A Java Collaborative I nterface for Genetic Programming
Applications: Image Analysisfor Scientific Inquiry

Tommaso F. Bersano-Begey, Jason M. Daida, John F. Vesecky and Frank L. Ludwig
The University of Michigan Artificial Intelligence Laboratory and Space Physics Research Laboratory
2455 Hayward Avenue Ann Arbor, Michigan 48109-2143
tombb@engin.umich.edu,dai da@eecs.umich.edu, jfv@umich.edu and fludwig@unix.sri.com

ABSTRACT

This paper discusses several key issues
involved in designing and using a Java
collaborative interface for genetic
programming applications over the
World Wide Web. We present our
implementation that has been used in a
new sysdem that asssts scientigs in
dassfying and extracting nove features
in remotdy sensed satelliteimagery. This
paper also identifies issuesin developing
a dass library that fadlitates rapid-
prototyping of such collaborative
graphical user interfaces for genetic
programming, and suggests how other
resear cher scould benefit from them.

1. Introduction

Inthe past severd years there hasbeen anincressing interest in
collaborative todls (eg., [3] [9]). In the scientific community,
collaborative tools and groupware have been used modly In
sientific domains in which the geographica digance between
researchersand data.or between various researchershasbeen an
obgacle. Collaborative interfaces have dready proven to be a
successful contribution to space physics research, such as the

Upper Atmosphere Research Collaboratory (UARC) [3], and

to other fidds, such as medicd imaging [7]. Neverthdess the

use of callaborativeinterfaceshas not yet been introduced to the
field of Genetic Programming (GP), in part because many GP
projects have not reguired dose, or perhaps even Smultaneous,
interactions between different reseerchers

In this paper, however, we discuss crcumdances under
which a dose interaction between reseerchers from different
beckgrounds (eg., various domain-specific backgrounds and
computer programming) might be desirable (if not essentid),
ubsequently motivating the use of acallaborativetoal.

Conssquently, we have implemented a collaborative
interface designed with severd key featuresin mind:

1 World Wide Web (WWW or Web) digribution, which
enables callaboration through authentication by mogt any
computer on the Internet.

2. Graphicd and interactive capebilities, which fadlitetes
manipulation of complex data sats, often needed by

* A few recart Jvainterfeces dso dlow usarsto run GP on the Web [8][9], but
arenot designed for collaboration.

domain gpplications, and dlows for immediate diglay
and andysisof runresuits.

3. Shared data, which dlows dl ressarchers in the teem to
work on the same data s2ts and execute runs remotdy
regardless of timeand location.

4. A messaging system, which enables dl usersto send data
and communicate remotely.

5. A flexible Object-Oriented (OO) design, which alows our
interface to fit most needs and resources

The focus of this paper is on the issues involved in our

designing and using a callaborative todl thet is build around a

GP andimage dassfication project and is shered over the Web.

The res of this pgper is organized as fallows. In Section 2, we

introduce the concept of incompletdy specified problems as a

driver for collaboration, and other rdlevant concepts useful for

our discusson. In Section 3, we then give an overview of the
overdl processinvolved in our research and discuss how it has
improved with the use of our callaborative interface. In Section

4, we discuss important issues involved with the design,

implementation, and performance of such interface. In Section

5 we preent the segparde components of our initid

implementation. Then, in Section 6, we discuss how smilar

interfaces could be adgpted to benefit other GP research
projects. Findly, in Section 7, we state our conclusons.

2. Background and Relevant Concepts

In our invedtigations, we have gpplied genetic progranming to
problems in other domains outside of computer science (i.e,
polar oceanography, meteorology). We have often encountered
dtutions in which some of the invedtigators have a computer
stience expertise, while others have expertise in the scientific
domain in which the problem & hand is posed.

| dedlly, computer-science investigators are given adear and
accurate definition of a domain-science problem, so that they
can independently and correctly set up and run a GP processfor
a specific gpplication. The GP-evolved code is then often used
as afinished product by the domain scientists, who often do
nead to be concerned about how such code was obtained.

In an ided Stuation, the domain investigators would not
have to participate in the process of GP evolution of code, and
the computer-stience investigators would not have to
participate in the origind formulation of the domain problem.
Therefore, collaboration would not need to be a centrd issue.

