
1

Musica ex Machina: Composing 16th-Century Counter-
point with Genetic Programming and Symbiosis

John Polito, Jason M. Daida, Tommaso F. Bersano-Begey

The University of Michigan
Artificial Intelligence Laboratory and Space Physics Research Laboratory

2455 Hayward Ave
Ann Arbor, Michigan 28109-2143

office (313) 647-4581; fax (313) 764-5137
jptwo@umich.edu, daida@umich.edu, tombb@engin.umich.edu

Abstract. GPmuse is software which explores one connection between
computation and creativity using a symbiosis-inspired genetic
programming paradigm in which distinct agents collaborate to produce
16th-century counterpoint.

1. Introduction

In a recent popular article on the science of creativity [3], Margaret Boden describes
two well-known computer programs that produce music in the styles of different compos-
ers. That a computer can at least appear to be creative suggests that there may exist pro-
found connections between computation and creativity.

Consideration of such connections involves the asking of what Boden has called
“Lovelace-questions,” (see [2]) one of which has bearing on this paper. This “Lovelace-
question” asks whether computational ideas can help us understand how human creativity
is possible. The authors of this paper answer with Boden in the affirmative.

Music of the 16th-century owes much to computation: the rules and conventions of the
pre-Baroque may seem suffocatingly restrictive. However, the rules of 16th-century
counterpoint helped to shape much of the “classical” music heard today. In one sense,
then, we have not questioned whether computers can create but rather how rules might
facilitate creativity and if it might be possible to characterize a space of music in terms
of solutions to these rules.

Our investigations also touch upon two difficult issues in genetic programming. The
first involves the creation of lengthy, coherent, highly-structured objects. Music can be
thought of as a type of programming code: just as many 16th-century works have a clear
and coherent structure, so does well-written code. While genetic programming does
produce nontrivial code, it does not readily produce code that is coherently structured.

The second issue involves computational hybridization. Composition of 16th-century
counterpoint involves several types of tasks, each of which suggests a distinct type of
programming solution. Intuitively, one might envision a multiple-agent genetic program-
ming kernel; however, the ramifications of introducing a level of organization above
automatically defined functions (ADFs) are not well-known.

This paper introduces our current software program, GPmuse, and focuses on both
the implementation of a symbiosis-inspired multiple-agent genetic programming architec-
ture and the design of GPmuse’s musical agents. The remainder of Section 1 provides

To appear in Evolutionary Programming VI: Proceedings of the Sixth Annual Conference on Evolutionary Programming, 1997.

2

further background material. Sections 2 through 4 describe our implementation. Sections 5
and 6 feature one result from our program. Section 7 highlights a few conclusions.

1.1 Previous Work

Genetic algorithms and genetic programming have been applied to several areas of
investigation in computer-generated music. A first area of investigation has explored the
auralization of processes and data that focus less upon any particular musical tradition and
more upon computation (e.g., L-systems). One implementation [18] has resulted in music
that is reminiscent of the randomness employed by Cage [4] or the stochastic music of
Xenakis [20]. At time of writing, this implementation is perhaps the only other composi-
tional software that uses genetic programming.

 Two other investigations implement genetic algorithms: one explores computer-gen-
erated music using rules and conventions from 20th-century musical traditions (e.g.,
Second Viennese School, jazz), while another has examined what most people consider
to be Classical music (e.g., [13][14]).

Examination of the musical output of these works reveals that, where applicable,
musical variations or developments are tightly linked in style to their “seed” theme or
generative musical material.

1.2 Background: Music

Johann Joseph Fux’s treatise Gradus ad Parnassum [9] has been perhaps the most widely
studied text of 16th-century music theory.3 Published in 1725, this treatise presents the
study of polyphonic counterpoint, a style of “note against note” composition that reached
its height of popularity in the 16th century. Polyphonic compositions of the period are of
interest to musicologists in that such pieces must be examined from a horizontal perspec-
tive: a composer might have written the complete tenor line of a work, then the soprano,
then the bass and finally the alto (see [1][19][21]).

