
A Java Collaborative Interface for Genetic Programming
Applications: Image Analysis for Scientific Inquiry

Tommaso F. Bersano-Begey, Jason M. Daida, John F. Vesecky and Frank L. Ludwig
The University of Michigan Artificial Intelligence Laboratory and Space Physics Research Laboratory

2455 Hayward Avenue Ann Arbor, Michigan 48109-2143

tombb@engin.umich.edu,daida@eecs.umich.edu, jfv@umich.edu and fludwig@unix.sri.com

ABSTRACT
This paper discusses several key issues
involved in designing and using a Java
collaborative interface for genetic
programming applications over the
World Wide Web. We present our
implementation that has been used in a
new system that assists scientists in
classifying and extracting novel features
in remotely sensed satellite imagery. This
paper also identifies issues in developing
a class library that facilitates rapid-
prototyping of such collaborative
graphical user interfaces for genetic
programming, and suggests how other
researchers could benefit from them.

1. Introduction
In the past several years, there has been an increasing interest in
collaborative tools (e.g., [3] [5]). In the scientific community,
collaborative tools and groupware have been used mostly in
scientific domains in which the geographical distance between
researchers and data or between various researchers has been an
obstacle. Collaborative interfaces have already proven to be a
successful contribution to space physics research, such as the
Upper Atmosphere Research Collaboratory (UARC) [3], and
to other fields, such as medical imaging [7]. Nevertheless, the
use of collaborative interfaces has not yet been introduced to the
field of Genetic Programming (GP), in part because many GP
projects have not required close, or perhaps even simultaneous,
interactions between different researchers.

In this paper, however, we discuss circumstances under
which a close interaction between researchers from different
backgrounds (e.g., various domain-specific backgrounds and
computer programming) might be desirable (if not essential),
subsequently motivating the use of a collaborative tool.

Consequently, we have implemented a collaborative
interface designed with several key features in mind:
1. World Wide Web (WWW or Web) distribution, which

enables collaboration through authentication by most any
computer on the Internet.1

2. Graphical and interactive capabilities, which facilitates
manipulation of complex data sets, often needed by

1 A few recent Java interfaces also allow users to run GP on the Web [8][9], but
are not designed for collaboration.

domain applications, and allows for immediate display
and analysis of run results.

3. Shared data, which allows all researchers in the team to
work on the same data sets and execute runs remotely
regardless of time and location.

4. A messaging system, which enables all users to send data
and communicate remotely.

5. A flexible Object-Oriented (OO) design, which allows our
interface to fit most needs and resources.

The focus of this paper is on the issues involved in our
designing and using a collaborative tool that is build around a
GP and image classification project and is shared over the Web.
The rest of this paper is organized as follows. In Section 2, we
introduce the concept of incompletely specified problems as a
driver for collaboration, and other relevant concepts useful for
our discussion. In Section 3, we then give an overview of the
overall process involved in our research and discuss how it has
improved with the use of our collaborative interface. In Section
4, we discuss important issues involved with the design,
implementation, and performance of such interface. In Section
5, we present the separate components of our initial
implementation. Then, in Section 6, we discuss how similar
interfaces could be adapted to benefit other GP research
projects. Finally, in Section 7, we state our conclusions.

2. Background and Relevant Concepts
In our investigations, we have applied genetic programming to
problems in other domains outside of computer science (i.e.,
polar oceanography, meteorology). We have often encountered
situations in which some of the investigators have a computer
science expertise, while others have expertise in the scientific
domain in which the problem at hand is posed.

Ideally, computer-science investigators are given a clear and
accurate definition of a domain-science problem, so that they
can independently and correctly set up and run a GP process for
a specific application. The GP-evolved code is then often used
as a finished product by the domain scientists, who often do
need to be concerned about how such code was obtained.

In an ideal situation, the domain investigators would not
have to participate in the process of GP evolution of code, and
the computer-science investigators would not have to
participate in the original formulation of the domain problem.
Therefore, collaboration would not need to be a central issue.