In practice, however, a dear and accurate definition of the
doman problem is often nat forthcoming, and interaction
between different researchers becomes akey concern. We have
found collaboration helpful, where both computer- and domain-
stience invedigators interact to modify training s&s (eg.,
fitness cases) or to better assesstheresults of evolved code.

21 Incompletely Specified Problems

Asan ad to the discussion of the topics aheed, we describe the
notion of incompletely specified problems. In paticular, we

focus on how such problems can reault in incomplete fitness
sets used in GP, where we define an incompletely specified
fitness st as a fithess st that does not exhaudivey or
aufficiently cover dl rlevant casesof the domain problem.

This could be due to severd reasons, such as an incomplete
knowledge of the under scrutiny, varying
interpretations of what makes up the problem, or the need to
reduce the number of fitness cases to increase computationa
gpeed. In an incompletey specified problem, a score might not
be a reliable enough measure of success equd scores might
lead to subgdantidly different results and even lower scores
might yied better resultsthan higher ones.

This idea can be undersood through a smple example.
Given ten fitness cases and two individuds that score eight and
five respectively (see Fgure 1), it is easy to determine thet
individud 11 is probably better than individud 12 (a score of
8/10 versusascore of 5/10).

Figure 1. Unrdlighility of scoreinincompletely specified problems

Ten fitness-cases:
I ndividual |1: o--0000000 score 8/ 10
I'ndi vidual 12: oooo---0-- score 5/10
Four fitness-cases:
Individual 11: 0--0000000 SCOre 2/ 4
I ndividual |2: 0000...,.. score 4/ 4

Hits are represented with an “0", misses with a*-”

However, assume thet, accidentdly, the previous trid was
repeated exactly, except only the firgt four cases were used. In
that case, 11 would appear to be worse than 12 (2/4 vs 4/4),
because of the digtribution of hitswithin thefitness set.

22 TheRodeof Scaffolding

In our previous work, we have used scaffolding as a metaphor
in approaching our inability to completdy specify our domain
problem [1]. Ordinarily, in developing code for scientific
computation, we can identify three main geps. In the firg, the

GP within a larger scientific research project, and to identify
different needs for collaboration within each.

The flow diagram on the left is perhaps the most common
and generic one. It consists of three main consecutive steps.
First, the domain scientist arrives to a clear definition of a
problem. Then, a computer scientist is given such definition,
translates it in GP terms (operators, terminals and fitness cases)
and runs the GP system until a satisfactory s-expression (code)
is obtained. Finally, the resulting code is given back to the
domain scientist, which incorporates it in his or her research.

The diagram in the middle is very similar to the previous
one, but the given definition is either too complex or too vague
to be completely understood by the computer scientist (or the
problem to be analyzed is not yet well understood, thus lacking
a straightforward definition). Thus, within a similar framework,
the computer scientist will need the domain scientist's active
participation every time the fithess cases have to be re-selected
or an s-expression performance has to be assessed.

The third type of process, displayed on the right of Figure 2,
is less common, and is the one used by our image analysis
application. This is similar to the second type just described,
except that the domain scientist is not able to define the domain
problem, and uses GP in the process of hypothesis creation and
refinement, in the attempt to reach a correct definition through
successive approximations. In this latter scheme, the need for
collaboration between scientists is even greater than in the
previous scheme.

3. Application Overview

Our specific application has involved the design and
implementation of an image analysis and pattern recognition
tool, which uses GP to extract and classify novel features in
satellite images [1]. Through successive hypothesis and runs,
our system has been designed to produce custom-tailored
algorithms for image pattern recognition.

