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ABSTRACT

The wall following robot is examined as
a potential benchmark problem for
applications of genetic programming
(GP) to emergent robotic behavior. This
paper describes experiments that were
performed to characterize the
performance, solution space, search
space, and robustness using GP with
and without automatically defined
functions (ADFs). GP with ADFs was
unable to significantly outperform GP
without ADFs on this problem. A sub-
optimal modality was discovered across
all four program architectures. Many of
the optimal solutions that were
discovered tended to limit the number of
sensors used for wall-following
behavior; some used as few as three
sensors. Tests for robustness indicate a
“handedness’ to the evolved solutions,
which does seem to contribute to
solution brittleness.

1. Introduction

1.1 Background
Several key works have demonstrated that GP shows
promise as a means for behavior-based robot programming.
The wall following robot, box pushing robot, lawn mower
problem, and artificial ant are afew of the several examples
presented by [Koza 1992, 1994b]. [Reynolds 1994a, 1994b]
demonstrated that GP can evolve solutions for obstacle
avoidance and corridor following behavior. [Handley 1994]
demonstrated that an ADF GP can evolve a robotic planner
that operates on predicates. Recent work by [Nordin 1995]
demonstrated that a compiling GP system can evolve robust
real-time obstacle avoidance behavior for real robots in
noisy physical environments.

However, because many of these previous efforts have
focused on demonstrating the solutions GP is capable of

evolving, little is known about the overall nature of many of
these problems. Subsequently, only a few suitable
benchmarks exist as a basis for measuring gains by a
particular GP methodology for behavior based or animat
programming. Consequently, the goal of this work is to
further characterize the problem of the wall following robot.
Our eventual goal is to craft a suitable benchmark for
measuring performance of new GP methodologies that may
apply to problems involving emergent robotic behavior.

This work is divided into several sections. Sections 1.2
to 1.3 discuss considerations of the wall following robot as a
benchmark. Section 2 presents a brief summary of the wall
following robot problem and describes the experiments
performed in thiswork. Section 3 presents and discusses the
results in terms of overall performance, possible modalities
in the solution space, observations on the search, and
robustness of evolved solutions. Section 4 highlights a few
conclusions from this paper.

1.2 Benchmark consider ations

The wall following robot is particularly attractive as a
benchmark because it is awell-known problem in GP [Koza
19924g], as well as in robotics [Brooks 1992]. With respect
to GP, the problem isrich, as a number of different solutions
are possible with only a few general functions and
terminals. The problem also has solutions that are easily
identifiable and has behaviors that are understandable to a
lay audience. Furthermore, the problem is attractive because
of previous work. [Koza 1992b] has demonstrated that GP
can evolve a successful solution to this problem, provided
code for the successful individual, and described behaviors
seen in the evolution of the successful run. [Koza 1992a]
adds to this work by demonstrating that the problem can be
solved with an even more general implementation of the
terminal set. [Koza 1994b] provides a performance curve for
an experiment using the [Koza 1992b] terminal set.

With respect to robotics, this problem is also attractive
because it has been examined as a case study in
subsumption architectures [Brooks 1986, 1992, Mataric
1990]. The problem contains great potential for evolutionary
robotic programming since the problem’s functions and
terminals have a close analog to realizable hardware
components. For this reason, the problem avails itself to
pragmatic concerns such as the effect of damage to any of
the sensors or motors on an evolved robot program. Other



similar problems like the lawn mower problem and its
variants [Koza 1994a] have been well characterized, but
have used component abstractions that are not easily
realized in hardware. The lack of sensors and types of motor
functions used in these problems link them tightly to the
realm of animat problems like the artificial ant [Jefferson et
al. 1992]. These types of idedlizations aid in the discovery
of fundamental principles but constrain them to the realm of
computational life rather than as a means of evolving
controls for physically embodied robots [Brooks 1992].