In practice, however, a clear and accurate definition of the
domain problem is often not forthcoming, and interaction
between different researchers becomes a key concern. We have
found collaboration helpful, where both computer- and domain-
science investigators interact to modify training sets (e.g.,
fitness cases) or to better assess the results of evolved code.

2.1 Incompletely Specified Problems
As an aid to the discussion of the topics ahead, we describe the
notion of incompletely specified problems. In particular, we

focus on how such problems can result in incomplete fitness
sets used in GP, where we define an incompletely specified
fitness set as a fitness set that does not exhaustively or
sufficiently cover all relevant cases of the domain problem.

This could be due to several reasons, such as an incomplete
knowledge of the phenomenon under scrutiny, varying
interpretations of what makes up the problem, or the need to
reduce the number of fitness cases to increase computational
speed. In an incompletely specified problem, a score might not
be a reliable enough measure of success: equal scores might
lead to substantially different results and even lower scores
might yield better results than higher ones.

This idea can be understood through a simple example.
Given ten fitness cases and two individuals that score eight and
five respectively (see Figure 1), it is easy to determine that
individual I1 is probably better than individual I2 (a score of
8/10 versus a score of 5/10).

Figure 1. Unreliability of score in incompletely specified problems

However, assume that, accidentally, the previous trial was
repeated exactly, except only the first four cases were used. In
that case, I1 would appear to be worse than I2 (2/4 vs. 4/4),
because of the distribution of hits within the fitness set.

2.2 The Role of Scaffolding
In our previous work, we have used scaffolding as a metaphor
in approaching our inability to completely specify our domain
problem [1]. Ordinarily, in developing code for scientific
computation, we can identify three main steps. In the first, the
program’s task is defined. In the second, the program is written
and goes through a series of steps (debug, test, re-write, re-
compile) until it is conforming to the initial task specifications.
In the third step, the program is tested on more specific and
complex sets of data. Results are then processed, analyzed, and
depending on the program’s performance, the initial task
definition could be improved and the developing process
repeated. In GP terms, step 1 (the task definition) is partially
represented by the fitness case selection, and step 2 is done
through GP runs.

Often domain scientists might decide to improve their
original selection of fitness cases after observing the
performance of an individual program over a larger set of data.
For instance, in the example given in Section 2.1, a scientist
could decide to add the remaining fitness cases (e.g., going
from 4 to 10 cases). After a new fitness set is created, the
process can be repeated by performing a new run and analyzing
the result.

Other ways to expand or improve a fitness set (which
partially defines the problem to the genetic programming
process) are to eliminate the least useful or the most misleading
fitness cases while adding the most differentiating ones.

2.3 Frameworks of collaboration in GP projects
Figure 2 displays three main schemes in the use of GP for
scientific applications, which are presented in increasing order
of complexity and collaboration, and decreasing order of
occurrence. This distinction is introduced to discuss the role of

GP within a larger scientific research project, and to identify
different needs for collaboration within each.

The flow diagram on the left is perhaps the most common
and generic one. It consists of three main consecutive steps.
First, the domain scientist arrives to a clear definition of a
problem. Then, a computer scientist is given such definition,
translates it in GP terms (operators, terminals and fitness cases)
and runs the GP system until a satisfactory s-expression (code)
is obtained. Finally, the resulting code is given back to the
domain scientist, which incorporates it in his or her research.

The diagram in the middle is very similar to the previous
one, but the given definition is either too complex or too vague
to be completely understood by the computer scientist (or the
problem to be analyzed is not yet well understood, thus lacking
a straightforward definition). Thus, within a similar framework,
the computer scientist will need the domain scientist’s active
participation every time the fitness cases have to be re-selected
or an s-expression performance has to be assessed.

The third type of process, displayed on the right of Figure 2,
is less common, and is the one used by our image analysis
application. This is similar to the second type just described,
except that the domain scientist is not able to define the domain
problem, and uses GP in the process of hypothesis creation and
refinement, in the attempt to reach a correct definition through
successive approximations. In this latter scheme, the need for
collaboration between scientists is even greater than in the
previous scheme.

