
Controlling Exploration, Diversity and Escaping Local
Optima in GP: Adapting Weights of Training Sets to Model

Resource Consumption.

Tommaso F. Bersano-Begey
The University of Michigan Artificial Intelligence Laboratory

1101 Beal Avenue Ann Arbor, Michigan 48109-2106

tombb@engin.umich.edu

ABSTRACT
A common problem in evolutionary
computation, and in particular in GA
and GP, is the loss of diversity due both
to ‘lock-in’ and early convergence of a
population to ‘deceptive’ high scoring
partial solutions. As the run proceeds,
such individuals constitute a larger and
larger segment of the population,
eliminate diversity and stop the progress
of the run. This paper will present a
method for the automatic detection of
such lock-in and impasse, as well as
explore a fitness function which uses this
information to reward diversity and
innovation and increasingly penalize the
locked-in individuals. This method can
be applied to essentially any problem,
and can be successful in preventing a
run from locking-in on an easily
obtainable local optimum and in
preserving diversity. We present an
analysis, discussion, and preliminary
results on its application to the boolean
11-multiplexer problem.

1. Introduction
In [Langdon 96], Langdon analyzes in detail the evolution
of a GP run (applied to the stack problem) and finds that
the run converges too early and is also plagued by the
presence of ‘deceptive’ high scoring partial solutions
which cause a negative correlation between necessary
primitives and fitness. He also noted that in later stages of
the runs cross-over made increasingly less improvement,
often duplicating individuals and thus causing a loss of
variety while increasing convergence.

He then states that these problems are to some extent
fundamental to GP, and proposes 2 possible improvements
to a GP to partially address them: disabling the production
of clones by the reproduction operator (to increase variety),
and detecting when an offspring is identical to one of its
parents (for the same purpose). Thus he seems to
concentrate mainly on reducing duplicates. While such
approach seems a reasonable improvement, this paper will

concentrate on a more sophisticate technique which
essentially makes use of additional information from the
run’s history and the individuals’ phenotypes to detect early
convergence to deceiving partial solutions and promote
diversity directly through fitness.
The rest of this paper is organized as follows. In Section 2,
I give an example of the problem caused by a certain type
of lock-in, and introduce the concept of an alpha individual
and other relevant concepts useful for my discussion. In
Section 3, I describe and formalize a few ways to
automatically detect such lock-in and escaping the
consequent impasse. Then, in Section 4, I describe my first
experiments and present my preliminary results. Finally, in
Section 6, I state my conclusions and in Section 7 I discuss
future work.

2. Analysis of Problem and Related
Concepts
This paper examines the problem of lock-in of specific local
optima solutions and proposes an automated method for
detecting it and escaping from the impasse and loss of
diversity that they create.

2.1 Alpha individuals
For ease of discussion, I use the arbitrary term of ‘alpha
individuals’ to denote individuals which posses the
following qualities:

1. They are combinatorially simple (e.g., depth 1-2 and
equivalent ones at greater depths) and are thus present in
large amounts since the early stages of a run.

2. They have a fairly high score, which is likely to be a
higher score than that of any more complex individual in
the first generations.

3. They are not useful genetic material (e.g., they are not
building blocks for a perfect solution or a few mutations
away from it).

2.2 A Sample Problem
To give a simple example of the dynamic of such
individuals and their role in early convergence and lock-in,
consider the following GP problem: draw the logic gate
circuit for a boolean function which has 128 possible input
combinations, 100 of which should output a 1, while the
remaining 28 should output a 0.

 Assuming that the terminal set contains also the value 0
and 1 (ground and vcc) or that these can be easily produced
by one or more simple combinations of the terminals and
functions (e.g., (AND x (NOT x))) it is clear that these are

an example of alpha individuals. In fact, these will have a
very high score (100/128) which is likely to be one of the
highest scores in the early generations. Thus, this might
cause it to be selected over the rest of the population for
most cross-over, mutation and reproduction operations.
This can cause the run to lose much of its initial diversity
and converge to such individuals, which, being alpha
individuals, will not likely lead to a solution through cross-
over or mutation. Also, since the other individuals in the
population are not likely to score as high, they would be
essentially left out and would have to start over at each
generation, so that they would not be much better than
random in producing competing individuals to challenge
the alpha individuals.

In such cases, a run will typically degenerate by
producing an increasing number of copies of such alpha
individuals (similarly to [Langdon 96]), reducing diversity
and effectively flattening the best-individual fitness curve
for the remaining generations (as seen in Section 4).