Rules of counterpoint are presented by Fux in a logical order of mastery: after the
reader of the treatise has presumably mastered simple rules, more complex restrictions
are introduced. A hierarchy of rules can be extracted from Fux’s text: some rules apply
in only a handful of cases while others must be observed scrupulously.

Like most theory texts, [9] includes a large number of homework problems (with
solutions) for the prospective student. To solve such a problem, one begins with a core
line of music called a cantus firmus.4 One then composes lines around the cantus firmus such
that the relationships within and between the lines embody rule-specific properties.

One of the most common musical devices in sacred and secular polyphonic music of the
16th-century is imitative counterpoint. Perhaps beginning in the early 16th century in the
Franco-Flemish region of Europe (see [10]), imitative counterpoint is a style of polyphonic
counterpoint in which two voices containing the same musical material are separated in
time and transposed such that the vertical intervals formed by the original line and its
counterpart obey the rules of polyphonic counterpoint.

The set of pitches available to composers of the 16th century was smaller than the 12-
note octave pitch set of the common practice period.5 Music was based on 7-note modes
rather than the keys of later musical periods. Notes with chromatic inflection (sharps or
flats) only occurred in special musical situations.

3

1.3 Background: Symbiosis

GPmuse contains three distinct agents that use genetic programming as a generative
engine. Each agent acts upon a different musical task: the polyphony agent focuses on the
use of harmony in a composition, the selection agent on the generation of new canti firmi,
and the imitation agent on maximizing the contrapuntal potential of a theme. Sections 4.1
through 4.3 further describe these agents.

Recent work (see [6][7]) outlines the use of symbiosis as a metaphor for computa-
tional hybridization. In particular, [6] suggests the addition of a layer of organization
and fitness functions above automatically-defined functions (see [16]); that is, a mul-
tiple-agent genetic programming implementation in which agents are evaluated on both
individual performances and joint operation on a shared “object.”

Each agent generates instruction sets rather than musical output. Borrowing from
Gruau’s work on cellular encoding (see [11]), we generate musical output with the help
of a seeded cantus firmus; this output is a direct manifestation of the agents’ joint operation.
Section 4.4 further details the interaction between agents.

2. Architecture

2.1 Individual and Subpopulation Overview

Each agent consists of one result-producing branch (RPB) and several automatically-
defined functions (ADFs). An individual carries code for all three agents; that is, each
individual has three RPBs and enough ADFs for all three agents. Since each agent has a
unique fitness function, care must be taken that each agent is ranked solely on its perfor-
mance and not that of other agents carried on the same individual.

To assure that each pool of agents evolves and is evaluated separately, three subpopu-
lations are formed and one agent is bred in each subpopulation: the polyphony agent
uses subpopulation 0; the selection agent, subpopulation 1; the imitation agent, sub-
population 2. Code for the agents not being bred in each subpopulation is ignored.

2.2 Fitness Overview

In every generation, each subpopulation’s individuals are evaluated according to a
fitness function unique to that subpopulation; however, only the result-producing branch
(RPB) corresponding to the subpopulation number currently being evaluated is called.
Each subpopulation’s fitness case is a homework problem in the style of Fux’s home-
work problems that uses a 14th-century plainchant, “Pange Lingua Gloriosi,” as the cantus
firmus. To each subpopulation’s fitness case corresponds a distinct fitness function.

After all subpopulations’ individuals have been evaluated, they are ordered by “home-
work-based” adjusted fitness. Starting with the best individual of each subpopulation,
next taking the second-best of each subpopulation, etc., trios of individuals, one repre-
senting each agent, act in concert to generate a piece of music that results from the
action of the agents’ rule sets upon a musical embryo. Each generated piece of music is
given a “piece-based” adjusted fitness by a fitness function distinct from the fitness func-
tions of each subpopulation. Each individual of the trio of individuals takes the mean of its
agent-specific, homework-based adjusted fitness and the piece-based adjusted fitness as its
new adjusted fitness.