3. Application Overview
Our specific application has involved the design and
implementation of an image analysis and pattern recognition
tool, which uses GP to extract and classify novel features in
satellite images [1]. Through successive hypothesis and runs,
our system has been designed to produce custom-tailored
algorithms for image pattern recognition.

Because the novel features to be extracted are often difficult
to identify and lack a specific and complete definition [4], GP is
used within a scaffolding system in the attempt to arrive to an
accurate definition through successive approximations. In other
words, after a tentative definition of a pattern is given (partially
by selecting and classifying a small part of an image into a
fitness set), the genetic programming system produces code to
reflect such description. The code obtained is then used over a
larger image, and the domain scientist visually inspects the
resulting output, to decide how to improve the original
hypothesis or definition (and thus the fitness set) and reiterate.

The collaborative interface described here was built around
this image analysis problem, and one of its goals was to
simplify a complex process, which has required a close
interaction between researchers with different backgrounds and
often in different locations and has been complicated by the
issues previously described. Although our collaborative
interface is still in its first revision, we were able to significantly
improve the general process of our research project. This was
accomplished in mainly by reducing dead time between
different steps of the overall process and by simplifying the
complex task of fitness cases selection. Shared data, for
instance, eliminated the need for accessing and moving data
from different computers, platforms or locations. Refer to [1]
for details on the classification task and GP agent involved, and
to [10] for an evaluation of the classification results.

3.1 Steps within the Core GP process
The gray areas in Figure 2 represent the core of the genetic

programming system itself. In this context, we further divide

Ten fitness-cases:
Individual I1: o--ooooooo score 8/10
Individual I2: oooo---o-- score 5/10

Four fitness-cases:
Individual I1: o--ooooooo score 2/4
Individual I2: oooo---o-- score 4/4

Hits are represented with an “o”, misses with a“-”

this process in three steps, to help in the analysis and discussion
of specific steps in our application. We examine the different
tasks required by each step both before and after the
introduction of our collaborative interface, to allow an
assessment of the utility of such interface to our project. This
division is introduced merely to simplify the discussion of the
topics presented in this paper, and ignores other important
factors such as the creation of problem-specific code and the
successive possible revisions of it.

3.2 Pre-Processing and Fitness set creation
The task of the GP s-expression in our application is to build a
classification algorithm from a set of texture filters of a given
image (where it would be too lengthy or difficult for a human to
do). Consequently, the training or fitness set must reflect closely
these conditions. However, due to memory and speed issues,
only a few pixels out of the entire image can be used [1]. Thus,
the most significant and least controversial pixels must be
respectively extracted from each filter.

Without a specific graphical interface, fitness selection
involved observing an image, marking x and y positions of each
pixel and locate their value in large text versions of each image.

A graphical interface allowed us to load, convert and zoom
in and out of an image, select and deselect a pixel in all filters
by simply clicking on it, and, in the same way, enabled any of
the domain scientists collaborate directly and instantly in the
fitness set selection from remote locations.

3.3 GP processing and runs
An advantage of using a graphical interface over the Web is

that any user that is authenticated to the system can also execute
a GP run remotely, observe the best resulting s-expression and
other run parameters, and share the results with others. The
interface allows different GP parameters and options to be
changed, and results can be displayed in a graphical interactive
format (e.g., graphs, editable text, etc.)

3.4 Post-Processing and Evaluation of results
Post-Processing is a critical part of the above process. Indeed, as
the standard fitness score is no longer an entirely reliable
measure of success, it is necessary to evaluate the s-expression
on a whole out-of-sample subimage (rather than just on few

pixels). Then, an on-site domain scientist has to visually inspect
the subimage and find correlation between geographical
features and the output of the individual.

Again, the use of a collaborative interface allows the
domain scientists to see the graphical output of an s-expression
a few minutes after the fitness set is created, and enables them
to compare it with the original image (and perhaps with an
annotated map of the location in question), discuss it with others
and decide how to improve either the fitness set selection or the
GP run parameters.