Conseguently, the wall following robot is a reasonable
marriage between problems in genetic programming and
robotics and is suitable for studying aspects of evolutionary
robotic programming from the perspectives of both
domains. Furthermore, the physical representation of the
robot and the introduction of ADFsinto GP provide a means
to study hypothesis regarding the use of GP techniques to
build behavior-based programs to run real robots. [Brooks
1992] proposes that for GP to be an effective tool for
programming real robots, the language that GP is operating
on should include a macro capability. Brooks hypothesizes
that the macro capability of the language should be
effective if the macros can capture symmetries inherent to
programming the robot and should greatly accelerate the
production of programs and traversal of the search space.
From the GP perspective, the wall following robot is a
difficult problem and studying it may provide further insight
into fundamental techniques needed for scaling GP and
identifying break pointsin this problem.

For the wall following robot to be considered as a
benchmark, several elements must be added to the
knowledge of the problem. An independent verification of
the results is necessary. Additional characterization is
needed regarding the solution space, search space, average

Table 1: Wall following robot problem specific code

case performance of GP, and robustness of solutions. ADFs
should be applied to test their effectiveness.

1.3 Contributions

This paper:

e Provides an independent verification of a well-known
problem in GP.

e Characterizes several modalities of this problem’s
solution space to help qualify the problem for future use
as a GP benchmark.

e Provides a limited test of Brooks' macro-language
hypotheses in behavioral-based robot programming by
applying ADFs.

* Gives a first assessment on robustness of evolved
solutions for this problem.

2. Overview of Experiments

This section starts with a brief description of the problem
and details of our problem specific code. The choice of ADF
architectures and tests of robustness used in the experiments
are also discussed. It includes a description of the
parameters used and implementation notes.

2.1 Code description

Our implementation of the robot follows that which is
described in [Koza 1994b, 19923, 1992b]. The TOTO robot
has 12 sensors, each covering an area of 30°. The robot can
move forward 1.0 ft, backward 1.33 ft, turn left 30°, and
turn right 30°. Koza's room has an irregular shape with
protrusions on the south and east walls. The objective of the
wall following robot problem is to evolve a computer
program that allows a simulated TOTO robot to move along
the perimeter of Koza's room.

Table 1 presents the key elements of our problem
specific code used in the experiments. Note that the derived

Terminal Set

Twelve sonar measurements SO0, S01. . S11] ; Derived minimum of measurements[ SS] ; minimum safe

distance and preferred edging distance fromwall [ MSD, EDQG ; Primitive motor functions[ M7, MB, TR TL]

Function Set

If-Less- Than-Or-Equal-Tomacro [ | FLTE( ar g1, ar g2, ar g3, arg4)] (i.e, IF(argl <= arg2) then arg3, else

argd); Connectivefunction [ PROGN2( ar g1, arg2]] (i.e, eval argl return eva arg2)

Fitness Function

Fitness cases: one fitness case Koza' sirregular room with aninitial starting location near the middle of the

room(13.8, 13.8)' and an initial facing direction of south(270°)
Hit: robot touches a 2.3 square foot tile along the wall of the room

Raw fitness: number hitsin 400 time steps

Standardized fitness: total number of wall tiles minus the number of hits

Success predicate: 56 out of 56 hits

Table 2: Program Architectures

Function-defining branches require no arguments and can only be called by the result-producing branch

Function-defining branches require no arguments and can only be called by the result-producing branch
ADFO, ADF1, and RPB include al functions and terminals described in Table 1 with these notable exceptions:

Experiment | Non-ADF:
Terminal set includes all 19 terminals described in Table 1
Function set includes both functions described in Table 1
Experiment I1 One result producing branch, and two function-defining branches(ADFO, ADF1)
ADFO, ADF1, and RPB include all functions and terminals described in Table 1
Experiment 111 One result-producing branch, and two function-defining branches(ADFO, ADF1)
* MF, MB are omitted from terminal set of ADFO
* TR, TL are omitted from the terminal set of ADF1
Experiment IV

One result-producing branch, and four function-defining branches(ADFO, ADF1, ADF2, ADF3)

Function-defining branches require no arguments and can only be called by the result-producing branch
ADFO, ADF1, ADF2, ADF3, and RPB include all functions and terminals described in Table 1




value SS was included in the terminal set and movement
and turning functions return the minimum of the two
forward looking sensors as described in [Koza 19923]
Examplel.