Because the novel features to be extracted are often difficult
to identify and lack a specific and complete definition [4], GP is

program’s task is defined. In the second, the program is writtarsed within a scaffolding system in the attempt to arrive to an
and goes through a series of steps (debug, test, re-write, agcurate definition through successive approximations. In other
compile) until it is conforming to the initial task specifications. words, after a tentative definition of a pattern is given (partially
In the third step, the program is tested on more specific afy selecting and classifying a small part of an image into a
complex sets of data. Results are then processed, analyzed, fandss set), the genetic programming system produces code to
depending on the program’'s performance, the initial taskeflect such description. The code obtained is then used over a
definiton could be improved and the developing procestarger image, and the domain scientist visually inspects the
repeated. In GP terms, step 1 (the task definition) is partialiesulting output, to decide how to improve the original
represented by the fithess case selection, and step 2 is dbgpothesis or definition (and thus the fithess set) and reiterate.
through GP runs. The collaborative interface described here was built around
Often domain scientists might decide to improve theitthis image analysis problem, and one of its goals was to
original selection of fitness cases after observing theimplify a complex process, which has required a close
performance of an individual program over a larger set of datanteraction between researchers with different backgrounds and
For instance, in the example given in Section 2.1, a scientisften in different locations and has been complicated by the
could decide to add the remaining fitness cases (e.g., goiiggues previously described. Although our collaborative
from 4 to 10 cases). After a new fitness set is created, theterface is still in its first revision, we were able to significantly
process can be repeated by performing a new run and analyzingprove the general process of our research project. This was
the resullt. accomplished in mainly by reducing dead time between
Other ways to expand or improve a fitness set (whichlifferent steps of the overall process and by simplifying the
partially defines the problem to the genetic programmingomplex task of finess cases selection. Shared data, for
process) are to eliminate the least useful or the most misleadimgtance, eliminated the need for accessing and moving data
fitness cases while adding the most differentiating ones. from different computers, platforms or locations. Refer to [1]
23 Frameworksaf collaboration in GP projects for details on the classification task and GP agent involved, and

Figure 2 displays three main schemes in the use of GP ftoor [10] for an evaluation of the classification resullts.

scientific applications, which are presented in increasing ord&l Stepswithinthe Core GP process
of complexity and collaboration, and decreasing order of The gray areas in Figure 2 represent the core of the genetic
occurrence. This distinction is introduced to discuss the role girogramming system itself. In this context, we further divide

Complex domain

General GP or incomplete

description
4 N

Attempt o set up a
GP problem from
the description

Set up aGP problem
from the description

Help evaluate

attempt to evaluate
s-expressions

ﬂe{p decide how to
set up aGP problem

Tncorporate and Use

Incorporate and use
the s-expresson

Use s-expressionsin Use sexpressionsin

the application the application

Computer Scientist

[Domain Scientist J

Scaffolding of Hypothesis
creation/refinement using GP

Giveatentative (hypothesis)
description

Attempt to set up a
GP problem from
the description

Help decide how to set up a
GPproblem

Attempt to select

Help evaluate
sexpressions

Incorporate and use
the s-expression

Figure 2. A flow diagram of different processesinvalving the crestion of GP gpplications

this processin three Seps, to hdp in the andlysis and discussion
of specific steps in our gpplication. We examine the different
tasks required by esch dep both before and after the
introduction of our collaborative inteface to dlow an
as=ssment of the utility of such interface to our project. This
divison is introduced merely to amplify the discusson of the
topics presented in this paper, and ignores other important
factors such as the cregtion of problem-specific code and the
uccessve possiblerevisonsof it.

32 PreProcessingand Fithessset creation

The task of the GP s-expresson in our gpplication isto build a
classfication dgorithm from a st of texture filters of a given
image (where it would be too lengthy or difficult for ahuman to
do). Consequently, thetraining or fitness set must reflect closdy
these conditions. However, due to memory and speed issues,
only afew pixels out of the entire image can be usad [1]. Thus,
the mogt ggnificant and leest controversd pixes must be
respectively extracted from eech filter.

Without a spedific grgphicd interface, fitness sdection
involved observing animage, marking x and y positions of each
pixel and locatetheir valuein largetext versons of eachimage.

A graphicd interface dlowed us to load, convert and zoom
in and out of an image, sdlect and desdlect a pixd in dl filters
by amply dicking on it, and, in the same way, endbled any of
the domain scientigts collaborate directly and ingantly in the
fitness st sdection from remote locations.