4. Implementation & Performance
4.1 Platform Independence
One of the advantages of using the Java language to implement
a collaborative interface is its platform independence. The
interface operates in essentially the same way on PC,
Macintosh, and UNIX and should do the same on any other
computer that has a Java interpreter or uses Netscape2.x or
higher.

For a research team, platform-independence means that
each researcher could use a different platform, and perhaps
even work at home. Also, different steps of a research are often
divided over many platforms, and require data to be moved and
converted from one platform to another. Our interface can help
eliminate such time-consuming intermediate steps.

4.2 OO & Flexible Implementation
The current implementation is a Java Applet, which uses URL
connections to receive data, and uses Common Gateway
Interface (CGI) scripts to send data and execute commands.
The minimum requirement for this implementation is a CGI
directory. Each user should have access to Netscape2.x or
higher and be connected to the Web.

However, because of Java flexibility and an OO
implementation, the same code can work in several different
modes and with several different requirements. We are building
a set of generalized classes which implement useful inheritance
of classes and allow for a transparent, OO design.

Hypothesis

Testing

Correct Theory

Select fitness set

Set up a GP problem
from the description

Select run
parameters & run

evaluate s-
expressions

Give an accurate
description

Use s-expressions in
the application

Incorporate and use
the s-expression

General GP

Hypothesis

Testing

Correct Theory

Attempt to select
fitness cases

Attempt to set up a
GP problem from

the description

Select run
parameters & run

attempt to evaluate
s-expressions

Give a complex
description

Use s-expressions in
the application

Incorporate and use
the s-expression

Complex domain
or incomplete

description

Help select
fitness cases

Help evaluate
s-expressions

Help decide how to
set up a GP problem

Hypothesis

Attempt to select
fitness cases

Attempt to set up a
GP problem from

the description

Select run
parameters & run

attempt to evaluate
s-expressions

Give a tentative (hypothesis)
description

Use s-expressions in
the application and
formulate theory

Incorporate and use
the s-expression

Help select
fitness cases

Help evaluate
s-expressions

Help decide how to set up a
GP problem

Testing

Scaffolding of Hypothesis
creation/refinement using GP

Domain ScientistComputer Scientist

 Figure 2. A flow diagram of different processes involving the creation of GP applications

Main groups of classes are responsible for Input/Output
(I/O) connections, for graphic display of data (charts, graphs,
and interactive bar charts), customized windows, etc.

Low-level classes, such as the I/O class or the customized
windows class, are either referenced, instantiated or inherited by
other higher level classes (i.e., chat windows, GP shells, etc.).

Furthermore, the I/O class implements a broader protocol of
communication with other classes than conventional I/O. This
allows to specify or disregard additional parameters specific to a
connection type (i.e., CGI, file-system, etc.) while hiding the
actual connection implementation. Thus, all classes requesting
some form of I/O will interface in essentially the same way
regardless of the available connection type.

4.2.1 Implementation Options
Due to an OO design and to Java flexibility, several
implementation options are available. Depending on the
implementers’ means and needs, the same basic framework
and code can be adapted to fit most circumstances. Table 1
displays the available options and their relative advantages.

4.2.2 Java Running Options
Java offers several options besides Web applets.

Applets can run without Netscape or applet viewers, by
simply adding a main() function to the original code. Our
interface, for instance, contains both a main() and an
init() function, and is thus both a Web Java applet and a
stand-alone Java application. As a stand-alone application, it
will lose its ability to make URL connections, but it will now be
allowed to make any other network connection (e.g.,
client/server) and to load or save files to the local file system.

Another relevant distinction is that between local applets
and remote applets. An applet becomes local when it is loaded
from the local file system rather than from the network. Local
applets can use the local file system, but cannot make URL or
network connections. Remote applets, instead, cannot access
the local file system, but are allowed to make URL or network
connections with the server they are loaded from.

Furthermore, Java applications can be left as byte-code and
run from a Java interpreter, thus retaining their platform
independence, or be compiled (if the compiler is available) to
become faster, platform-dependent executables.