2.2 Experiments

Experiment | was performed without ADFs to verify our
results against Koza's. Experiments 11, IIl, and 1V used
ADFs for two reasons. First, ADFs are alogical extension
of Koza's work. Second, they provide a test of Brooks
hypothesis [Brooks 1992] that a macro capability in the
language of GP would greatly accelerate the production of
good programs on problems in emergent robotics. Choices
regarding ADF architectures were made using the method of
prospective analysis [Koza 1994a] since no previous work
suggests an optimal architecture for this problem.

A choice common to all ADF architectures was that all
function-defining branches would take no arguments and
could only be called by the result-producing branch. We
chose this type of hierarchy for the ADF architectures
because Mataric’s subsumption architecture used mutually
exclusive behaviors [Mataric 1990]. Experiment 11 used an
ADF architecture with two function-defining branches
because it was the maximum default supported by the ADF
kernel found in [Koza 1994a]. Experiment |11 used an ADF
architecture with two function-defining branches whose
terminal sets were restricted to try to coax GP into using
ADFs more effectively. (Preliminary results indicated that
many of the evolved individuals were not taking advantage
of ADFsin the search.) Experiment IV used an architecture
with four function-defining branches to see if GP would
evolve a solution similar to Mataric’s that relied on four
behaviors [Mataric 1990]. Table 2 summarizes the program
architectures used in each experiment.

2.3 Robustness

The robustness of each successful individual was tested by
evaluating the code produced over additional fitness cases
not used in the evolution of the solution. One additional
fitness case consisted of moving the initial starting position
of the robot eight feet to the west. The other case consisted
of changing the initial direction of the robot from facing
south to facing north.

2.4 Run parameters

All four experiments used the same parameters as a means
of control. The parameters used were identical to those
found in [Koza 1992a, 1994b]: 10% probability of
reproduction, 90% probability of crossover, maximum depth
of six for new individuals, ramped-half-and-half method of
generation for individuals in the initial population, a
maximum depth of 17 for individuals after crossover, and
fitness-proportionate-with-overselection selection method.
Each experiment consisted of 61 runsg with a population
size of 1000 for a maximum of 57 generations.

2.5 Implementation notes

Runs were performed concurrently in a distributed
computing environment, consisting mostly of Sun
SparcStation 20 and HP 715 workstations using Allegro
Common Lisp. Runs averaged from about 48 - 100 hours.
We used alookup table for sensor values and terminated the

execution of programs when the state of the robot stabilized
as recommended in [Koza 1992a]. The “on-the-fly”
redimensioning technique was not used.* Experiment | was
performed with the canonical GP kernel found in [Koza
1992a)]. Experiments 11, I11, and 1V were performed with the
ADF GP kernel found in [Koza 1994a] and a variant to
support the use of architectures with four function-defining
branches.® Mathematica was used in creating the lookup
table of sensor values and in visualizing each of the
solutions.

3. Results and discussion

This section discusses the results of our experiments in
regards to performance of GP, modalities in the solution
space, observations on the search space, and robustness of
solutions.

3.1 Performance

Table 3 presents results that show the overall performance
of the program architectures used in the four experiments.
Table 4 presents a detailed breakdown of the successful runs
in Table 3.

No experiment produced enough successful runs to
generate meaningful performance curves. However, the
success rate for Experiment | was consistent with the
performance curve shown in [Koza 1994b] ¢ Furthermore,
the successful solutions were comparable to the best
individuals presented in [Koza 1994b, 19923, 1992b] as
they contained a similar number of program nodes, used a
similar number of time steps, and exhibited the same types
of behavior. Consequently, the independently produced
problem specific code consistently reproduced Koza's
earlier results.

GP with ADFs was able to evolve at least one successful
solution for each program architecture used. Solutions with
ADF architectures contained a similar number of program

Table 3: Overall Performance

Trials  Successes  Success Rate (%)
Experiment | 61 6 9.8%
Experiment 11 61 5 8.1%
Experiment 111 61 1 1.6%
Experiment IV 61 2 3.2%

Table 4: Characteristics of successful runs

Experiment Generation Nodes  Time Steps
Found

I 9 15 375
16 23 310

19 87 397

25 57 353

36 89 380

52 193 393

I 10 123 327
11 161 286

A 93 399

45 152 374

47 121 390

11 9 55 388
A% 22 37 365
39 155 363
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nodes and used a similar number of time steps as those with
non-ADF architectures. In spite of these successes, GP with
ADFs did not out-perform GP without ADFs. Experiment 11
had a success rate comparable to that of Experiment I. The
success rates of Experiments |11 and IV were slightly lower.
Further experiments are needed to determine whether ADFs
will improve the performance of GP on this problem. Once
enough successful solutions are evolved to generate
meaningful performance curves, the computational effort
with ADFs (E,,) can be compared with that without
(Eyitno) to determine if they are indeed more effective for
this problem.