33 GPprocessingand runs

Anadvantage of using agrgphica interface over the Webis
that any user that is authenticated to the systemn can a o execute
a GP run remotdy, observe the best resulting s-expresson and
other run parameters, and share the results with cthers. The
interface dlows different GP parameters and options to be
changed, and results can be displayed in agraphicd interactive
format (eg., graphs, editebletext, etc.)
34 Pog-Processing and Evaluation of results
Pog-Processingisacriticd part of the above process. Indeed, as
the dandard fitness score is no longer an entirely religble
messure of SUCCESS, it is necessary to evauae the s-expresson
on a whole out-of-sample subimeage (rather than just on few

pixdls). Then, an on-Ste domain scientist hasto visudly inspect
the subimage and find corrdation between geographica
features and the output of theindividud.

Agan, the ue of a cdlaboraive inteface dlows the
domain scientists to see the grgphica output of an sexpression
afew minutes after the fitness st is cregted, and enables them
to compare it with the origind image (and perhaps with an
annotated map of the location in question), discussit with others
and decide how to improve either the fitness set selection or the
GPrun parameters

4. Implementation & Performance

41 Platform Independence

One of the advantages of using the Javalanguage to implement

a cdllaborative interface is its platform independence. The
inteface operates in essartidly the same way on PC,
Macintosh, and UNIX and should do the same on any other

EPTSIH that hes a Java interpreter or uses Netscape?.x or
igher.

For a ressarch team, platform-i means that
esch researcher could use a different plaform, and perhgps
evenwork & home. Also, different seps of aressarch are often
divided over many platforms, and require data to be moved and
converted from one platform to ancther. Our interface can help
diminate such time-consuming intermediate steps.

42 OO0 & Flexiblel mplementation

The current implementation is a Java Applet, which uses URL
connections to recaive data, and uses Common Gateway
Interface (CGI) scripts to send data and execute commands.
The minimum requirement for this implementation is a CGI
directory. Each user should have access to Netscgpe2.x or
higher and be connected to the Web.

However, because of Java flexibility and an OO
implementation, the same code can work in severd different
modesand with severd different requirements. We are building
ast of generdized dasses which implement useful inheritance
of dassesand dlow for atrangparent, OO design.

Main groups of dasses are regpongble for [nput/Output
(1/0) connections, for grgphic display of data (charts, graphs,
and interactive bar charts), cusomized windows ec.

Low-leve dasses, such asthe 1/O dass or the cusomized
windows class, are either referenced, indantiated or inherited by
other higher level dasses(i.e, chat windows, GP shdlls etc.).

Furthermore, the I/O dassimplements a broader protocol of
communication with other dasses than conventiond 1/O. This
dlowsto specify or disegard additiond parameters pecifictoa
connection type (i.e, CGlI, file-sysem, etc.) while hiding the
actud connection implementation. Thus, dl classes requesting
some form of 1/0 will interface in essertidly the same way
regard ess of the available connection type.

421 Implementation Options

Due to an OO dedgn and to Java flexibility, severd
implementation options are avalddle. Depending on the

implementers’ means and needs, the same basic framew
and code can be adapted to fit most circumstances. Table,

displays the available options and their relative advantages.

RumingMode Webpege Sand-done Locd Applet Compiled
Connedtion CGl Qliet/Saver FleSygem Clie/Saver
Faform-ind. YES YES YES NO
Bxtension WWW WWW, LAN LAN or SngeUsr WWW/LAN
Callzborative YES YES onlythrouhFS YES
Seourity SaureWeb Sv. Network LANES Network
Connedion Type URL/Pogt, Gat Sockds FleSygem (rw,x) Sockets
Nework Treffic good for lowtr. Low-high (nonelLAN-FS) low-high
Usr Netscgpe>=20 Network comn. Netscge>=20 Nework com.
recLirements
Save re CGl dredtory Saver (noSave) Save

program Pogan

Spesd Interpreted interpreted interpreted compiled (fadt)

Table 1. Summary of Implementation options cisoussed in Sedtion 4.

422 JavaRunning Options
Java offers several options besides Web applets.

the local file system to load, save and execute files. And while a
stand-alone application cannot make URL connections, it can
use both socket network connections and the local file system.