4.2.3 Connection Type
As mentioned above, different types of applets allow different
connection options. A remote Web applet can be shared over
the WWW, and can make both URL and socket connections
with the server from which it originates. A local applet can use

the local file system to load, save and execute files. And while a
stand-alone application cannot make URL connections, it can
use both socket network connections and the local file system.

Again, all these options can be incorporated in the same OO
design, or even left as run-time choices, so that the same code
can be used in any of the above modes. In an OO design, for
instance, a custom I/O class, which currently implements URL
connections, can be substitute with (or instantiated as) another
I/O class that implements the client end of a client/server
connection, or a local file I/O connection.

Using URL connections has the advantage of using the
existing Web server to implement the serving side of the
network communication, but message broadcasting has to go
through CGI and perhaps even the file-system, which due to the
high overhead is not ideal for high traffic communication.

Client/server connections, both from Netscape or as a stand-
alone application, are preferable for higher message traffic, but
they require writing a custom server that must continuously run
on a computer and on the network, which is often an
undesirable consequence (and might not be allowed by the
Internet provider). Local applets can work essentially in the
same way as remote ones, by using the local file system in the
same way as a CGI directory (or use commands like the UNIX
talk to communicate).

4.3 Collaborative Design
While the interface does not share objects, it provides shared
data and messaging. Both are currently implemented by
accessing common files through CGI. The data is then copied
locally to minimize network traffic, and is updated by request.

While some operating systems provide means to easily
share distributed objects, these means are still platform
dependent. Also, sharing an object could place a substantial
overhead on the network, since objects are larger than the data
they display.

Our current implementation was based on the premise of
low traffic needs and considered request-for-updates an
acceptable mean for sharing data. However, a client/server
implementation would allow for direct broadcasting, and
eliminate the need for requested updates. The collaborative
interface that was developed for this project implements a chat
interface and messaging system on the same structure of
request-for-updates and shared data.

4.4 Security
Depending on the resources available and the implementation
chosen, security might become a very important issue. Sharing
an application over the Web means that anyone in the world
could possibly use it and have access to the shared data.

There are several ways to get around this. The easiest and
most effective one is to use a secure server that requires
authentication to access a given address (or only accepts given
IP addresses). Another option is to include authentication in the
CGI scripts and in the Java code, and encrypt the data when
needed. Also, Requesting IP addresses can be observed and
either the CGI scripts or the Java code can decide to respond
only to selected IP addresses. Since we did not have access to a
secure Web server, we have implemented security through
using Java code and CGI scripts.

4.5 GP Performance
In implementing the interface for our project, we also decided
to use a GP kernel written in C,2 to improve performance and to

2 The C kernel used is lilgp. See [6].

Running Mode Web page Stand-alone Local Applet Compiled

Connection CGI Client/Server File System Client/Server

Platform-Ind. YES YES YES NO

Extension WWW WWW, LAN LAN or Single User WWW /LAN

Collaborative YES YES only through F.S. YES

Security Secure Web Srv. Network LAN F.S Network

Connection Type URL / Post, Get Sockets File-System (r,w,x) Sockets

Network Traffic good for low tr. Low-high (none/LAN-FS) low-high

User

requirements

Netscape >=2.0 Network conn. Netscape >=2.0 Network conn.

Server req. CGI directory Server

program

(no Server) Server

Program

Speed Interpreted interpreted interpreted compiled (fast)

Table 1. Summary of Implementation options discussed in Section 4.

avoid dealing with an interpreted language remotely.
Previously, in fact, we worked with a LISP GP kernel, which
was slow in dealing with large arrays. The GP kernel could also
have been implemented in Java, but because Java is an
interpreted language (thus slower than a compiled language)
and performance is a central issue in genetic programming, we
chose not to.

Unfortunately, while LISP does allow insertions of specific
s-expressions (LISP programs) in a population by simply typing
them, the version of the C kernel we had on hand did not.
Consequently, we implemented a program that allows users to
type any s-expression and introduce it (seed it) in the GP
population of a given run. Besides the advantages of such an
option, this modifications gave us the ability to test specific GP
operators and other sections of problem specific code.
Furthermore, with this program, s-expressions can be stored as
text and re-used or later re-tested on different fitness sets.