2.3 Other approaches
An important issue discussed in this paper is: how can we
recognize and counteract the tendency of a population to
lock-in to an alpha individual and converge to it?

As mentioned before, [Langdon 96] suggests to
concentrate on removal of duplicates to preserve diversity.
Other related previous approaches are also focused on
preserving diversity, for instance by using multiple pools of
populations in parallel, allowing individuals to migrate
between them to preserve diversity. Also, a large population
might be able to find a better scoring non-deceiving
individual before a deceiving or alpha individual capitalizes
the population.

But if the problem is such that all the population tend to
converge too soon to the same alpha individuals, each pool
might obtain the same dominating individual (as might
happen in the example in the previous subsection) and
migration would involve mostly alpha individuals (thus
losing its effectiveness). Also, given a deceptive function,
any single mutation might not survive enough to re-
establish diversity.

[Ryan 94] shows that maintaining increased diversity in
GP leads to better performance.

Another very interesting analysis of run dynamics with
respect to population diversity is presented in [Rosca 95],
which suggests that GP diversity can be correlated with
other statistical measures, such as average fitness. In it,
Rosca uses a few experiments to look for a correlation
between diversity and fitness change. However, it does not
consider how the score is distributed between the fitness
cases and thus the phenotype of the individuals, as this
paper does, so that entropy measurements would not
distinguish between different phenotypes which produce the
same score.

Yet another approaches which also attempt to preserve
diversity is found in [Eshelman & Shaffer 1993], which
does not allow mating if two individuals are too similar
(their Hamming distance is below a certain threshold).

3. Modified Fitness Function
Both the above analysis and [Langdon 96] would seem to
indicate that such alpha individuals are responsible for
early convergence and loss in diversity which often
prevents a run from moving forward.

My solution to this problem is to recognize and
counteract the tendency of a population to lock-in and
converge to an alpha individual.

The basic idea is the following: to keep track of which
fitness cases are solved by how many individuals in the
population (H). In this way, it is possible to detect when the
population is locked-in on a partial solution, by observing
that at the phenotype level there are fitness cases which
have been solved by too few individuals (Hi<c) in the past
generations (Wg). Then, we can add an additional bonus to
each fitness case which is a weight inversely proportional to
how many other individuals in a population have already
solved it. We can further increase this weight by counting
how many generations this situation persists (Wg), so that
we can put an increasing amount of evolutionary pressure
over these fitness cases so as to gradually escape a lock-in,
since the previously capitalizing individuals will be scoring
increasingly less than newer individuals which are now
solving the remaining fitness cases.

3.1 Resource Consumption
In the biological and evolutionary metaphor, this can be

compared to a population of individuals feeding over a
large field. As more and more individuals concentrate on
small parts of the field, these areas will have less and less
food, while the remaining areas will become more and
more appealing in comparison.

In terms of ecological niches, we can imagine a similar
situation in which there are different sources of food
available, and as one is exploited more than another, there
is an additional pressure to mutate and fill in another niche
in which food is still available in large quantities.

Also, since we already store the best individual
encountered so far, one can afford to penalize new copies of
such individual.

This has some similarities with simple backtracking in
search, although the previously wrong solutions are not
stored and could potentially be repeated.

In terms of the algorithm, the new fitness function
simply keep an array as large as the number of fitness
cases, and as it evaluates each individual, it increases a
counter for each of the respective fitness cases, so that after
all the individuals have been evaluated, it would have
stored also the relative percentage of individuals which
solved each fitness case. We can then decide to store this
information and either keep it around for the entire run (to
get a complete history of the run) or replace it after each
generation (to save memory, although the space should be
negligible since it will take G*|int|*F bits, where G is
#generations and F is #fitness cases).

Under such rules, an alpha individual would score
increasingly lower as selection produced more copies of it
and as it persisted through the generation, until eventually
it might score lower than another individual which solves a
set of fitness cases which were left relatively untouched by
the rest of the population or in the past generations, ideally
promoting the creation of phenotypic building blocks often
complementary to the current most frequent phenotype.

With low epistasis this technique would likely work
well, especially in producing building blocks which could
then be recombined through cross-over. However, while
genotypic building blocks could potentially recombine
nicely, phenotypic building block recombination might not
necessarily ever lead to an offspring with the phenotype of
both parents combined.

Also, high epistasis will complicate things further,
because it becomes then unclear if the interaction between
fitness cases will make the change of weight strategy
ineffective.

