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Abstract 
 
Spectral eigenvalue methods along with some lower-dimensional techniques are used to 

determine the natural frequencies of a liquid slug in a circular tube. The contact lines are 

either pinned or governed by a slip coefficient assumed small. Corresponding physical 

experiments are conducted for a borosilicate glass tube and a treated water slug. 

Gravitational and viscous effects are neglected for the analyses. The spectral results agree 

well with a simple spherical end cap approximation (0-D) for large aspect ratio slugs and 

with a membrane approximation (1-D) for small aspect ratios. The experimental 

observations for different aspect ratios agree well with the predictions, although the 

gravity, viscosity and/or slip are neglected in the analyses. 
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I. Introduction 

Surface wave natural frequencies with boundaries and edge constraints continue to be of 

much interest. Solutions to the inviscid problem with pinned contact line have been proposed.1-5 

These solutions address surface capillary and/or gravity wave applications for a layer of finite 

depth fluid. On the other hand the two fluid-air interfaces of a slug allow many modes that are 

not possible for a single interface. The problem is motivated as a first step in understanding how 

to move these slugs by forced vibration, possibly in microgravity.  

In the analyses,2-5 the undisturbed free surfaces are perpendicular to the solid walls. 

However, this is usually not the case for most applications where capillarity is important:6,7 The 

fluid surfaces are highly curved in a capillary tube. Graham-Eagle1 allows small static surface 

deflections and hence that analysis models the case where the apparent static contact angle is 

close but not equal to .90!  Motivated by nonlinear forcing of a tube and its possible fluid 

delivery under micro-gravity, slug motion responses are investigated by oscillating a circular 

cylindrical tube horizontally along its axis with a programmed periodic motion. It is thus 

desirable to determine the natural frequency of the end caps under pinned or partial slip contact 

line conditions.  

Here we present a potential flow solution as a generalized eigenvalue problem by expanding 

the two free surfaces using Chebyshev and Fourier series with bases that satisfy continuity and 

impermeable wall conditions.8 Due to surface tension, an undisturbed free surface in a circular 

tube is spherical in the absence of gravity. To determine the natural oscillation frequency, the 

dynamic and kinematic surface conditions are linearized under a small perturbation assumption 

and are satisfied at the undisturbed, but curved free surface.1 Solutions are presented for slug 
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length to diameter aspect ratios of 0.01 to 10. Experimental results are presented for comparison 

with the numerical analyses. 

 

 

II.  0-D and 1-D approximations 

As proposed by Hilpert et al.,9 if the end cap remains spherically shaped for small 

perturbations, and the slug is long relative to the tube diameter, the inviscid slug and end cap can 

be modeled as a simple linear spring-mass system. An equivalent spring constant can be derived 

from the surface tension restoring force, inertia is determined from the center of mass motion, 

and then the lowest slosh frequency given accordingly. The slosh mode has primarily axial 

motion between two interfaces instead of the more usual particle motion for standing waves with 

one free surface as shown in the time lapse figure on the bottom of page 111 of Van Dyke.10 We 

term this approach the end cap or the 0-D approximation (as no spatial dependent variables are 

required). It is apparent that for small slug length-to-diameter ratio, this method is not 

appropriate because flow details near the two ends are neglected. Therefore, for verification of 

the boundary value problem solutions, for small aspect ratios, a solution for a circular membrane 

(with varying thickness) vibration is included. This is valid when motion is strictly in the axial 

direction and the membrane tension is derived from small surface elevation. The approximation 

is 1-D since only one spatial coordinate is required for axisymmetric solutions. 