The overall time required to evaluate a s-expression over an
image containing 16,384 pixels (128 x 128) is approximately
15 seconds, and a generic run using a training set of 53 fitness
cases, 20 generations and 200 individuals takes less than 1 min.

5. Interface Components
The first version of our collaborative interface consists of three
parts: an interface for remote GP runs, a graphical interface for
creating fitness cases and manipulating images, and a chat
window. This section briefly covers the functionality of each
part, and how they relate to the process described in Section 2.

Figure 3. The Remote GP Shell.

5.1 The Remote GP Shell
This component enables users to specify GP run
parameters, execute GP runs, display a run’s statistics
(either the current user’s or someone else’s) and
visualize outputs produced by an s-expression. Figure 3
shows how the interface appears on a PC running
Windows NT. At the top left of Figure 3, a load button
allows to read the shared output of a s-expression (e.g.,
a large text version of an image), convert it to an image
format, and display it. Directly below the image, the user is
allowed to modify various parameters for a GP run (we have
implemented bounds to the number of generations, population
size and tree depth to avoid attacks by resource exhaustion).

On the right side of Figure 3, a large text window displays
the output of a run as it proceeds, display s-expressions, and can
load the results of previous runs, and allow text to be copied to
the local clipboard to be used by other applications.

5.2 The Image Processing Tool:
The Image Processing tool is the most problem-specific
component of the interface, and was designed to manipulate
and extract features for a fitness set specific to our domain
problem. Figure 4 shows how the interface appears on a Sun
Sparc 20 running Solaris.

Figure 4. The Image Processing Tool.

A large window (on the left) displays a selection of several
filters from a satellite image, and allows users to move and
resize the zoom area. A smaller window (on the bottom right)
displays a selected portion of the image above, and additional
information about the currently highlighted pixel..

A Fitness case consists of a set of pixels [1], each taken
from the same relative coordinates in each of the filters). After
their selection, pixels are marked on the image and zoom
windows, and stored in the “Fitness Cases” window, which
allows to undo and move any of the selections by a simple drag
and drop mechanism. Highlighting a fitness case in this
window highlights the respective pixels in the image and zoom
window, to simplify deletion and selection processes.

Finally, the last window allows to specify how each fitness
case (pixel) is to be classified (i.e., positive or negative
example), as well as providing the option of annotations for
each and any of the classification keys. These keys allow to

associate different colors to different pixels in the image, and
are called by reference, so that if the color of a classification key
is changed, the respective pixels and fitness cases change
accordingly.

5.3 The Chat Window:
The chat window has been implemented through CGI scripts,
but we are planning to switch to a client/server implementation
soon. Again, a request for update (using a thread that awakens
at given time intervals) enables users to receive messages. The
chat window allows users to communicate through messages,
by accessing a common file. While this implementation is not
very efficient, it only requires a CGI directory, does not assume
any other specific resource and its performance is currently
sufficient for our project.

6. Applications to a Generic GP Project
Through the previous sections, we have discussed how a
Java collaborative interface has been flexibly
implemented to adapt to most needs and resources.
Furthermore, we have presented a custom interface built
around our GP and image processing project as an
example. In this section, we summarize issues justifying
the use of similar interfaces in other GP projects, and
how the interface presented in this paper can be changed
to fit most needs.

The driving issues for a GP collaborative interface include
the need for complex data manipulation (mainly for fitness set
creation) and for collaborative data analysis. The main aspects
of the interface presented in this paper are collaboration,
accessibility, and graphical interactive display of data.

Under specific circumstances, a computer scientist might
benefit from the expertise of specific domain scientists in
defining the problem or analyzing the results. For instance,
cases in which fitness set creation is particularly complex, or the
domain problem is incompletely specified. Also, a collaborative
interface would allow domain scientists to easily integrate in the
hypothesis creation and refinement process (help in selecting
fitness cases and analyzing the results). Since our interface is
distributed and operates through the Web, it can provide all
members of a research team easy access to all steps of the
research process, regardless of their location or resources.

