions were obtained, physical interpretation is difficult.
Beginning with the linearized viscous formulation, the authors decomposed the
velocity into rotational and irrotational parts and derived a governing equation
for the surface elevation of each mode when lateral boundaries were neglected.
As input, this equation required solving another problem for the vertical velocity
of the rotational part of each mode. If viscosity were neglected, their model
reduced to the Mathieu equation; however, they were unable to derive system-
atically linear damping. More importantly, for a highly viscous fluid (where the
wave-induced fluid motion is viscous throughout) the authors determined a model
that reduced to a Mathieu equation when truncated beyond the first two terms of
an infinite-term series. This equation is similar to one they obtained phenome-
nologically for deep water and weak viscosity, except with different coefficients.

` ` (1 ` Ck cosXt)nk(t) 4 0. nk is the complex wave ampli-2¨ ˙ ¯n (t) 2c̄ n (t) xk k k k

tude, are altered damping coefficient and frequency, respectively. The¯c̄ and xk k

authors transformed this equation to a linear Schrödinger equation that they then
solved approximately using the WKB method. Cerda & Tirapegui compared their
solution to the experiments by Edwards in Kumar (1996) and Kumar & Tuck-
erman (1994). They give a very lucid physical explanation of the instability
threshold as compared to the Rayleigh-Taylor instability (cf Lioubashevski et al
1997).

The seminal experiments by Wu et al (1984) demonstrated the existence of a
standing soliton excited by parametric resonance (i.e. a particular Faraday wave).
Subsequent theoretical contributions by Larraza & Putterman (1984) and Miles
(1984b) increased knowledge in this area greatly. We adapt the definition used
by Miles & Henderson (1990) that a Faraday wave is a parametrically excited
wave, while a cross wave is a wave with crests normal to a moving boundary,
i.e. a wavemaker. We do not examine cross waves defined in this manner; how-
ever, as some authors have used the term cross wave in the context of Faraday
waves to designate the wave in the transverse (narrow-width) direction, we do
include a brief discussion of them. The cubic Schrödinger equation derived by
Miles (1984b) for parametric excitation was re-examined by Laedke & Spatschek
(1991), especially with regard to its stability. A new instability regime was found
and confirmed numerically, and stable regimes for solitary waves were also shown
to exist. Guthart & Wu (1991) used a multiple-scales analysis to derive a cubic
Schrödinger equation equivalent to that of Larraza & Putterman (1984) when the
forcing amplitude was set to zero. It was shown also to be reducible to the equa-
tion of Benjamin & Ursell (1954). For particular choices of coefficients another
solitary-wave solution to the governing equation was determined with tanh-
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dependence, rather than the sech-dependence in Miles (1984b). Guthart & Wu
stated that preliminary experiments confirmed its existence. Umeki (1991) exam-
ined Faraday waves in two surface dimensions using an average Lagrangian for-
mulation derived by Umeki & Kambe (1989). This study extended Miles (1984a)
by the inclusion of capillary effects. Homoclinic chaos for 2:1:1 external-internal
resonance was demonstrated.

Wang & Wei (1994) presented evidence that parametrically excited, paired
standing solitons attract-collide-repel each other and thus can be separated by a
symmetrically placed wall. Moreover, this suggested that a single soliton’s inter-
action with a wall boundary should be equivalent to a soliton interacting with its
mirror image, and this was demonstrated experimentally. Chen & Wei (1994)
investigated the behavior of a standing soliton generated by parametrically excited
resonance with modulation. They purposely added slow-time scale modulation to
their experiments and compared its effect to inverse-scattering perturbation the-
ory. Phase portraits and Poincaré maps of several limit cycles were presented
showing the existence of a strange attractor. They conducted experiments with a
water-soap mixture that confirmed the theory for the parameter range as long as
experimentally determined damping rates were used. Friedel et al (1995) focused
on the nonlinear transitions between the four regions of the stability diagram for
the standing soliton solution of Faraday resonance. They showed that a common
thread existed between several published papers predicting a period-doubling
route to chaos for so-called long systems. Using a weakly nonlinear theory, now
for deep water, Decent (1997) derived yet another cubic Schrödinger evolution
equation with damping and forcing terms retained to third order in wave ampli-
tude, and he found additional time-modulated, non–constant phase, or co-existing
constant phase solitary waves. These results are not surprising but clearly dem-
onstrate the need to include higher-order terms. Furthermore, he presented one
route to the three-dimensional twisting waves investigated by Umeki (1991) and
showed its plausibility by demonstrating that the cross-tank sloshing mode is
unstable to three-dimensional twisting waves.