4

After all individuals have taken a new adjusted fitness, each subpopulation is then ranked
by adjusted fitness by the GP kernel for fitness-based reproduction [15]. At the end of each
generation, the new best individuals from each subpopulation work in concert upon an
embryo to generate a musical score as mentioned above. This piece is ranked as before with
the musical score fitness function.

3. Representation of Music

3.1 Note Representation

GPmuse represents a note as a structure. A note structure contains an integer value,
pitch , which is mapped bijectively from the set of “white keys”; that is, pitches without
accidentals. A = 440 Hz maps to 0 and the bijection continues in the obvious fashion. The
second value in a note structure is a flag, chrom , which indicates chromatic inflection (flat,
sharp, or natural). The last value in a note structure, dur , holds durational information.

Rests are stored as notes with pitch REST, a constant defined so that it is ignored in most
computations.

3.2 Score Representation

A piece of 16th-century music for n voices6 that is m eighth-notes long is seen by GPmuse
as an ordered n-collection of m-arrays of note structures where each structure contains
pitch, duration and chromatic inflection information for a single note as described in Sec-
tion 3.1. Each voice in the collection is strictly ordered in time: for voice α, structure α[i−
1] holds information for voice α’s activity at eighth note i of the array. This method of
storage allows for computation and retrieval at a note-by-note level; it is the musical equiva-
lent of watching a movie frame by frame. Note structures that translate as rests are included
in the length of an array.

4. Agent and Embryo Implementation

4.1 Polyphony Agent

The polyphony agent of GPmuse generates n-voice (polyphonic) counterpoint given
a cantus firmus. The agent was designed by following the course of study outlined in Fux’s
text; each problem set from Fux became a set of fitness cases. The polyphony agent was first
developed to follow the simplest, strongest rules of polyphonic counterpoint: those rules
introduced initially with topmost hierarchical significance.

After the initial problem set was solved, this agent was tested against increasingly com-
plex counterpoint problems, moving through problems of moderate complexity. As criteria
became more exacting and problems more difficult, additional problem-specific data was
made available to the polyphony agent in the form of a larger function set.

Though the initial function set could have in theory provide the polyphony agent with
all data necessary to complete the initial problem set, it is crucial to note that the number of
solvable problem sets and consistently well-evaluated fitness-function conditional statements
grew more quickly than the cardinality of the function set.

5

After the polyphony agent was able to solve problems of moderate complexity, its func-
tion and terminal sets were fixed as the respective unions of all terminals and functions
found sufficient to solve the tested problem sets. The “Pange Lingua Gloriosi” cantus firmus
then became the only fitness case during the homework portion of GPmuse’s operation as
described previously.

The fitness function for the polyphony agent was fixed as a large subset of the conditional
decompositions of the rule sets presented by Fux.

The fitness function for the individuals of subpopulation 0 recasts the rules that are to be
followed in each problem set as comparative conditional functions. The raw fitness of an
individual is incremented by a pre-defined constant if a conditional evaluates correctly;
such evaluation occurs at each eighth note for each voice or pair of voices.7 Hits, a parallel
fitness measure, are similarly determined for a core subset of conditionals. Standardized
fitness is a linear combination of hits and raw fitness; homework-based adjusted fitness is 1
/ (1 + standardized fitness).

To give an example of problem formulation, one task in Fux’s earliest problem set is to
take a given cantus firmus and generate one voice above the cantus firmus such that each
resulting vertical interval is consonant. Consonant intervals [21] are the unison, major and
minor third, perfect fourth, perfect fifth, major and minor sixth and intervals that differ
from those listed by one or more perfect octaves.

The terminal set is the set of all legal horizontal motions within one voice. This is the set
of consonant intervals with the addition of the major and minor second.8

All but one function in the function set are comparative conditional operators that yield
problem-specific data to the agent: for instance, whether the pitch resulting from a selected
horizontal motion is higher than the simultaneously-sounding pitch of the cantus firmus.
The remaining function adds chromatic functionality.