To prescribe the problem, a definition sketch and a photograph from an experiment are 

included in Fig. 1. All variables and parameters are scaled by the tube radius R, the density ρ , 

and the surface tension coefficient σ. 
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FIGURE 1 HERE 

A. Zero-dimensional (0-D) analysis: End cap approximation 

The approximation is derived with the assumptions:  

1. End caps remain spherically-shaped during oscillation; 

2. A pinned condition is maintained; 

3. RL >> . 

The dimensionless volume V of an end cap as a function of contact angle θ  is: 
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The derivative of the volume with respect to the contact angle is: 
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Considering the right side surface in Fig. 1, the small center of mass displacement with respect to 

equilibrium sθ  is: 
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The pressure change by surface tension due to a small end cap perturbation sθθθ −=∆  is: 

θθθθ ∆−≅−=∆ ssp sin2)cos(cos2 zss ∆+−= 2)sin1(sin2 θθ . 

The total restoring force and the equivalent spring constant eqK  from both menisci are 

determined from: 

zKzpF eqss ∆−=∆+−=∆=∆ 2)sin1(sin42 θθππ . 

Thus the natural angular frequency for the mass-spring system is: 
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where Lm π2=  is the mass of the slug when neglecting the small volume in the end caps and L  

is the length-to-diameter aspect ratio. Thus the natural frequency in nondimensional form is: 
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B. One-dimensional (1-D) approximation:  Membrane approximation 

For a sufficiently short slug with a flat (or a nearly flat) free surface, flow can be reasonably 

assumed to be parallel to the axial direction. The dynamic governing equation for axisymmetric 

surface motion is 1-D. The undisturbed free surfaces are ζ±=z  where:  

22sec)tan( rL ss −−+= θθζ .       (2) 

The surface perturbation is η . The pressure jump across the interface is determined by the 

surface tension times surface curvature (the independent variable subscripts refer to partial 

differentiation): 
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where the approximation derives from small η , rη and rrη . Considering both surfaces, we 

linearize the dynamic equation for the membrane about its spherical surface: 
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This non-constant coefficient wave equation can be solved numerically (i.e., constructing η  as a 

summation of polynomials or trigonometric functions in r and harmonic in time t) for 

frequencies and modes. When the surface is flat we have the standard membrane equation 

ttLηη =∇ 2 . 

The axisymmetric normal modes of this boundary value problem are: 

...3,2,1,cos)(0 == ntrLJ nn ωωη , 

where 0J  is the th0 order Bessel function of the first kind. The pinned boundary condition results 

in the eigenequation 0)(0 =LJ nω . The lowest slosh frequency is: 

 
L

405.2
1 ≈ω .          (4) 

 

III. The complete inviscid boundary value problem and its linearization  

Assuming an inviscid flow, the problem may be formulated under the following conditions 

and additional assumptions: 

a) Irrotational flow; 

b) No-flow through the cylinder walls; 

c) Linearized free surface boundary conditions; 

d) Spherical undisturbed free surface in the assumed absence of gravity; 

e) Pinned contact lines along each of the two free surfaces. 
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To determine the natural frequencies and mode shapes of the ends of the slug, the associated 

equations are formulated as a generalized eigenvalue problem. The two surface elevation 

perturbations relative to the unperturbed curved surfaces =z )(rζ±  are expanded as a 

summation of basis functions (cosine series, Chebyshev polynomials, etc.). 

        In cylindrical coordinates, the equations governing the fluid are simply: 

02 =Φ∇ ;   0),1( =
∂
Φ∂==
r

trv .       (5a, b) 

where Φ  is the velocity potential and v  is the radial velocity. Only one of the surfaces z =ζ (r) 

as shown in Fig. 1 needs to be considered due to symmetry (or antisymmetry). Eliminating the 

static equilibrium terms, the dynamic and kinematic surface boundary conditions for the 

linearized axisymmetric free surface ( +η ) are: 
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IV. Numerical solution of the boundary value problem 

A general solution to the boundary value problem (5a.b) is: 
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where mJ  represents the Bessel function of the first kind of the thm order and nk  are the zeros of 

'
mJ  to satisfy the wall condition (5b). Here,ψ  is the polar angle and m is the azimuthal 

wavenumber. The tie ω  term indicates a solution harmonic in time. For axisymmetric solutions, 

m=0, we remove the first subscript of mnA  and mnB for simplicity. Separating to even and odd 

cases in z yields:  
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1Φ  represents a solution with zero axial velocity at z = 0 as if there were a solid wall there (see 