In completing this section, we mention a paper by Bechhoefer & Johnson
(1996) studying periodic, triangular-displacement forcing. They investigated sta-
bility tongues that are reproduced here in Figure 5 for the Mathieu equation
triangularly forced (by sequences of delta functions), one of which represented
asymmetric forcing. c represents damping, Dt is the period of the forcing, T
represents the period of the natural wave, and r is Dt2/Dt with Dt2 related to the
time when the forcing is applied. Additionally, they used the analysis of Kumar
& Tuckerman (1994) for a viscous fluid to investigate triangular forcing. The
linear stability analysis was simplified greatly using triangular forcing.

III.B. Nonlinear Waveforms of Low Mode Numbers

In discussing Faraday waves, it is easiest (a relatively simple measurement typ-
ically made with a probe) to consider the surface elevation at a point. There has
been less interest in the parametric wave excitation wave profile for low mode



Figure 5 Resonance tongues for the Mathieu equation (Bechhoefer & Johnson, 1996) driven by a periodic sequence of delta functions for
various damping, c 4 0.0, 0.1, and 0.2. (a) Delta functions of equal sign, (b) Delta functions of alternating signs, (c) Delta functions derived
from an asymmetric triangle wave for c 4 0.2 and different values of r. (Reproduced with permission.)
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Figure 6 Faraday wave profiles obtained from laser-sheet imaging for a 3.23 Hz oscil-
lation with a forcing amplitude of 3.85 mm. (a) Surface-detected experimental profiles
during decreasing surface elevation at the centerline. (b) Surface-detected experimental
profiles during increasing surface elevation at the centerline. (Reprinted with the permis-
sion of Cambridge University Press.)

numbers as compared to high wave modes and their patterns discussed below.
However, the profile shape is important as steep slopes lead to breaking, aerosol
formation, and increased remote-sensing radar backscatter of the ocean surface.
In addition, the steep surface slopes can be important and useful in microgravity
applications, for example in wicking flows. As the waveform of a soliton is of
particular interest, and their stability is discussed in section III.A., they are dis-
regarded here.

To reduce contact-line effects, Henderson & Miles (1991) conducted experi-
ments with Photo Flo. They investigated hysteresis, stability, phase space, and
resonance between various modes using a wave probe to measure amplitudes.
Wave slopes at breaking were reported also as calculated from the measured
amplitudes. Spatial information was not recorded in their experiments. The probes
were located at a point of maximum surface displacement that oftentimes was at
the center of the cylinders. That same year Guthart & Wu (1991) published theo-
retical results of a soliton-like twist wave, and they mentioned substantiating
experiments, but to our knowledge these results were never published.

Recently, Jiang et al (1996, 1998) measured surface-elevation profiles of the
fundamental mode, defined as one wavelength in their large-aspect ratio (length-
to-width) container. Although periodic, the waves were asymmetric in time
because of dissipation in the physical experiments and in the numerical simula-
tions modeled with Rayleigh damping. Spatial symmetry was invariably present.
Interestingly, once the waves became strongly nonlinear owing to increased forc-
ing, the profile shapes during decreasing elevation at the tank center had flat crests
that evolved from a maximum surface elevation with a dimpled crest. The surface
elevation during increasing wave elevation at the centerline of the container
exhibited more expected behavior although higher spatial harmonics were evi-
dent; however, immediately after the profile reached its maximum elevation at
tank center, the dimple formed. A surface-detection algorithm was implemented
to determine the profiles presented in Figure 6. Further increases in forcing pro-
duced two plunging breakers, one to each side when the crest was at midtank,
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and one on each end-wall one-half wave period later. This newly discovered
waveform and its breaking counterpart represent one manner in which Faraday
waves steepen and eventually break.

III.C. Contact-Line Effects and Surfactants

Miles (1991) used a complex-valued boundary condition (i.e. a slip-length) along
the lateral boundaries to allow a phase shift between the free surface and the
container boundary, and he investigated the free-surface oscillations of an inviscid
fluid. We envision his formulation and solution analogous to a spring-mass-
damper system where the contact line always resists motion (due to capillary
hysteresis) as suggested by Miles in 1967. Miles’ primary result was an expression
for the frequency change compared to the natural (inviscid, 908 contact angle)
frequency of the system. Henderson & Miles (1994) conducted experiments with
brimful deep-water conditions in a circular cylinder with clean and with fully
contaminated (inextensible) water. They found good agreement between Miles’
theory and their increased experimental frequency. The damping rates, however,
do not agree. Since the container was brimful (i.e. it has a pinned contact line),
contact-line damping was excluded partially in their experiments. Still, they were
unable to explain the larger damping rates measured in their experiments.