Actual notes are never received by the polyphony agent through its function operations
or terminal selections; instead, an initial correct pitch for each voice over a given cantus
firmus is selected at random and subsequent pitches are the result of horizontal motions
selected by the RPB’s evaluations. Once one voice is composed through all the places of a
block, another voice is evaluated. Once a voice is fully composed, it cannot be altered by the
agent.

4.2 Imitation Agent

The agent affiliated with subpopulation 2 takes the given cantus firmus and produces
two-voice imitative counterpoint. Like the polyphony agent, the imitation agent was
also initially trained against Fux’s canti firmi but when fully developed began to use “Pange
Lingua Gloriosi” as its sole fitness case.9 The fitness function remained unaltered after the
training period on the Fux canti firmi ended.

Unlike the task of generating polyphonic counterpoint, the imitation agent’s task is
largely an optimization problem: find a horizontal offset h and a vertical offset v such
that there are a maximum number of consonant vertical sonorities. Figure 1 is an ex-
ample with (h, v) = (4,-3).

6

Figure 1. An example of imitation.
The homework-based raw fitness is composed of the sum of the squares of the differences

between the number of elements at which a conditional is addressed correctly and total
number of elements in the array. Hits is the number of elements where one high-impor-
tance vertical and horizontal motion criterion is fulfilled. Standardized fitness is set equal to
raw fitness and homework-based adjusted fitness is 1 / (1 + standardized fitness).

The agent consists of an RPB and two ADFs; ADFs choose values for h and v, respec-
tively.

The function set for the RPB holds prog2, prog3 and information about location within
the array. The function sets for the ADFs consist of +, - and a function that sets the variable
specific to the ADF (h or v) to its argument.

The RPB’s terminal set is a set of actions that navigate within the array. The ADFs’
terminal sets contain constants, user-defined parameters and array elements.

4.3 Selection Agent

The selection agent, affiliated with subpopulation 1, is related in function to the imi-
tation agent but has a more complex task. The selection agent takes a cantus firmus and
selects a portion of the cantus firmus to pass on as a new cantus firmus to other agents. In
addition to horizontal and vertical offsets (h and v) there is a beginning element in the array,
b, and a length-of-selection, l.

Characteristics of musical themes are left to a composer’s individual tastes; lacking such
recourse, the selection agent was trained on the assumption that portions of a cantus firmus
that harmonized well with the whole had merit as subjects for imitative counterpoint and
polyphonic composition.

 Fitness, hits, standardized fitness and homework-based adjusted fitness are calculated as
with the imitation agent save that any instance of dissonance results in a zero fitness.10

This theme-selecting agent has the most involved architecture, consisting of an RPB and
four ADFs. As well, agents control two four-tuples (h, v, b, l): temporary variables, which
are set by ADFs, and permanent variables, which are updated from temporary variables via
a specific terminal.

The terminal set for the agent’s RPB consists of the array-navigating actions also
found in the selection agent’s RPB terminal set. The ADFs’ terminal sets are also similar
to those of the imitation agent’s ADFs, containing values of constants, user-defined
parameters and array elements as well as setting temporary variable values.

The function set for the RPB of the selection agent holds conditional comparative
information, prog2 , prog3 and variable-comparing functions. Function sets for the ADFs
include +, - and variable-specific variable-setting functions.

As with all other agents, after initial testing and development of sufficient function and
terminal sets, the “Pange Lingua Gloriosi” plainchant became the only fitness case.