3.2 Fitness M odalities

Figure 1 presents histograms that provide an overall picture
of the number of hits the best-of-run individuals converged
upon. The horizontal axis of each histogram refers to the
number of hits. The vertical axis is the frequency of runs
whose best-of-run individual scored the specified number of
hits.

The histograms for all four experiments display a
prominent grouping near the 35 to 40 hit range suggesting a
sub-optimal modality in the problem. Histograms for
Experiments I1, 111, and 1V also suggest something other
than a unimodal distribution. Examination of best-of-run
individuals from runs at the common sub-optimal modality
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Figure 1. Hits histograms. Experiment | (a), Experiment 11(b), Experiment 111(c), Experiment 1V (d)

revealed that the sub-optimal modality is not correlated to
any feature inherent to the room or a specific type of
behavior exhibited by the individuals. Further experiments
need to be performed to determine if the modality is
inherent to other aspects of the solution space.

3.3 Search Space

Figure 2 presents spider graphs that provide an overall
picture of the manner in which the available primitives were
used in optimal and sub-optimal” programs evolved in the
experiments. Each spider graph consists of 21 axes, one for
each of the available primitives. The spider graphs are
normalized and present the ratio of occurrences of a
primitive to occurrences of all primitives used in active
branches of each program.®

The sub-optimal solutions found in each of the
experiments used | FLTE and PROGN2 frequently,
movement and turning sparingly, and a wide range of
sensors. The optimal solutions used | FLTE and PROGN2
frequently, and movement and turning sparingly. However,
the optimal solutions needed only a subset of the available
sensors. Consequently, GP appears to be narrowing the
search space by focusing on a few sensors. [Brooks 1992]
hypothesized GP may search the solution space more
effectively if the robot is started with only some of its
sensors and actuators, adding more as fundamental



behaviors are found. Further experiments need to be
performed to test the effectiveness of this method.

[Brooks 1990] also hypothesized that a macro capability
in the language of GP, especially one that took advantage of
symmetry and regularity in a robot, would accelerate the
production of good programs. ADFs can be considered as a
macro capability in the language of GP because they
provide a means for GP to repeatedly use a function. A
qualitative observation of suboptimal and optimal solutions
across ADF architectures revealed that result-producing
branches did not use function-defining branches effectively.
Many of the result-producing branches consisted of a
statement that called just one function-defining branch
(e.g., (progn (defun ADF 1.) (defun
ADF2..) (defun ADF3.) (defun ADF4.)
(val ues (ADF1)) . Consequently, either this suggests
that the overhead associated with ADFs may outweigh their
benefit in GP's search of the solution space for this problem
or that ADFs are not being used in a manner to take
advantage of symmetry in the robot.

3.4 Robustness

Figure 3 presents the range of successful solutions found in
the experiments. Figures 4 and 5 illustrate the successful
individuals executed on fitness cases not used in their
evolution.

These figures display a diverse range of solutions and
robustness but reveal a commonality in the problem. The
figures suggest that GP is parsing the problem into three
tasks: wall finding, wall following, and cornering. Strategies
for finding the wall range from looping until the wall is hit
to walking directly towards the wall once a particular room

feature is identified. Many of the solutions exhibited tight
looping and oscillating snake-like motion solving the tasks
of wall following and maneuvering around corners with one
behavior. However, some solutions handled wall following
and cornering separately walking straight along the wall and
performing tight cornering.