Milner (1991) provided estimates of dissipation at the moving contact line by
assessing the work done by surface tension as the contact-line position and angle
change. His motivation was to account for this dissipation relative to that in the
bulk as it was not included in his analysis. Christiansen et al (1995) used the
estimate provided by Milner to demonstrate that inclusion of the moving contact-
line dissipation was required (in addition to the bulk dissipation) to obtain rea-
sonable damping estimates. Furthermore, the free parameter, s, a necessary length
scale suggested to be 1017 cm by Milner, required values for ethanol of 1016

and for propanol of 1015 cm for good agreement with the experimental data.
Using a large aspect ratio (tank length to width) of 10:1 and deep water,

Faraday-wave experiments and numerical estimates of Jiang et al (1996) also
found that damping rates were much larger than those predicted by theory without
contact-line contributions. Unlike the experiments of Henderson & Miles (1994)
with pinned contact lines, and those of Christiansen et al (1995) for higher fre-
quencies (50–500 Hz), these experiments focused on the fundamental mode, i.e.
one wavelength, in a 60-cm-long channel. Although the contact line was not
pinned by design, its effect on the dynamics was important. With treated water
(i.e. particulate filtered to 0.2 microns, carbon adsorbed, and de-ionized), the
subharmonic viscous natural frequency was greater than the inviscid natural fre-
quency as was the case for Henderson & Miles (1994), and this effect was shown
to be attributable to increased phase speed as originally demonstrated by Benja-
min & Scott (1979) for pinned conditions. To demonstrate the effect on phase
speed, Jiang et al (1996) presented results for an aspect ratio of 2.61:1 as well as
for Photo Flo-treated water. Both reduce contact-line effects without pinning the



258 PERLIN n SCHULTZ

contact line, yet dramatically shifted the viscous frequency closer to theoretical
predictions of the inviscid natural frequency.

To determine the effect of a static contact angle on Faraday waves, Henderson
et al (1992) conducted experiments with acute, near p/2 rad, and obtuse static
angles (i.e. hydrophilic, neutral, and hydrophobic surfaces). They found that
damping rates decrease with increasing contact angle, while frequencies increase
with increasing contact angle. By prescribing an infinite slope of the meniscus at
the wall—a zero contact angle wetting fluid, Miles (1992) avoided capillary hys-
teresis. For standing waves in a deep circular (and rectangular) cylinder, he
showed that the frequency reduction was larger than that due to capillary energy
and hence helped explain experiments by Cocciaro et al. (1991) that used hori-
zontal excitation rather than Faraday-wave excitation.

In a study of Faraday-wave damping in slightly viscous fluids, Martel & Knob-
loch (1997) demonstrated that viscous modes (i.e. bulk motion) can decay slower
than gravity-capillary waves, and they therefore should be included in weakly
nonlinear theory. In other words, second-order decay-rate corrections are neces-
sary to determine damping rates comparable to those measured experimentally.
Comparison of their theoretical damping predictions, i.e. their exact solution com-
pared to their first-order and second-order approximations for realistic Reynolds
number, indicate that second-order corrections are required. They speculate that
Henderson & Miles’ (1994) not including the second-order damping correction
is likely the cause of the discrepancy between measured and predicted damping
values as the viscous modes and gravity-capillary modes contribute comparably.
The same concept was treated comprehensively in a subsequent paper by Martel
et al (1998). They successfully ignored capillary hysteresis by using a brimful
container and made a first correction to the Stokes boundary layer to include bulk
viscosity. Comparison to Henderson & Miles (1994) experimental damping rates
showed significant improvement.

III.D. Breaking and Subharmonic Waves

Henderson & Miles (1991) measured the stability space for subharmonic reso-
nance in a circular cylinder where breaking and other regions were delineated.
They defined breaking by surface ejected drops of water so that their assessment
would be objective; however they did not investigate this phenomenon further.
This definition discounts plunging or spilling waves. A linear relation was found
between the surface slope (that was not measured directly, but was calculated
from the measured amplitude and the wavenumber) and the tuning parameter (i.e.
a non-dimensional frequency difference). It was clear that the subharmonic res-
onance affected the breaking criterion, as they had previously measured larger
steepness with no breaking when only one mode was present. They also noted
that the breaking was associated with a quasi-steady (not chaotic) state.

In the first of several publications regarding Faraday waves, Jiang et al (1996)
reported a new form of steep standing wave with a symmetric double-peaked
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Figure 7 Locations in parameter space of the various waveforms in Faraday-wave exper-
iments of Jiang et al (1996). The solid line represents the neutral-stability curve measured
from experiments where p and q are the nondimensional forcing frequency and amplitude.
(Reprinted with permission of Cambridge University Press.)