7

4.4 Embryo

Gruau [11] has described a method in which genetic programming specifies the graph-
constructing operations necessary in growing an embryonic neuron into a full neural
network. Koza et al. [17] broadened Gruau’s concept so that genetic programming specifies
graph-constructing operations necessary in growing embryonic circuits. Works by these
authors often describe a single genetic programming agent operating on an embryo repre-
sented as some type of graph. This paper describes several distinct agents that operate on an
embryo not dependent on a graph representation.11 Instead, we have treated the embryo in
a manner outlined by [6] as described in Section 1.3. In particular, [6] suggests that GPmuse’s
agents operate on some portion of an “object” that is shared between all agents—this “ob-
ject” being an embryo that maps the agents’ instructions to music scores. Furthermore [6]
indicates the possibility for a hierarchy of fitness functions: fitness functions that corre-
spond to each agent may be loosely coupled to the fitness function that correspond to a
music score.12

After trios of individuals are selected according to homework-based fitness, a piece
of music unfolds by applying the instructions of the three agents in the trio in a predeter-
mined order resulting in a specific musical form. The musical form is based upon Josquin
des Pres’ “Kyrie” from Missa Pange Lingua [8] in which he excerpted portions of the “Pange
Lingua Gloriosi” for use as canti firmi. The actions upon the embryo proceed as follows (see
Figure 2):

Pange
Lingua
Gloriosi A'

A

B

'

'

'

ImitationPolyphony Selection

Selection Imitation

Selection Polyphony

Figure 2. Process flow in creating a piece of music.

“Pange Lingua Gloriosi” is given to the polyphony agent of the trio, which creates a four-
voice polyphony by composing three voices (α, β, γ) around the cantus firmus. Each com-
posed line is passed to the selection agent, which selects a subset of each line as a new cantus
firmus, totaling three new canti firmi (α’, β’, γ’): The first cantus firmus generated by the
selection agent (α’) is passed to the imitation agent, which creates a two-voice imitative
counterpoint (A). Likewise, the second such cantus firmus (β’) is treated by the imitation
agent’s rule set but has its output expressed in the two voices not used in the first case (A’).
The last cantus firmus generated by the selection agent (γ’)is returned to the polyphony

8

agent, which generates a four-voice polyphony (B) with which to close the piece .
The form roughly described by the above parameters is an A A’ B form.13 However, it is

possible for any section to have a length of zero.
Pieces generated in this fashion are scored by summing the number of elements at which

conditionals evaluate correctly and then dividing by the length of the entire array to gener-
ate the piece-based adjusted fitness.14

5. Results

All training runs as well as GPmuse runs used run parameters corresponding precisely to
those found in [15]: probability of reproduction: 10%; probability of crossover: 90%; maxi-
mum depth of an individual: 6; method of generation for initial population: ramped half-
and-half; maximum depth of an individual: 17; selection method: fitness.

The discussed result (Figure 3) was generated by the reranked best individuals in the 40th
generation of a run of 50 generations of 500 individuals per subpopulation. The piece’s
adjusted fitness was a perfect 1.0.

Figure 3. GPmuse result.

9

6. Discussion

In creating the result in Figure 4, the A and A’ sections described previously were set to a
length of zero. However, if the form of the generated material is analyzed in the same
fashion as one would analyze the form of a Western European-derived art music piece, the
generated music seems to have the form: A B A’ B’ A’’ B’’, corresponding to measures 1-2, 2-
5, 5-7, 7-9, 9-11 and 11-13.

These sections can be distinguished by their rhythmic activity and their span of pitches as
well as their melodic contour. The A sections15 all contain what appears to be a melodic
motive in which the highest voice rises to an E and then moves rapidly downward through
a sequence of fourths. B sections are concentrated in narrow bands of low pitches; each
contains the same rhythmically diverse pattern of unison pitch repetitions.

The presence of easily distinguishable thematic material in A and B sections has been a
surprising result because such small forms within the larger blocks (A A’ B)16 mandated by
GPmuse were neither induced by direct action of any of the three agents nor explicitly
rewarded by any of GPmuse’s fitness functions.

The reappearance, slightly altered, of previous musical material withstands compari-
son to the development of musical ideas as might be done by composers in the Western
European-derived tradition. The falling fourths sequence first appears in section A as an
active line above fairly static lower voices. In the A’ section, it has been harmonized in
full triads, creating a descending sequence of vertical sonorities. In the closing A sec-
tion, A’’, the repeated pitch pattern, consisting largely of fourths, is accompanied by a
parallel line a fourth away.