For these reasons it is important to refer back to the
original metaphor of evolution and natural selection in
biological entities, to see if this technique can be
meaningfully mapped into an existing phenomenon, thus
reinforcing the hypothesis that a similar method could be
successful in those situations regardless of all the above
problems.

3.2 New fitness functions in detail
In slightly more mathematical terms and in spelling out the
new fitness function, we can write:
Legend:
fc = number of fitness cases,
n = number of individuals,
Dt = runtime parameter: threshold number of generations
for detecting an impasse.
Cg = counter, increases for each generation in which the
best individual’s fitness is the same as the previous
generation’s. Resets to 0 otherwise.

Fold IND,i() = 1 if the individual IND solves

the ith fitness case

0 otherwise





−Eq1−

Fold INDk() = Fold INDk, i()
i=1

fc

∑ −Eq2−

Equations 1 and 2 show the normal fitness function for
counting hits or raw fitness in GP: Fold is essentially the
number of fitness cases successfully solved by an
individual (INDk).

Hi = 1+ Fold INDk,i()
k=1

n

∑ −Eq3−

Wg =
0 Cg ≤ Dt

Cg − Dt Cg > Dt

 


−Eq4−

Fnew1 INDk() = Fold INDk,i()
Hi()i =1

fc

∑ −Eq5−

Fnew2 INDk() =

Wg

Hi()
+ Fold INDk,i()

1+ Wgi=1

fc

∑ −Eq6−

Fnew3 INDk() = Fold INDk,i()
Hi * Wg +1()i =1

fc

∑ −Eq7−

Equations 3 to 7 show a variant which is an immediate
translation of the metaphor and method described in the
previous section.

Equation 3 describes the array which stores the hits
distribution of all the n individuals over any one i fitness
case, while Eq.4 describes Wg, which becomes non-zero
when an impasse has been detected, increasing as the
impasse persists over the generations.

Equation 5 is essentially introducing a weight connected
to each fitness case which is inversely proportional to the
number of individuals which also solve it (Hi).

In Eq.6, the new score is produced by adding the regular
score (e.g., eq.2) a bonus proportional to both the number
of generations the impasse persisted (Wg) and how many
other individuals also solve the same fitness case (Hi). I
then normalize the score (by dividing by 1+Wg). Note that
when Wg=0 (when there is no impasse), Eq.6 becomes

equivalent to Eq.2. Equation 7is another variant of Eq.6,
but it behaves in a similar matter.

After trying a few runs, however, I obtained
discouraging preliminary results with the three fitness
functions of equations 5, 6, and 7, probably because they
excessively inflated the fitness value of individuals, so that
while they were successful in allowing the run to escape an
impasse, the altered weights did not reflect the actual value
of the individuals.

For this reason, I slightly altered the previous equations
to ensure that the weights would reflect actual performance
(number of hits), except for the detected alpha individuals
during an impasse, and arrived at equations 8,9, and 10.

Bk, i =
1 Fold INDbest, i() = 0 ∧ Fold INDk, i() = 1

0 otherwise





−Eq8−

Bk = B
i =1

fc

∑ k, i −Eq9 −

Fnew4 INDk() =
Fold INDk() Wg = 0() ∨ Bk > 0()
Fold INDk()

Wg

Wg > 0() ∧ Bk = 0()


 

−Eq10 −

Equation 8, 9, and 10 essentially assign Fold to all the
individuals, except for the best scoring alpha individual
during an impasse, whose score is weighed by the inverse
of Wg. Also note that I no longer compute Hi, but rather
use only the distribution of hits of the best scoring alpha
individual.

4. Preliminary Results

4.1 Methodology
Runs were executed on a Sun Ultra using a modified code
from the lilgp[ref 1] GP kernel and examples, and applied
to solve the 11-Multiplexer problem described by Koza
[Koza 92]. I chose that problem mainly because it has the
tendency of creating alpha individuals and impasses. In
fact, note that this problem is essentially a larger and more
balanced version of the sample problem described in
Section 2. In the experiment I compare a the two fitness
functions (Eq2 and Eq4) by analyzing the dynamics of
each run’s fitness curve.

4.2 Run parameters
I used 3 sets of runs. The first set of runs consisted of 120
runs using 50 generations and a population size of 20. Half
of the runs used the standard fitness function of Eq.2, and
the remaining half used the modified fitness function of
Eq.10. I used random seeds from 1 to 60 for each half
respectively.