(dimpled) crest that appeared at steepness far less than limiting standing waves,
and at a surface tension less than for Wilton ripple resonance. For these
rectangular-planform containers, flat crests were observed at slightly smaller forc-
ing as well as during the cycle in which dimpled crests appeared. Slightly
increased forcing caused wave breaking as shown in Figure 7 (Figure 1 of Jiang
et al 1998), the stability space with p and q the dimensionless detuning parameter
(p 4 / ) and forcing parameter (q 4 2Fki tanh kih), respectively. They xi

2 24x xi f

and xf are wave frequency and forcing frequency, whereas F and h are the forcing
amplitude and water depth, respectively. The incipient breaking steepness (Hk11,
wave height to wavelength ratio) of 0.216 supports the conclusion that surface
tension facilitates steeper standing waves. Initially, breaking occurs by symmetric-
in-space plungers to each side of the centerline, and with a half-period lag at each
end of the channel. To further investigate the breaking process, Jiang et al (1998)
studied two-dimensional steep and breaking waves, again in a 10:1 aspect ratio
rectangular container that was 60 cm long. They were able to estimate the break-
ing energy dissipation due to the periodicity (even with breaking). By increased
forcing, the waveform evolved from a dimple-crested wave, which was shown to
be the result of interaction between the first and second temporal harmonics, to
two crest-symmetric, mild plunging breakers; to period-tripled breaking subhar-
monic standing waves. In the period-tripled breaking waves, the three waveforms
have different mode shapes, one of which was not previously evident. The three
sequential modes observed were a sharp crest (,308) with an upward jet and large
plunger that reenters the surface to either side, a flat or dimpled crest with mild
plunging breakers to each side, and a rounded smooth crest exhibiting no break-
ing. These modes are shown schematically in Figure 8 (Figure 7 of Jiang et al
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Figure 8 Schematic of three different modes during period-tripled breaking. T is the
temporal wave period prior to period tripling (i.e. twice the forcing period). Each crest
feature is observed at the tank endwalls 1.5T after it is observed at the tank centerline.
(Reprinted with permission of Cambridge University Press.)

1998). With sufficient forcing, the period tripling was observed at all forcing
frequencies near the linear natural frequency. The period tripling was observed
to manifest itself in the amplitude spectrum at frequencies of f /3 with f the sub-
harmonic wave frequency; see Figure 9 (Figure 13 of Jiang et al 1998). The
dissipation rate was determined from forcing measurements, and for the observed
frequencies breaking energy dissipation was approximately 5% of the total wave
energy per temporal period; this energy was comparable to all other dissipation
mechanisms present. Although period tripling was noticed only after breaking,
hindsight uncovered that the frequencies apparent in the postbreaking amplitude
spectrum were present in the nonbreaking, but steep waveforms. Their analysis
was not able to confirm the period tripling as it occurred only for amplitudes
when the numerics became suspect. The mechanism responsible for the period
tripling remains unknown.

III.E. Drop Ejection

Goodridge et al (1996) experiments on Faraday waves increased the forcing until
drops were ejected from the surface, and then they decreased the forcing until the
threshold of incipient droplet ejection was determined. Three fluid mixtures were
investigated: water, ethanol, and water-glycerin solutions. The ejection of fluid
from their circular cylinders was a function of the frequency and the surface
tension, and the manner in which fluid was expelled differed for the lower fre-
quency forcing (high frequency gravity waves) versus the higher frequency forc-
ing (low frequency capillary waves). For gravity waves, surface tension becomes
locally important (see Section II.B.) and a Rayleigh capillary instability occurs
at the crest as do random droplet ejections. A dimensionally grounded expression
based on frequency and surface tension yielded reasonable agreement with exper-
iments except at the lowest frequencies. Disagreement was attributed to viscous
effects, and hence their subsequent study (Goodridge et al 1997) included vis-
cosity variation along with frequency and surface tension. Drop ejection for low
viscosity fluids was found to depend on frequency and surface tension, while for
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Figure 9 (a) Phase diagram and (b) amplitude spectrum for the surface elevation at the
tank center. Wave is nonbreaking but steep (forcing frequency 1.60 Hz, forcing amplitude
4.15 mm). (c) and (d) are the same for period-tripled breaking (forcing frequency 1.60 Hz,
forcing amplitude 4.57 mm). (Reprinted with permission of Cambridge University Press.)

high viscosity fluids, viscosity replaced surface tension as the second important
variable. Goodridge et al (1999) conducted and analyzed another set of droplet
ejection experiments in the high-frequency range (i.e. where capillary effects
dominate gravitational effects or equivalently large j). The ejection rate was well-
predicted by a power law once the acceleration was scaled by its acceleration
ejection threshold. The ejection rate was also well predicted by integrating the
probability function of wave height (scaled by its root-mean square value) above
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a breaking threshold based on a steepness criterion. Lastly, Goodridge et al (1999)
demonstrated that the interarrival time between ejections was Poisson distributed.
This led to the conclusion that the ejections are uncorrelated random occurrences.