Again, all these options can be incorporated in the same OO
design, or even left as run-time choices, so that the same code
can be used in any of the above modes. In an OO design, for
instance, a custom /O class, which currently implements URL
connections, can be substitute with (or instantiated as) another
I/O class that implements the client end of a client/server
connection, or a local file 1/O connection.

Using URL connections has the advantage of using the
existing Web server to implement the serving side of the
network communication, but message broadcasting has to go
through CGI and perhaps even the file-system, which due to the
high overhead is not ideal for high traffic communication.

Client/server connections, both from Netscape or as a stand-
alone application, are preferable for higher message traffic, but
y require writing a custom server that must continuously run

a computer and on the network, which is often an
undesirable consequence (and might not be allowed by the
Internet provider). Local applets can work essentially in the
same way as remote ones, by using the local file system in the
same way as a CGl directory (or use commands like the UNIX
talk to communicate).

4.3 Codllaborative Desgn

While the interface does not share objects, it provides shared
data and messaging. Both are currently implemented by
accessing common files through CGI. The data is then copied
locally to minimize network traffic, and is updated by request.

While some operating systems provide means to easily
share distributed objects, these means are still platform
dependent. Also, sharing an object could place a substantial
overhead on the network, since objects are larger than the data
they display.

Our current implementation was based on the premise of
low traffic needs and considered request-for-updates an
acceptable mean for sharing data. However, a client/server
implementation would allow for direct broadcasting, and
eliminate the need for requested updates. The collaborative
interface that was developed for this project implements a chat

_ Applets can run without Netscape or applet viewers, bynterface and messaging system on the same structure of
simply adding axai n() function to the original code. Our request-for-updates and shared data.

interface, for instance, contains bothrmai n() and an

44 Security

i nit() function, and is thus both a Web Java applet and) . . .
stand-alone Java application. As a stand-alone application, jepending on the resources available and the implementation
will lose its ability to make URL connections, but it will now be chosen, security might become a very important issue. Sharing
allowed to make any other network connection (e.g.2n application over the Web means that anyone in the world
client/server) and to load or save files to the local file system. could possibly use it and have access to the shared data.

Another relevant distinction is that between local applets There are several ways to get around this. The easiest and
and remote applets. An applet becomes local when it is loadgapst effective one is to use a secure server that requires
from the local file system rather than from the network. Locafuthentication to access a given address (or only accepts given
applets can use the local file system, but cannot make URL B¢ addresses). Another option is to include authentication in the
network connections. Remote” applets, instead, cannot accé<g! scripts and in the Java code, and encrypt the data when
the local file system, but are allowed to make URL or networkeeded. Also, Requesting IP addresses can be observed and
connections with the server they are loaded from. either the CGlI scripts or the Java code can decide to respond

Furthermore, Java applications can be left as byte-code afgly to selected IP addresses. Since we did not have access to a
run from a Java interpreter, thus retaining their platforn$ecure Web server, we have implemented security through
independence, or be compiled (if the compiler is available) t§Sing Java code and CGI scripts.
become faster, platform-dependent executables. 45 GP Parformance

423 Connection Type In implementing the interface for our project, we also decided

As mentioned above, different types of applets allow differerie Use & GP kemnel written i @ improve performance and to
connection options. A remote Web applet can be shared over

the WWW, and can make both URL and socket connections
with the server from which it originates. A local applet can usé TheCkemel usedislilgp. See[6].

avoid deding with an interpreted language remotdy.
Previoudy, in fact, we worked with a LISP GP kerndl, which
wasdow in dedling with large arrays. The GP kernd could dso
have been implemented in Java, but because Java is an
interpreted language (thus dower than a compiled language)
and paformance is a centrd issue in genetic programming, we
chosenat to.

Unfortunately, while LISP does dlow insartions of specific
s-expressons(LISP programs) in apopulation by smply typing
them, the verson of the C kernd we had on hand did not.
Consaquently, we implemented a program thet dlows users to
type ay sexpresson and introduce it (seed it) in the GP
population of a given run. Besides the advantages of such an
option, this modifications gave us the dbility to test specific GP
operators and other sections of problem gpedific code
Furthermore, with this program, s-expressons can be stored as
text and re-used or later re-tested on different fitness sets

The overdl time reguired to evauate a s-expression over an
image containing 16,384 pixes (128 x 128) is approximately
15 seconds, and a generic run udng atraining st of 53 fitness
casss, 20 generations and 200 individua stakeslessthan 1 min.