I chose a particularly small population size in Run1
mainly because I wanted to see the effects of my function
when the run cannot rely much on a large population to
preserve some diversity and find a solution better than a
dominant alpha individual.

The second set of runs consisted of 5 runs using 1000
individuals and 50 generations, and the third set of runs
consisted of 5 runs using 2000 individuals and 50
generations.

4.3 Discussion of the results
I have not yet graphed the statistical results

summarizing the entire set of runs, but in this experiment I

believe that the dynamic of each single run (and in
particular of the best score in each generation) is more
significant.

However, to summarize the results of the sets of runs, in
all three sets the modified fitness function always
succeeded in detecting and escaping impasse (although
while impasses were the norm in the set 1, they become
less frequent in the other sets).

The first set also obtained always equal or better results
(higher score of the best-of-run individual), while the other
two sets often obtained better solutions with the standard
fitness function. One possible reason for this might be that
the impasse was created by non-alpha individuals, which,
when maintained in through generation, eventually produce
a better scoring individual through mutation or crossover.

In examining the dynamic of individual runs I selected
out a few runs from the first set which are somewhat
representative.

Figure 1. is an example of a successful use of the modified
fitness function. Series 1 represents the standard fitness
function, which grows until generation 16 and then
remains stuck on the same best individual for the
remaining 34 generations. The modified function, instead,
detects impasses at generation 6 and 12, and is later able to
find a higher scoring solution (generations 18-20).

Figure 2. is another example of a success of the
modified fitness function. In this case we see that the
normal function finally escapes the impasse after about 40
generations, but the modified function kept on exploring
obtaining ups and downs in the fitness curve, and
eventually obtained a much better scoring solution.

Figure 3. is an example of a case in which the modified
fitness function does only as good as the normal one

5. Conclusions and Future Work
I have presented a method for automatic detection of

early convergence of a population to a local optima,
proposed an account for loss of diversity in certain GP
problems, and proposed different approaches which take
advantage of additional information on the phenotype,
entropy and fitness distribution of a population during a GP
run. Preliminary runs seem to suggest that a modified
fitness function based on the principle of resource
consumption can be successful in escaping lock-in of
partial solutions and the impasse or plateau of best-of-
generation plots which seems to accompany them. In some
instances (such as low population runs), this often results in
more fit best-of-run individuals.

However, because of the little experimental evidence in
this preliminary work, the results are not yet conclusive on
the effectiveness of this method. In future work I will
continue these experiments to measure population diversity
through population fitness histograms, get a more detailed
statistical picture of the runs (comparing normal and
modified fitness functions) and examining best-of-
generation individuals during an impasse to verify the
alpha individual hypothesis.

The general method found in this paper can be applied
to essentially any problem, although it is most useful for
those problems which suffer from loss of diversity and
which might contain alpha individuals. Furthermore, the
relevance of this method relies not only on its ability to
escape an impasse and promote diversity, but also in its
potential to direct exploration of different and possibly
complementary phenotypes (which could be useful for
creating matching building-blocks).

Acknowledgments
I Thank Jason Daida for its many contributions and
insightful discussions, E. Durfee, R.Bertram, C. Grasso, J.
Polito, S.Stanhope and A&M Bersano-Begey for their
support.

Bibliography
[ref 1] http://isl.cps.msu.edu/GA/software/lil-gp/
[Eshelman & Shaffer 93] Eshelman, L.J., Shaffer, J.D.

1993. Crossover’s niche. In Forrest, S. (editor)
Proceedings of the International Conference on Genetic
Algorithms, pages 9-14. Morgan Kaufmann.

 [Koza 92] Koza, John. R. 1992 Genetic Programming: on
the Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

 [Langdon 96] W. B. Langdon. 1996d. Evolution of
Genetic Programming Populations. University College
London technical report RN/96/125. September 1996.

Run1.3

1050

1100

1150

1200

1250

1300

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

generations

hi
ts Series1

Series2

Run1.1

1050

1100

1150

1200

1250

1300

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

generations

hi
ts Series1

Series2

Run1.2

1050

1100

1150

1200

1250

1300

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

generations

hi
ts Series1

Series2

[[Rosca 95] J.P. Rosca. 1995. Entropy-Driven Adaptive
Representation. In J.P.Rosca (editor) Proceedings of the
Workshop on Genetic Programming: From Theory to
Real-World Applications. Tahoe City, CA. Pages 23-32.

[Ryan 94] C.O. Ryan. 1994. Pygmies and civil servants. In
Kinnear, K., editor, Advances in Genetic Programming.
MIT Press.