In a narrow channel with deep water, Jiang et al (1998) observed Rayleigh
instability and drop formation from the wave crest similar to the lower frequency
observations by Goodridge et al (1996). The aspect-ratio constraint preserved a
predominantly one-dimensional surface to incipient breaking. Mode A of their
period-tripled breaking standing waves exhibited the drop formation as follows:
Water is ejected at the maximum crest elevation and forms columnar drops; the
jet subsequently impinges on the free surface forming a depression followed by
a rebounding jet and entrained air. The motion remains essentially two-
dimensional until jet/crest breakup. At times the crest exhibits asymmetry (leaning
to one side) and subsequently impinges on the corresponding side of the surface.

Smith et al (1998) constructed a simple model and conducted a set of exper-
iments to investigate droplet ejection/atomization from a sessile drop on a piezo-
electric driven vibrating plate. The circularly clamped diaphragm responds at its
lowest mode, generating an axisymmetric gravitational field varying with position
as well as time, unlike the usual Faraday forcing. By increasing the forcing ampli-
tude until the Faraday waves developed incipient drop ejection, and allowing time
for the system to evolve further, they witnessed a gradual increase in drop ejection
until a bursting event where the droplet literally exploded into spray. The phe-
nomenon was modeled by assuming nonlinear spring and damper, and a simplified
effective gravitational field that varies in time. The simple idealization captured
some of the important physics qualitatively.

III.F. Pattern Formation (High Mode Numbers) and Related
Topics

In reading the abundant literature on pattern formation, it becomes evident that
the problem remains unsolved. Yoshimatsu & Funakoshi (1998), for example, in
their section 4 make it clear that results depend on the assumptions made and the
order of the approximation, and although that is usually the case, here seemingly
any pattern can be found (i.e. stripe, square, roll, hexagon, 8-fold quasipattern,
mixed symmetry 6/8, 10-fold quasipatterns, etc). Hence, we present several ref-
erences but do not discuss them. These references include Douady (1990), Milner
(1991), Mesquita et al (1992), Miles (1993), Bosch & van de Water (1993),
Edwards & Fauve (1994), Bosch et al (1994), Miles (1994), Christiansen et al
(1995), Feng & Wiggins (1995), Binks & van de Water (1997), Binks et al (1997),
Zhang & Viñals (1997), Yoshimatsu & Funakoshi (1998).

III.G. Chaotic and Nonlinear Dynamics

We choose not to discuss chaotic and nonlinear dynamics in detail for brevity,
but we include several references for completeness. These topics include mani-
folds, chaos, symmetries, bifurcations, breathers, and kinks, for example. Some
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of the attendant references are: Simonelli & Gollub (1989), Crawford et al (1990),
Dias & Bridges (1990), Crawford (1991), Crawford et al (1993), Landsberg &
Knobloch (1993), Chossat & Dias (1995), and Landsberg & Knobloch (1996).

IV. DEVELOPMENTS REGARDING PARASITIC CAPILLARY
WAVES AND ASSOCIATED INSTABILITIES

In this section we discuss a very important progressive-gravity-wave phenomenon
that necessarily includes surface tension as the underlying wave crest steepens.
Increased use of remote-sensing on geophysical scales where surface hydrody-
namics understanding and input is germane requires further study of these short
waves. Likewise, the cause and evolution to breaking is related to this small-scale
phenomenon, as is the dissipation process. First reported in Cox (1958) in his
investigation of wind-driven laboratory waves, the presence of ripples on the front
face of underlying gravity and gravity-capillary waves has been the subject of
several subsequent investigations. The seminal theoretical breakthrough and pro-
cess clarification by Longuet-Higgins (1963) demonstrated that the increased cur-
vature at the crest of a steepening gravity wave generated ripples upstream of the
crest as well as longer waves downstream. Several studies followed this important
contribution; however, we begin our discussion with research appearing after
1990.