An ideal test of robustness would have consisted of
executing the solutions in one to several additional rooms.
However, executing the solutions from different initial
positions in the same room was sufficient to show the
failure modes for the evolved solutions. The solutions
evolved were general in the sense that most of them still
exhibit wall-following behavior when executed on fitness
cases not used to evolve the solution. However, most of the
evolved solutions were relatively brittle. Only one of the 14
solutions was able to hit all 56 wall tiles for both tests of
robustness. The majority of the individuals timed out, got
stuck, or missed a significant number of wall tiles. Some
individuals performed well on one of the additional fitness
tests but poorly on the other. This may be attributed to an
evolved “handedness’” of the solutions. The solutions
performed better on the robustness tests when the robots,
after finding a wall, traveled along that wall around the
room in the same direction (i.e., clockwise or
counterclockwise) that the robots traveled along the wall in
the fitness case used in their evolution. This result suggests
a modification in the fitness case used. In particular, we
hypothesize that a room that would inherently demand a
solution requiring a robot to switch directions during a run
may yield a higher percentage of robust solutions. The
results suggest that a single fitness case (consisting of one
initial facing direction, initial position, and room shape) was
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Figure 3: Successful Solutions. Experiment | (row 1), [1(row 2), I11(row 3), IV(row 4)



iment I(row 1), l1(row 2), [11(row 3), IV (row 4)



not sufficient to evolve a high percentage of robust solutions
to the wall-following problem. Further experiments are
needed to determine whether multiple starting positions in
the same room, different rooms, or the suggested
modification of the room fitness case would help in
evolving a higher percentage of robust solutions.

4. Conclusions

This paper contributes several key elements to the

benchmark for the wall following robot problem including:

e An independent implementation of the wall following
robot problem produced results similar to those
presented by Koza (Section 3.1)

* ldentification of a modality in this problem that exists
across architectures and cannot be attribute to a feature
of the room or the robots' behavior (Section 3.2)

e Optimal solutions seem to need only a subset of
available sensors(Section 3.3)

» A test of ADFs that suggests the introduction of ADF
architectures to this problem does not improve GP's
ability to search the solution space as it is unable to use
them effectively (Section 3.3)

e The solutions evolved using GP on this problem are
relatively brittle (Section 3.4)

Future work includes:

*  Further testswith ADFs

* ldentification of possible causes for the sub-optimal
modality

e Use of another fitness set, consisting of either a
different room or the same room but with several
different starting locations for the robot

» Tests of Brooks' incremental
(sensorg/actuators) hypothesis

functionality

(The software used to create this benchmark is available at
http://www-personal .engin.umich.edu/~daida/)
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! Koza's original work starts the robot at a position near the
center of the room(12, 16). Thiswork isadlight variation
starting it in the center of the room at position(13.8,
13.8).

2 The initial goal was 60 runs. The hostile nature of the
computing environment caused many of our runs to be
killed so multiple runs were started for redundancy.
Experiment 1l completed one additional run so for
consistency, we decided to perform an extra run for each
of the other experiments.

®0Our runs were considerably slower than that reported in
[Koza 19923, 1994b]. In retrospect, we believe that three
factors contributed to this slowdown. First, we may have
unintentionally penalized runtime performance with our
code implementation. Second, our tests ran in the
background in a computing environment that is shared
extensively by students, staff, and faculty. Third, we used
a generic workstation rather than a Texas Instrument
Explorer 11 Plus workstation (a L1SP-specific machine)
used in Koza and Rice' s original work.



“To control all experiments as much as possible, we decided
that at no time during a run would we intervene. This
non-intervention policy consequently precludes “on-the-
fly” redimensioning and extensioning.

® The GP kernel found in [Koza 1994a] only supports
architectures with up to two function-defining branches.

® The performance curve found in [Koza 1994b] suggests
that "processing a total of 1,176,000 individuals (i.e.
2,000 times 28 generations times 21 runs) is sufficient to
yield a solution to this problem with 99% probability.”

" The sample of sub-optimal programs was taken from the
modality common across all architectures.

8 A distinction is made between active branches and non-
active branches as a basis for comparison between the
non-ADF and ADF architectures. The non-ADF
programs consisted of only one branch that must be
activated. The ADF architectures consisted of one result-
producing branch that must be activated and several
function-defining branches which may be activated. The
primitives in a function-defining branch were counted
each time the designated function-defining branch was
caled.