Fig. 2 modes c and d) and 2Φ  represents the slosh mode only realizable for a slug (two free 

surfaces condition). For a given static contact angle sθ , ζ  is prescribed according to the spherical 

static shape. Using a Fourier series to describe the surface elevation in harmonic motion yields: 

  rjce n

N

n
n

ti cos
1
∑
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= ωη , ,)2/1( π−= njn ,1=n  2, 3 …     (10) 

or with Chebyshev polynomials: 
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Both automatically satisfy 0)0( ==rrη and 0)1( ==rη for the axisymmetric mode. 

A generalized eigenvalue problem is posed by (6) and (8) or (9) upon using (10) or (11). 

Calculations are conducted for aspect ratios of 0.01 to 10. Since the basis functions satisfy the 
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equations in the domain and on the side walls, the solution is obtained by collocation on the free 

surface. We use standard collocation points11: evenly spaced in r for the Fourier expansion (10) 

and zeroes of the Chebyshev polynomials for the Chebyshev expansion (11). The collocation 

points were placed on the curved, but unperturbed surfaces. When we used N collocation points 

to obtain the algebraic eigenvalue system, our eigenvalue was reasonable for modest values of N 

but diverged for larger N. Examination of the boundary conditions showed large oscillatory 

residuals between the collocation points near r = 0 for the Chebyshev expansion and near the 

contact line (r = 1) for the Fourier expansion. Numerical experiments showed that using 1.5N 

collocation points to obtain an overdetermined system drastically reduced these errors and 

allowed convergence for large N when Chebyshev expansion was used, but no similar 

improvement was found for the Fourier expansion. Singular Value Decomposition was then used 

as the solver for the overdetermined system. The collocation procedure is non-standard in that 

the free surfaces are not coordinate surfaces, but we recover the results of Henderson and Miles2 

when only one free surface is present and the undisturbed surface is flat. Our attempts at using a 

Galerkin method did not converge. 

The generalized spectral eigenproblem is singular. When kinematic and dynamic surface 

conditions are combined into a single equation as a general eigenvalue problem, inverted 

differential operators are needed. Spurious eigenvalues and slow convergence are thus possible 

(Boyd11 pp.139-142).  

The Fourier series numerical solutions for static contact angle sθ  close to !90  converge 

rapidly, while scaling and roundoff errors accumulate. However, for sθ  near ,90!  the Chebyshev 

polynomials fail to converge before spurious eigenvalues (with paired imaginary frequencies) 
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dominate the solutions. Interestingly for smaller sθ , the Chebyshev polynomials converge while 

the Fourier expansions do not converge, as shown in Table 1. Both expansions exhibit 

convergence difficulties for small sθ  (approximately 20o and below). This may be caused by the 

physically sharpened corner singularity and increased condition numbers of the resulting linear 

algebraic system (considering the exponential expansion in the axial direction). It is not clear 

why the two expansions exhibit different convergence for different sθ  regions. A global 

convergent solution for all static contact angles may necessitate a different series or a combined 

strategy. 

Table 1. Convergence test with Chebyshev and Fourier surface expansions for different static 

contact angle for lowest mode when L =10. ‘--’ indicates no real eigenvalue is calculated for 

the lowest mode. Convergence for smaller θs becomes problematic, but then viscous effects 

enter to make the physical model invalid. 

!20=sθ  !30=sθ  
!45=sθ  !65=sθ  !90=sθ   

N 
Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier 

10 0.361479 -- 0.484132 -- 0.650763 0.679158 0.815895 0.816924 0.891566 0.887974 
20 0.359978 -- 0.484134 -- 0.650763 -- 0.815898 0.816443 0.983437 0.890041 
50 0.359977 -- 0.484134 -- 0.650763 -- 0.815907 -- -- 0.890630 
100 0.359977 -- 0.484134 -- 0.650763 -- 0.815902 -- -- 0.890721 

 

 

V. Results and Comments 

In Table 2, numerical results are presented along with the 0-D and 1-D approximations for 

different aspect ratios. As expected from the discussion in section II, the potential solution 

converges to the 1-D approximation for small aspect ratio (see L = 0.01, sθ =90o), and appears to 

converge to the 0-D approximation for large aspect ratio (L = 10). The 15% difference between 
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the 0-D solution and the other approximations in the L = 0.01, sθ =90o case is caused by the non-

spherical shape of the slug in the membrane limit. 