The quasi-potential formulation of Ruvinsky et al (1991) included a viscous
term proportional to the vertical gradient of the vertical velocity component that
was an outgrowth of the linearization of the vorticity transport equation and sub-
sequent simplification. The motivation for improving the theoretical/numerical
approximation to the parasitic-capillary-generation process was that experiments
exhibited ripples at significantly lower steepness underlying waves than accorded
with any theory. In addition, the experimental ripple wavetrains maintained their
wavelengths as their steepness increased. They found qualitative agreement
between their numerical predictions of the steepness and wavelength of the ripples
versus those observed in experiments. Perlin et al (1993) experiments on under-
lying waves with frequencies of about 5 Hz used vertical exaggeration and high-
speed video to observe parasitic capillaries in time and space for the first time.
Comparisons were made to the theories of Longuet-Higgins (1963), Crapper
(1970), and Schwartz & Vanden-Broeck (1979). Significant differences were
found: The experimental parasitic capillaries were larger than those predicted by
Longuet-Higgins theory when the measured underlying-wave steepness and phase
speed were used, and the experiments exhibited smaller wavenumbers than the
theoretical prediction. Crapper’s theory predicts reasonable amplitudes on the
forward face of the underlying wave, but overly predicts amplitudes on the rear
face compared to the experiments. Schwartz & Vanden-Broeck theory assumes
symmetry about the crest and trough and predicts significantly smaller amplitudes
than observed. A satisfactory theoretical/numerical explanation of the measured
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profiles was not published until Jiang et al (1999), discussed below. Longuet-
Higgins (1995) improved his previous effort in two ways: The wave profile of
the underlying wave was updated and improved, providing a better crest curvature
than used earlier, and the particle accelerations determined were applied in deter-
mining the dynamics of the parasitic capillaries. Periodic space and time assump-
tions were retained, however. A critical wave steepness dependent on wavelength
was determined, above which the flow was termed supercritical, below was
termed subcritical. Subcritical conditions permit the capillary wave to be gener-
ated along the entire surface, and their energy to propagate to all surface locations.
Supercritical waves can exist only in the underlying trough and are blocked from
the crest. Longuet-Higgins (1995) demonstrated satisfactory agreement between
theory and experiments by Cox (1958), Ebuchi et al (1987), and Perlin et al (1993)
(although his concerns about the experiments were not warranted, as is demon-
strated below). Debiane & Kharif (1996) included surface tension in their for-
mulation and discovered a new family of limiting profiles of steady gravity waves
that includes two trapped bubbles, one to each side of the crest. As is the case
for standing waves, they demonstrated that the steepest progressive wave exceeds
that of the steepest gravity wave.

Using a Hamiltonian formulation that included damping by coupling their
wave system to a heat bath source/sink, Watson & Buchsbaum (1996) investigated
several capillary wave–longer wave interactions including the radiation of para-
sitic capillary waves. Unlike the Longuet-Higgins (1995) treatment that used a
quasi-stationary assumption, they started with a Stokes wave and let the system
evolve in time. They calculated surface profiles that exhibited millimeter waves
on the forward face, and centimeter waves near the crest. Unfortunately, no direct
comparisons were made between parasitic-capillary generation and other theo-
retical treatments or experiments.

In the interest of tractability, researchers analyze spatially and/or temporally
periodic flows. Important and useful information may be gleaned from these solu-
tions; however, problems may be oversimplified, and the results may not be repro-
ducible in experiments. Ripple generation on steep gravity-capillary waves is one
example where unsteadiness needs to be included as shown in Jiang et al (1999).
It was shown in Perlin et al (1993) that parasitic capillaries remain essentially
phase-locked with the underlying wave while spatial amplitude modulation
occurs. Perlin et al also demonstrated that the ripples were significantly steeper
than the theory of Longuet-Higgins (1963). Longuet-Higgins (1995) incorrectly
stated that some disagreement was due to free wave ripples experimentally gen-
erated by the plunger wavemaker that hence were not parasitic capillary ripples.
Additional experiments with flap-type wavemaker (to remove the possibility of
any pumping effect) and numerical simulations presented in Jiang et al (1999)
using the Cauchy integral method corroborate completely the experiments in Per-
lin et al (1993) as well as clarifying other important physics. Jiang et al (1999)
demonstrated that the underlying gravity-capillary waves, with finite initial per-
turbation, exhibit a ‘‘pitching’’ crest motion and alternating asymmetry in wave
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Figure 10 Simulated 6.5-cm wave in coordinates translating at the linear phase speed,
left to right. The wave steepness is 0.15 while the Reynolds number is 3294. The vertical
scale is exaggerated. (Reprinted with the permission of Cambridge University Press.)

slope. Figure 10 (their Figure 9) shows the profiles for 6.5-cm waves with a
sinusoidal initial condition and ka 4 0.15. The wave moves from left to right in
laboratory coordinates. The first four wave cycles are shown in a coordinate
moving with the linear phase speed. Initially the crest tilts forward and ripples
are generated on the forward face. After two wave periods, the crest starts shifting
backward (30th profile from the top), a new crest emerges from the first ripple
on the forward face as if the crest is ‘‘shifting’’ forward. The parasitic capillaries
eventually reach the rear face of the next crest. This ripple generation process
differs significantly from previous experimental studies where only forward-
tilting crests were observed. The underlying wave crest and the first ripple inter-
action persist for long time calculations also. The alternating crest asymmetry is
causing the changes in the parasitic capillaries, not the blocking effect of the steep
underlying wave as suggested in Longuet-Higgins (1995). The crest-ripple inter-
action is reduced when third-order gravity-capillary waves are used for initial
conditions. The maximum crest elevation, however, does shift between two posi-
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tions at the edge of the crest in later stages. Significant ripples are observed in
the wave trough as in the steady solution of Schwartz & Vanden-Broeck (1979).
The experiments exhibited crest-shifting motion very similar to that shown in
Figure 10.