5. Interface Components

Thefirg verson of our collaborative interface consgts of three
parts: an interface for remote GP runs, agraphicd interface for
creding fitness cases and manipulating images, and a cha
window. This section brigfly covers the functiondity of each
part, and how they relate to the process described in Section 2.

Figure 3. TheRemote GP Shell.

ﬂmmmm " '._ E:IH
[=[-[2][a IEEEIII
omsen Pl

51 TheRemote GP Shdl
This component enables users to specify GP run

On the right side of Figure 3, a large text window displays
the output of a run as it proceeds, display s-expressions, and can
load the results of previous runs, and allow text to be copied to
the local clipboard to be used by other applications.

5.2 ThelmageProcessng Tool:

The Image Processing tool is the most problem-specific

component of the interface, and was designed to manipulate
and extract features for a fitness set specific to our domain
problem. Figure 4 shows how the interface appears on a Sun
Sparc 20 running Solaris.

Figur e 4. Thelmege Processing Tool.

[Hot upad b

peEfd of T3 w3 w103
Lead | Sava | Wi | Delete

a5 el 0 258

A displays a selection of several
filters from a satellite image, and allows users to move and
resize the zoom area. A smaller window (on the bottom right)
displays a selected portion of the image above, and additional
information about the currently highlighted pixel..

A Fitness case consists of a set of pixels [1], each taken

parameters, execute GP runs, display a run’s statistid®m the same relative coordinates in each of the filters). After
(either the current user's or someone else’s) andheir selection, pixels are marked on the image and zoom
visualize outputs produced by an s-expression. Figure ®indows, and stored in the “Fitness Cases” window, which
shows how the interface appears on a PC runningllows to undo and move any of the selections by a simple drag
Windows NT.At the top left of Figure 3, a load button and drop mechanism. Highlighting a fitness case In this
allows to read the shared output of a s-expression (e.gyvindow highlights the respective pixels in the image and zoom
a large text version of an image), convert it to an imag&vindow, to simplify deletion and selection processes.

format, and display it. Directly below the image, the user is Finally, the last window allows to specify how each fitness
allowed to modify various parameters for a GP run (we havease (pixel) is to be classified (ie., posive or negative
implemented bounds to the number of generations, populatigéample), as well as providing the option of annotations for
size and tree depth to avoid attacks by resource exhaustion). €ach and any of the classification keys. These keys allow to

asodiate different colors to different pixes in the image, and
arecdled by reference, so that if the color of adassification key
is changed, the respective pixds and fitness cases change
accordingly.

53 TheChat Window:

The chat window has been implemented through CGI scripts,
but we are planning to switch to a dient/server implementation
soon. Again, arequest for update (using a threed thet awakens
a given time intervals) enables users to receive messages The
chat window dlows users to communicate through messages,
by accessing a common file. While this implementation is not
very efident, it only requiresa CGlI directory, does hot assume
any other spedific resource and its performance is currently
aufficient for our project.

6. Applicationstoa Generic GPProject

Through the previous sections, we have discussed how a
Java collaborative interface has been flexibly
implemented to adapt to most needs and resources.
Furthermore, we have presented a custom interface built
around our GP and Image processing project as an
example. In this section, we summarize issues justifying
the use of similar interfaces in other GP projects, and
how the interface presented in this paper can be changed
to fit most needs.

The driving issues for a GP collaborative interface indude
the need for complex data manipulaion (mainly for fitness st
credtion) and for collaborative data anadlyss. The main aspects
of the interface presanted in this paper are callaboration,
accessibility, and graphicd interactive display of data

Under spedific crcumstances, a computer scientist might
benefit from the expertise of gecific domain scentigs in
defining the problem or andyzing the results For instance,
casssinwhich fitness set cregtion is particularly complex, or the
domain problem isincompletely specified. Also, acollaborative
interfacewould dlow domain scientigsto easily integrate inthe
hypothesis creation and refinement process (help in sdecting
fitness cases and andyzing the reaults). Since our interface is
digributed and operates through the Web, it can provide al
members of a ressarch team easy access to dl geps of the
research process, regardless of their location or resources.