Table 2. Pseudospectral results, nondimensional lowest frequencies ω , show convergence 

 To the 0-D approximation for L =10 and convergence to the 1-D approximation for L =0.01.  

 L = 0.01 L = 0.1 L = 1 L = 10 

sθ  !90  !89  !90  !80  !90  !30  !90  !30  

0-D approximation: 
(spherical end cap) 

28.2843 28.28000 8.9443 8.8086 2.82843 1.5 0.8944 0.4743 

1-D approximation 
(membrane)  

24.0500 41.53152 7.6053 12.981 2.4050 1.8250 0.7605 0.4476 

100 24.0506 41.53591 7.6680 13.0890 2.7138 1.9376 0.8907 0.4841 
50 24.0506 41.53411 7.6680 13.0890 2.7140 1.9376 0.8906 0.4841 
20 24.0508 41.52177 7.6685 13.0873 2.7155 1.9376 0.8880 0.4841 

2D Spectral 
method for 
varying 
truncation N 5 24.0871 41.32434 7.6839 13.0488 2.7522 1.9532 0.8803 0.4890 

  

The four lowest 2-D modes are presented in Fig. 2 for L = 10, now with static contact angle 

sθ = .40!  Only the axisymmetric modes are considered. As expected, the fundamental slosh 

mode (Fig. 2a) has the lowest frequency. One (Fig. 2b) is also even in η . The other two modes 

have odd perturbations and the flow behaves as if there were a solid wall at z = 0 (Faraday 

waves2). It is also apparent that for L = 10 the second and third modes in Fig. 2 have very similar 

frequencies. This is as expected for similar surface modes of slugs with large aspect ratio: The 

relation between the two surfaces is weakened by a large mass between them (with the obvious 

exception of the fundamental slosh mode). Thus the two surfaces behave somewhat 

independently, leading to similar flow fields for the two modes.  

 

FIGURE 2 HERE 
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Figure 3 presents results of the potential and the 0-D solutions for varying sθ and for fixed 

large aspect ratio L = 10. The 2-D results shown in Fig. 3 are given for Chebyshev or Fourier 

expansions in favor of convergence. According to (1), the frequency for the 0-D approximation 

is symmetric with respect to .90!=sθ  

FIGURE 3 HERE 

 
For comparison with numerical results, free oscillation and forced oscillation tests were 

conducted. A precise borosilicate glass tube was used with internal diameter D = 3.556 mm and 

square outer cross section mmmm 7.127.12 ×  for reduced optical distortion. The tube was 

washed with alcohol and HPLC grade water, and then dried with dry compressed air. The liquid 

slug was made using HPLC grade water. For the free oscillation test, the tube motion was 

stopped suddenly from a constant horizontal speed and the end cap apex position as a function of 

time was recorded by a Kodak high speed video imager; the results are presented in Fig. 4. The 

time origin in Fig. 4(a) was chosen after a sufficient time to avoid initial transients, contact line 

slip and nonlinearity. To measure the contact angle, the interface was assumed to be spherically 

shaped and the height of the end cap was taken as the average horizontal distance from the upper 

and lower contact line in a 2-D image to that at the apex. (Similar measurements fitting a circle 

to the two contact line locations and the apex produced similar results with more experimental 

error.) Presumably due to contact line hysteresis, the initial contact angles were measured as 

approximately !30  to !70 when the slug was placed in a dry tube by syringe.  