The example is transcribed in 3/4 time with an eighth-note pick-up largely due to the
near-constant presence of a pedal tone dotted-half note that is articulated at the beginning
of each measure. The combination of the bell-like pedal tones on downbeats and the occa-
sional burst of falling “chords” with a non-transposed motive yields music with an aural
resemblance to the piano music of Claude Debussy, an early 20th-century Impressionist
composer.

Even with strict adherence to the rules of [9], GPmuse has developed a few idiosyn-
crasies. Fux, for instance, never insisted that music be structured such that its perform-
ers be able to breathe, as vocal music was naturally performed by humans with finite
lung capacity. GPmuse, however, had no such requirements, and on occasion has com-
posed near-endless musical phrases that unfold for hundreds of eighth notes without
pause.

There have been other idiosyncrasies: In the discussed example, GPmuse expressed
the fourth voice (traditionally the bass line) with notes ranging from bass to high so-
prano range. Fux gives scant indication that voices must be constrained in their natural
ranges; such constraints were so obvious to Fux that they were not worthy of mention.
For a computer, however, such constraints must be explicitly programmed.

7. Conclusion

GPmuse has generated output that resembles the musical output of a specific niche of
Western European-derived musical literature. That a group of agents working with a subset
of 16th-century music theory produce music whose phenotype fits quite strongly into a
particular portion of 20th-century musical literature rather than the literature of the 16th-

10

century has been surprising. That simple explorations of 16th-century music theory rule set
space resulted in a different yet viable pre-existing musical type may support the argument
that not only can rules facilitate creativity but that creativity may adhere to rules.

This paper has also described the hybrid architecture and implementation of multiple-
agent GP system that was designed to produce highly-structured, coherent output (for this
application, musical scores). We implemented an embryo that works with diverse GP agents;
by doing so, we introduce additional organizational levels in genetic programming beyond
that implied by ADFs.

Further information and a recording of the score described in this paper are available at
the following URL: http://www-personal.engin.umich.edu/~daida/

Acknowledgments

We thank James Borders and Edward Parmentier for their musical expertise; Robert
Bertram for implementation of a “score”; Catherine Grasso, Steven Ross, Mary Simoni
and Stephen Stanhope for thought-provoking discussion; Donald Higman and William
Bolcom for the impetus to begin this exploration; the reviewers for their helpful comments.
We finally acknowledge the following people who have contributed to GPmuse: Amber
Pewe, Chau Doan, and Joshua Bueller.

Bibliography
[1] Aron, P., 1524. Toscanello in musica, Book 2, Ch. 16, trans. P. Bergquist, 1970, Colorado Springs:
Colorado College Music Press.
[2] Boden, M.A., 1992. The Creative Mind: Myths and Mechanisms, New York: BasicBooks.
[3] Boden, M.A., 1996. “Artificial genius,” Discover, 17(10), pp.104–113.
[4] Cage, J., 1973. Silence: Lectures and Writings, Middletown: Wesleyan University Press.
[5] Cope, D., 1991. Computers and Musical Style, A-R Editions, Inc.
[6] Daida, J.M., S.J. Ross, B.C. Hannan, 1995. “Biological symbiosis as a metaphor for computa-
tional hybridization,” Proceedings of the Sixth International Conference on Genetic Algorithms,
L.J. Eshelman (ed.), San Francisco: Morgan Kaufmann Publishers, Inc., pp. 328–335.
[7] Daida, J.M., C.S. Grasso, S.A. Stanhope, S.J. Ross, 1996. “Symbionticism and complex adaptive
systems I: Implications of having symbiosis occur in nature,” Proceedings of the Fifth Annual Confer-
ence on Evolutionary Programming, Cambridge: The MIT Press, in press.
[8] Josquin des Pres. Early 1500s. ed. 1979. London: Chester Music J. W. C.
[9] Fux, J.J., 1725. Gradus ad Parnassum, trans. Alfred Mann. 1971, The Study of Counterpoint. New
York: W.W. Norton & Company, Inc.
[10] Grout, D.J., C.V. Palisca, 1996. A History of Western Music, 5th edition., New York: W.W.
Norton & Company, Inc.
[11] Gruau, F., D. Whitley, 1993. “Adding learning to the cellular development of neural net-
works: Evolution and the Baldwin Effect,” Journal of Evolutionary Computation, 1(3), pp. 213–
233.
[12] Holtzman, S.R., 1994. Digital Mantras: The Languages of Abstract and Virtual Worlds, Cam-
bridge: The MIT Press.
[13] Jacob, B.L., 1995. “Composing with genetic algorithms,” Proceedings of the International Com-
puter Music Conference.
[14] Jacob, B.L., 1996. “Algorithmic composition as a model of creativity,” Organised Sound, 1(3).
[15] Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by Means of Natural
Selection, Cambridge: The MIT Press.