As discussed in Section 4, only one of the three main
components of our interface could not be generalized and used
in other GP project, namely the fitness set creator, or image
processing tool. This is because fitness cases can be very
specific to the type of data on which GP will act on. This
component would most likely be customized and re-written for
each application. The other components of the current
implementation (the chat window and the remote GP shell) can
be easily generalized and used in most other GP domains.
Many GP applications share the same type of running
parameters, and produce text s-expressions as output.

A fourth component, which in our case was incorporated in
the remote GP shell, is a tool to help evaluate s-expressions
over larger or different sets of data (for which a simple score
might not be sufficient or available). In the more canonical GP
examples of the artificial ant and the linear regression problems
[2], for instance, this might involve visualizing the results in an
animation and in a Cartesian graph respectively, while in our
case it involved displaying an image. In any case, Java’s audio,
video and graphical capabilities can simplify the task of
displaying and analyzing such results.

7. Conclusion
We have presented an interface which allows scientists to

use GP collaboratively, and is designed to be accessible
(platform-independent, Web distributed) and to work within
several resource configurations. Furthermore, we have
presented circumstances under which GP applications require
or benefit from both collaboration between scientists and other
features such as graphical and interactive interfaces.

The interface we have implemented allowed to speed up the
process involved in our research significantly, mainly by
reducing dead time between different steps of the overall
process (collaboration) and by simplifying the complex task of
fitness cases selection (graphical interface). Shared data, for
instance, eliminated the need for accessing and moving data
from different computers, platforms or locations.

We have then addressed issues in security, implementation
and performance, and suggested how similar GP collaborative
interfaces could benefit other research groups working on
different types of GP projects. For further information, please
see http://www-personal.engin.umich.edu/~daida/.

Acknowledgments
This research has been funded by a grant from the Office of
Naval Research. We appreciate the contributions from the
following people: E. Durfee, Q. Stout (U-M), R. Onstott
(ERIM). We also thank these other individuals for their
assistance: S. Ross, C. Grasso, S. Stanhope, R. Bertram, J.
Polito, S. Frazier, D. Batey, and A. & M. Bersano-Begey.

Bibliography
[1] Daida, Jason. M., et al. 1996. Algorithm Discovery Using

the Genetic Programming Paradigm: Extracting Low-
Contrast Curvilinear Features from SAR Images of Arctic
Ice. In , P. Angeline and K. Kinnear, Jr. (ed.). Advances in
Genetic Programming II. Cambridge, MA: The MIT Press. Pp
417-442.

[2] Koza, John. R. 1992 Genetic Programming: on the Programming
of Computers by Means of Natural Selection. Cambridge, MA: MIT
Press.

[3] Prakash, Atul and H. S. Shim, 1994. DistView: Support for
Building Efficient Collaborative Applications using
Replicated Objects. In The 1994 ACM Conference on Computer-
Supported Cooperative Work. The ACM Press, pp. 153-164.

[4] Congalton, R. G. 1991. A Review of Assessing the
Accuracy of Classifications of Remotely Sensed Data. In
Remote Sensing of the Environment, 37:1. pp. 35-36.

[5] Ellis, C.A., S. J. Gibbs, and G.L.Rein 1991. Groupware:
Some Issues and Experiences. Communications of the ACM,
pp. 38-51.

[6] http://isl.cps.msu.edu/GA/software/lil-gp/
[7] http://www.si.umich.edu/~weymouth/Medical-Collab/
[8] ftp://isl.cps.msu.edu/pub/GA/lilgp/viewer.txt
[9] http://www.ifh.ee.ethz.ch/~gerber
[10] Daida, J. M., et al. 1996. Ice Roughness Classification and

ERS SAR imagery of Arctic Sea Ice: Evaluation of
Feature-Extraction Algorithm by Genetic Programming. In
Proceedings of the 1996 IGARSS, Washington, IEEE Press, pp.
1520-1522.