We found less experimental scatter when an initial disturbance was sufficiently large to cause 

slip motion – slip caused by other forces generally had a similar effect. The static contact angle 
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measured immediately following the free oscillation decay generally had a scatter of !5± . No 

dependence on aspect ratio was observed for the range we measured (1.28 ≤  L ≤  10.3). For the 

forced oscillation test, the tube was driven horizontally by a harmonic displacement tax ωcos= , 

where the forcing amplitude 2ωa  was held constant. Thus the amplitude of the end cap motion 

as a function of frequency was obtained and is plotted in Fig. 4(b). In both experiments, the 

pinning of the contact line was ensured by constantly monitoring contact line motion relative to 

the tube.  

We found that the free oscillation test is simpler to control. Only one experiment is required 

for a given slug to estimate the natural slosh frequency, and the actual static contact angle can be 

obtained immediately following the end cap displacement measurement. On the other hand, the 

forced oscillation requires measurements for different frequencies and the slug will often slip 

near the resonant frequency. Due to contact line hysteresis, it is difficult to have the same contact 

angle for replicated experiments. The measured natural frequencies for different aspect ratio are 

presented in Fig. 5 together with the 0-D, 1-D and 2-D approaches. The contact angle used for 

prediction, sθ , is !40  according to the measurement in Section V. 

FIGURE 4 HERE 

FIGURE 5 HERE 

Even for potential flow, a trijunction singularity exists when the free surface is not 

perpendicular to the solid. The analyses demonstrate that for a pinned contact line liquid slug 

with large length-to-diameter ratio L, the potential flow solution and the end cap approximation 

are in agreement. The analyses also agree well with the experimental results although the gravity 
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effect and viscous dissipation are neglected. This indicates that for a long, pinned, inviscid slug 

the inner flow may be neglected when determining the resonance of the end cap. The restoring 

force in the end cap (0-D) model is contact angle variation – while curvature remains constant 

over the entire surface when gravity is negligible. 

 

Appendix. Effect of slip 

A stick-slip boundary condition for the contact line is implemented and its results are shown 

in Fig. A-1. Although experimental slip conditions for this case are more complicated,12 we use a 

simple stick-slip contact line model that is similar to Hocking13 (i.e. 0=+ rγηη on r = 1). As 

0→γ , the frequencies converge to the pinned contact-line solution (about 0.6 in Fig. 3 for 

sθ = !40 ). As ∞→γ , the contact line slips on the wall boundary, and the frequency goes to zero 

as the restoring force of the meniscus vanishes.  

FIGURE A-1 HERE 
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Table 1. Convergence test with Chebyshev and Fourier surface expansions for different static 

contact angle for lowest mode when L =10. ‘--’ indicates no real eigenvalue is calculated for 

the lowest mode. Convergence for smaller θs becomes problematic, but then viscous effects 

enter to make the physical model invalid. 

 

!20=sθ  !30=sθ  !45=sθ  !65=sθ  !90=sθ   
N 

Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier 

10 0.361479 -- 0.484132 -- 0.650763 0.679158 0.815895 0.816924 0.891566 0.887974 
20 0.359978 -- 0.484134 -- 0.650763 -- 0.815898 0.816443 0.983437 0.890041 
50 0.359977 -- 0.484134 -- 0.650763 -- 0.815907 -- -- 0.890630 
100 0.359977 -- 0.484134 -- 0.650763 -- 0.815902 -- -- 0.890721 
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Table 2. Pseudospectral results, nondimensional lowest frequencies ω , show convergence to 0-D 

approximation for L =10 and convergence to 1-D approximation for L =0.01.  