11

[16] Koza, J.R., 1994. Genetic Programming II: Automatic Discovery of Reusable Programs, Cambridge:
The MIT Press.
[17] Koza, J.R., F.H. Bennett III, D. Andre, M.A. Keane, 1996. “Automatic WYWIWYG design of
both the topology and component values of electrical circuits using genetic programming,” Genetic
Programming 1996: Proceedings of the First Annual Conference, J.R. Koza, D.E. Goldberg, D.B. Fogel,
and R.L. Riolo (eds.), Cambridge: The MIT Press, pp. 123–131.
[18] Putnam, J., 1996. “A grammar-based genetic programming technique applied to music genera-
tion,” Proceedings of the Fifth Annual Conference on Evolutionary Programming, Cambridge:
The MIT Press, in press.
[19] Soderlund, G.F. 1947. Direct Approach to Counterpoint in the 16th Century Style, New York:
F. S. Crofts & Co.
[20] Xenakis, I., 1992. Formalized music: Thought and Mathematics in Composition, revised
edition. Pendragon Press.
[21] Zarlino, G., 1558. Le istitutioni harmoniche, Part 3, trans. G.A. Marco and C.V. Palisca, 1968,
appears in The Art of Counterpoint, New Haven: Yale University Press.

Endnotes
1 The contrapuntal rules fill a small book. See [9].
2 In the larger field of artificial intelligence and computer music, D. Cope’s seminal work with

EMI (Experiments in Musical Intelligence) does a noteworthy job of mimicking different styles,
although it is arguable that it can create new styles. See [5] and [12].

3 Exercises from Fux’s book and discussions of his work are found in the writings of Haydn,
Mozart and Beethoven, among others. See [9], p.xi-xiii.

4 In the plural, canti firmi.
5 Common practice period begins roughly with the work of J. S. Bach. See [19].
6 For this paper, n usually equal to 4. n strictly greater than 2.
7 A conditional’s constant reflects the importance attributed to it by Fux and peer theoreticians.

Vertical-interval conditional criteria require pairs of voices.
8 Zarlino [21] here is more liberal than Fux [9]. GPmuse follows Zarlino’s consonance classifica-

tion.
9 When training on Fux’s canti firmi, the agent regularly achieved optimal solutions with its best

individual. In 20 runs with parameters as described in section 5, individuals converged towards opti-
mal solutions between generations 4 and 15.

10 When trained on the Fux canti firmi, the selection agent never performed at better than 75-80%
of optimal performance.

11 In the language of [6], an embryo is a shared artifact B.
12 “Loosely coupled” means that the fitness pertaining to a music score does not necessarily deter-

mine the fitness of each individual in an agent’s subpopulation.
13 A A’ B means that there are three sections to the piece. The first two are similar in form and/

or content while the last is dissimilar.
14 If the resulting score is greater than 1.0, it is rounded to 1.0.
15 A sections are A, A’, A’’. Similarly, B sections are B, B’, B’’.
16 Here, the A A’ B refers back to the form of Josquin’s “Kyrie.” See [8].