Several recent papers study the existence and structure of a high vorticity
region in the crest of the underlying gravity-capillary wave. The discussion was
precipitated by Longuet-Higgins (1992), who estimated the vorticity shed by a
train of parasitic capillaries and stated that it may contribute to the vorticity in
the roller at the crest of the underlying longer wave. Mui & Dommermuth (1995)
constructed a two-dimensional model to calculate, among other things, the vor-
tical structure beneath parasitic capillaries. For steep waves, they showed that the
vorticity shed from the parasitic capillaries generated by a 5-cm underlying wave
causes a surface current equal to 25% of the phase speed of the system. As
expected, calculations confirmed the presence of highly vortical regions on the
rear face of the capillaries and that dissipation is greatly enhanced by the capil-
laries’ existence. Flow separation was seen numerically for very steep capillaries.
However, no evidence of a surface roller was observed in the crest of the under-
lying wave. (Below we present a vorticity calculation from Mui & Dommermuth
and an experiment from Lin & Perlin (1998) that agree qualitatively, and neither
of which have an organized roller at the underlying gravity-capillary wave crest.)
Further, the ripple generation is predicted by the irrotational model of Jiang et al
is essentially irrotational. The crest-roller issue remains largely unresolved for
steep gravity-capillary–parasitic capillaries wave systems in the absence of wind.

Longuet-Higgins (1996) discussed capillary jumps on irrotational flows due
to steady currents and showed that when the horizontal current decreases from a
magnitude greater than the minimum phase speed of a linear gravity-capillary
wave to less than the minimum phase speed, these jumps are expected. He dem-
onstrated that the forward face of a gravity wave can provide the necessary con-
ditions for such a jump and that parasitic capillaries are generated when the jump
leaks energy down the forward face.

An experimental result from Lin & Perlin (1998) is presented in Figure 11
along with a numerical simulation from Mui & Dommermuth (1995), both for a
5-cm long underlying wave, though the latter wave was significantly steeper. (To
retain two-dimensionality in the experiments, restrictions on steepness were
required.) The waves travelled left to right, and the vertical exaggeration differs
in the figures. (We have reversed horizontally the figure axis that originally
appeared in Mui & Dommermuth.) The similarities are striking. Positive vorticity
is defined as clockwise, with organized clockwise vorticity shown in the troughs
of the parasitic capillaries (by the arrows in Figure 11a, see color insert), and
counterclockwise vorticity just upwave (in the crests of the parasitic waves).
However, neither figure exhibits organized strong vorticity (i.e. a roller) in the
primary wave crest as predicted by Longuet-Higgins (1992), for a slightly longer
wave.
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Several investigations regarding the (crest) instabilities of gravity waves and
the related problem of breaking progressive waves and the attendant parasitic
capillaries generated during the breaking process have been undertaken, and con-
sequently these efforts are discussed. Longuet-Higgins & Cleaver (1994) find an
instability of the gravity wave crest, and hence the Stokes limiting waveform
cannot be achieved. In so doing, it is conjectured that the source of parasitic
capillaries may be not the crest curvature itself, but the toe of the instability.
Banner & Peregrine’s (1993) review of wave breaking in deep water shows that
numerical and experimental breaking heights fall far short of the limiting form
of a Stokes wave. The numerical and experimental breaking criteria of Schultz
et al (1994) depend strongly on the wave history and hence show that breaking
is more an unsteady process than a result of a local instability. [A wavetrain
instability of the Benjamin-Feir type may lead to local wave growth and breaking
(Tulin & Li 1991).] Well before breaking, the computations of Schultz et al (1994)
exhibit singularity formation on the forward face of a gravity wave. This singu-
larity may contribute to capillary ripple production.

Spilling breaker experiments of Duncan et al (1994) compare well to the theory
of Longuet-Higgins & Cleaver, and Duncan et al further discovered that the unsta-
ble bulge itself develops large-amplitude disturbances and attributed them to
instabilities on a shear layer (between the bulge moving down the forward face
and the underlying flow). To explain these latter instabilities, Longuet-Higgins
(1994) demonstrated the likelihood that they are due to vorticity shed from par-
asitic capillaries that are created as a result of the toe of the bulge and exist
downwave. In an investigation of plunging deep-water waves, Perlin et al (1996)
recorded the existence of parasitic capillaries beneath the overhanging jet of a
plunger, where there is also a sharp change in the surface shape (i.e. a toe). In a
revision of one result from Longuet-Higgins & Cleaver (1994) (i.e. that only one
unstable mode existed), Longuet-Higgins & Dommermuth (1997) demonstrated
the existence of multiple unstable modes. Additional investigation reported in
Longuet-Higgins & Tanaka (1997) has shown that superharmonic instability is
indeed focused in the crest region as initially suggested by Longuet-Higgins &
Cleaver (1994); however, surface tension was not included in their analysis.