 L = 0.01 L = 0.1 L = 1 L = 10 

sθ  !90  !89  !90  !80  !90  !30  !90  !30  

0-D approximation: 
(spherical end cap) 

28.2843 28.28000 8.9443 8.8086 2.82843 1.5 0.8944 0.4743 

1-D approximation 
(membrane)  

24.0500 41.53152 7.6053 12.9810 2.4050 1.8250 0.7605 0.4476 

100 24.0506 41.53591 7.6680 13.0890 2.7138 1.9376 0.8907 0.4841 
50 24.0506 41.53411 7.6680 13.0890 2.7140 1.9376 0.8906 0.4841 
20 24.0508 41.52177 7.6685 13.0873 2.7155 1.9376 0.8880 0.4841 

Spectral 
method for 
varying 
truncation N 5 24.0871 41.32434 7.6839 13.0488 2.7522 1.9532 0.8803 0.4890 
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FIG. 1. Definition sketch: Elevation view of a fluid slug with length 2L (well-defined for 

analysis with non-wetting films) and radius 1 in a circular cylindrical tube with pinned contact 

lines. ζ±=z  (solid lines) are the undisturbed stationary surface positions and +η and −η (dotted 

lines) are the surface perturbation relative to +ζ , respectively. The wave analysis considered here 

is normally axisymmetric. This symmetry is broken by the gravitational effect on the static 

meniscus as shown in the photograph. Further, the wave patterns can be separated into modes 

where the fluid velocities or free surface disturbances ±η  are either even or odd. The mode 

sketched above is even since the deformation of both surfaces is in the same z-direction. This is 

the lowest slosh mode and that seen predominantly in our experiments. This symmetry means 

that only one free surface (say +η ) needs to be considered, with the other free surface condition 

replaced by odd or even symmetry, and hence the + or – subscript is dropped. sθ  is the static 

contact angle. In the absence of gravity, the static free surfaces represented by ζ±=z are 

spherically shaped. θ  is the apparent dynamic contact angle that oscillates in time about sθ . The 

photo at the bottom is from a Kodak high-speed imager where the slug is illuminated by a 

vertical laser sheet through the slug axis. To increase the image contrast, the water slug is 

fluorescein treated, decreasing the static surface tension by approximately 3.5 dyne/cm.12 

 

FIG 2. Lowest modes for L =10 with static contact angle sθ = 40o. The resulting frequencies ω  

are 0.59841, 8.324488, 8.324486 and 18.172226, respectively. We consider (a) to be the 

fundamental slosh mode and it is the primary focus of the discussions. The 0-D approach applies 

to (a) only.  
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FIG. 3. Lowest slosh frequency versus static contact angle for L = 10. 

 

FIG. 4. Free and forced oscillations experimentally determine the natural frequency of a water 

slug in a cylindrical tube with pinned contact line and a nearly spherical end cap. Fig. (a): The 

tube is suddenly stopped from constant velocity while recording the surface elevation )0( =rη . 

A natural frequency of 0.571 fits the data in the figure. Fig. (b): The tube is driven horizontally 

by a harmonic displacement tax ωcos= where 2ωa  is held constant and a is sufficiently small 

to be in the linear regime (we used a = 0.15 for 104.1=ω ) . The peak-to-peak amplitude of the 

surface elevation (normalized by a) is plotted as a function of ω for two replicated experiments. 

The □ shows a maximum resonance at 0.575, while the ◊ shows a maximum resonance at 0.610. 

The difference is 6% between the two experiments. The tube diameter is D = 3.556mm, and the 

aspect ratio L is 10. HPLC grade water is used within a borosilicate glass precision ground tube. 

 

FIG. 5. Natural slosh frequencies by measurement, 2-D, 1-D and 0-D approach for different 

aspect ratio. The contact angle used for prediction is !40  determined according to the 

measurement procedure described in the text. 

 

FIG. A-1. Lowest slosh frequency versus the slip parameter ,γ  defined as the slip coefficient in 

the contact line stick-slip condition at r = 1: ,0=+ rγηη  where η  is the surface perturbation 

from the curved static free surface. L = 10 and sθ  = .40!  
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FIG. 1. Bian, Physics of Fluids
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FIG. 2. Bian, Physics of Fluids 
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FIG. 3. Bian, Physics of Fluids 
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FIG. 4. Bian, Physics of Fluids 
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FIG. 5. Bian, Physics of Fluids 
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FIG. A-1. Bian, Physics of Fluids 

 