As discussd in Section 4, only one of the three main
components of our interface could not be generdized and used
in other GP project, namdy the fithess st cregtor, or image
processing tool. This is because fitness cases can be very
gpedific to the type of data on which GP will act on. This
component would most likely be customized and re-written for
eech goplicaion. The other components of the current
implementation (the chat window and the remaote GP shdll) can
be easily generdized and used in mogt other GP domains
Many GP applications share the same type of running
parameters, and produce text s-expressonsas outpu.

A fourth component, which in our case was incorporated in
the remote GP shdl, is a todl to help evduate sexpressons
over larger or different sets of data (for which a smple score
might not be sufficient or available). In the more canonicd GP
examples of the artificid ant and the linear regression problems
[2], for ingtance, this might involve visudizing the resultsin an
animation and in a Cartesan graph respectively, while in our

7. Concluson

We have presented an interface which allows scientists to
use GP collaboratively, and is designed to be accessible
(platform-independent, Web distributed) and to work within
several resource configurations. Furthermore, we have
presented circumstances under which GP applications require
or benefit from both collaboration between scientists and other
features such as graphical and interactive interfaces.

The interface we have implemented allowed to speed up the
process involved in our research significantly, mainly by
reducing dead time between different steps of the overall
process (collaboration) and by simplifying the complex task of
fitness cases selection (graphical interface). Shared data, for
instance, eliminated the need for accessing and moving data
from different computers, platforms or locations.

We have then addressed issues in security, implementation
and performance, and suggested how similar GP collaborative
interfaces could benefit other research groups working on
different types of GP projects. For further information, please
see http:/Aww-personal.engin.umich.edu/~daida/.

Acknowledgments

This research has been funded by a grant from the Office of
Naval Research. We appreciate the contributions from the
following people: E. Durfee, Q. Stout (U-M), R. Onstott
(ERIM). We also thank these other individuals for their
assistance: S. Ross, C. Grasso, S. Stanhope, R. Bertram, J.
Palito, S. Frazier, D. Batey, and A. & M. Bersano-Begey.

Bibliography

[1] Daida, Jason. M., et al. 1996. Algorithm Discovery Using
the Genetic Programming Paradigm: Extracting Low-
Contrast Curvilinear Features from SAR Images of Arctic
Ice. In, P. Angeline and K. Kinnear, Jr. (elgvances in
Genetic Programming 1. Cambridge, MA: The MIT Press. Pp
417-442.

[2] Koza, John. R. 199@enetic Programming; on the Programming
of Computers by Means of Natural Selection. Cambridge, MA: MIT
Press

[3] Prakash, Atul and H. S. Shim, 1994. DistView: Support for
Building Efficient Collaborative Applications using
Replicated Objects. Ifhe 1994 ACM Conference on Computer-
Supported Cooperative Work. The ACM Press, pp. 153-164.

[4] Congalton, R. G. 1991. A Review of Assessing the
Accuracy of Classifications of Remotely Sensed Data. In
Remote Sensing of the Environment, 37:1. pp. 35-36.

[5] Elis, C.A., S. J. Gibbs, and G.L.Rein 1991. Groupware:
Some Issues and Experiendammunications of the ACM,
pp. 38-51.

[6] http://isl.cps.msu.edu/GA/software/lil-gp/

[7] http:/Ammw.si.umich.edu/~weymouth/Medical-Collab/

[8] ftp:/fisl.cps.msu.edu/pub/GAlliigp/viewer.txt

[9] http:/Amww.ith.ee.ethz.ch/~gerber

[10] Daida, J. M., et al. 1996. Ice Roughness Classification and
ERS SAR imagery of Arctic Sea Ice: Evaluation of
Feature-Extraction Algorithm by Genetic Programming. In
Proceedings of the 1996 IGARSS, Washington, IEEE Press, pp.
1520-1522.

case it involved displaying an image. In any case, Java’s audio,
video and graphical capabiliies can simplify the task of
displaying and analyzing such resullts.