Spectral formulations of capillary waves on longer waves are also of interest.
Although it was argued by Longuet-Higgins (1992) that wave interactions are
more important than wind in the generation process of parasitic capillaries, par-
asitic capillaries are also an important process on steep gravity, and gravity-
capillary waves (of proper wavelength) generated by wind. We do not provide a
comprehensive discussion of wind-wave spectral formulations, for which there is
an abundant literature. Rather, we mention articles that discuss parasitic capillaries
in the presence of wind. Watson & McBride (1993) formulated a model that
included many of the important mechanisms responsible for the generation of
capillary waves by longer waves for low-wind speeds (to avoid wave breaking
and wind-driven currents). In agreement with Longuet-Higgins’ conclusion, they
found that low wind is not a major contributor to the shortest capillary waves.
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Zhang (1995) reported experiments in a wind-wave facility for wind speeds of 5
to 10 ms11. Relevant to parasitic ripples, qualitative observations showed that
the steepest, longest capillary appears crest adjacent on the forward face and that
the wavelengths and slopes decrease along the forward face toward the trough.
Quantitatively the longest ripple was about one cm, and more characteristically
about 0.6 to 0.7 cm. As one would expect, Zhang saw that the inherently two-
dimensional wind-generated underlying waves had a direct effect on the ripples’
directionality. In addition, even when the underlying waves had a one-
dimensional surface structure, the parasitic ripples exhibited longitudinal modu-
lations, as was shown previously in the case of freely propagating
capillary-gravity waves of similar wavelengths by Perlin & Hammack (1991).

Fedorov & Melville (1998) numerically examined nonlinear parasitic-capillary
waves by using a cosine pressure distribution to model simplified wind forcing
and to balance viscous dissipation. Pressure and underlying wave steepness were
chosen such that the waves were periodic in time and space (i.e. balanced) and
could be rendered steady by a Galilean transformation. The authors state that it
is necessary to include the effects of parasitic capillaries in any comprehensive
treatment of wind-wave generation. A boundary-layer formulation, a correction
to the lowest order irrotational problem, was used. Wave steepness and pressure
amplitude were treated as independent parameters. Two classes of solution were
found for weak pressure forcing: one that resembles the Miles’ mechanism of
wave generation (i.e. pressure forcing) with maximum surface pressure near the
trough, and one that is in accord with a shear-flow instability with maximum
surface pressure near the crest. Several important conclusions were made includ-
ing damping enhancement of the longer waves by one to two orders of magnitude.
In a later paper, Fedorov et al (1998), experiments were favorably compared
directly with their theory. To demonstrate the agreement, Figure 12 (Figure 6 of
Fedorov et al 1998) is presented.

V. FUTURE DIRECTION AND CONCLUDING REMARKS

The limiting form of standing gravity waves requires a more careful local analysis
in space and time for various crest angles. In addition, it seems appropriate to
seek a class of standing waves where the kinetic energy never becomes zero.

Major improvements to contact-line models are necessary for additional pro-
gress in low-mode Faraday waves. This could explain why damping rates mea-
sured experimentally are much larger than the predictions. In addition, strong
nonlinearity in Faraday wave simulations has been unexplored, largely because
of numerical limitations and an adequate model for wave breaking. This limitation
precludes a careful study of the interesting subharmonic dynamics seen in the
experiments. Wave breaking (spilling) in small waves is subtler and less well
understood than plunging or spilling gravity waves. Breaking wave dissipation is
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Figure 12 Experimental measurements of the slope of 6 Hz waves (solid line) compared
to numerical solutions of Fedorov & Melville (1998). (a) Dash line is the Class 1 solution
for an underlying wavelength of 5.2 cm, wave steepness of 0.20, and a nondimensional
pressure-forcing amplitude of 0.0015. (b) Class 2 solution is the dot-dash line, wavelength
of 5.1 cm, wave steepness of 0.205, and nondimensional pressure-forcing amplitude of
0.005. (Reproduced with permission.)

likely to be an important topic for nonlinear water wave studies in the foreseeable
future.

The crest-roller issue remains largely unresolved for steep parasitic capillary
wave generation in the absence of wind. The effects of vorticity on the parasitic
capillaries, the underlying wave, and the attendant flow field require further study.
Measurements such as Lin & Perlin (1999) of the flow beneath parasitic capillaries
are required. Theoretical investigations that remove the spatial and temporal
restrictions are also necessary.
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