
A Discussion on Generality and Robustness and a Framework
for Fitness Set Construction in Genetic Programming to Promote

Robustness.

Tommaso F. Bersano-Begey
The University of Michigan Artificial Intelligence

Laboratory
1101 Beal Avenue Ann Arbor, Michigan 48109-2106

tombb@engin.umich.edu

Jason M. Daida
The University of Michigan Artificial Intelligence and

Space Physics Laboratory
1101 Beal Avenue Ann Arbor, Michigan 48109-2106

daida@eecs.umich.edu

ABSTRACT
A significant problem in Genetic
Programming consists in ensuring the
robustness or generality of the evolved code
(its ability to work correctly on never before
seen data). We examine approaches
attempted so far, and propose a different
solution, based on multiple training sets (to
discriminate between possible
interpretations), augmentation and
refinement, which improves on both task
specification and distribution of fitness. We
then present some preliminary results on its
application to a fairly canonical GP problem
(wall-following behavior) that has been
previously shown to be very brittle. Finally,
we discuss issues in using additional
information about the generality of
individuals.

1. Introduction
In evolving an algorithm, Genetic Programming (GP) can
only guess what the actual purpose and required behavior
of the algorithm should be. In fact, an essential part of
evolving code with genetic programming is to set up
training or fitness cases (i.e., the environment in which to
test the population) and a fitness function to implicitly
encode such information, to “train” and shape the
evolution so that only the solution to the intended problem
will thrive.

This, however, is often non-trivial, and a perfect scoring
evolved individual might turn out to be brittle or too
specific (e.g., perhaps just avoiding the required task, or
too specific to the data on which it was evolved),
especially if the fitness cases or function were poorly
designed.

Unfortunately, it is not clear how to properly design
fitness sets and fitness functions, and even when a program
has been found to lack robustness, it is not clear how to
modify the evolution set-up to promote robustness.

This paper discusses previous attempts to tackle these
problems, propose a new approach to the problem as well

as guidelines to improve the design of fitness cases and
fitness functions, and discuss the advantages and
significance of such approach. The rest of this paper is
organized as follows. In Section 2, we define what we
mean by robustness and generality. Then, in Section 3, we
discuss previous attempts to promote robustness of code
and attempt to analyze their strengths and weaknesses. In
Section 4 we introduce the concept of using multiple
examples, or ‘tasks’ to specify a general concept and
promote robustness. We then discuss the advantages of our
approach and further discuss implementation issues (e.g.,
using a fitness vector, etc.), suggest the type of problems in
which this approach is better suited, and its application for
designing fitness functions to further promote robustness.
In Section 5 we apply our ideas to a problem which has
been shown to be extremely susceptible to brittleness and
discuss our results. Finally, in Section 6, we present our
conclusions and discuss future work and unresolved issues.

2. Robustness and Generality
We should first specify exactly what we mean by
“robustness”, by providing the definition which we use
throughout this paper. The robustness (as opposed to
brittleness) of an individual is its ability to work correctly
on data other than the one it was generated on. Given this
definition of robustness, the term is actually equivalent to
the concept of generality, and we thus use the terms
interchangeably throughout this paper. In order to
introduce some of the issues which are essential in
obtaining generality, we introduce the following related
anecdote:

“A popular story in the neural-network community tells
of scientists in a military project trying to train a neural
network to classify images as containing either tanks or
trees. The story goes approximately as follows: the
scientists present 20 pictures to the neural network, 10 with
tanks and 10 with trees alone. After a sophisticate pre-
processing of the images, these are fed in the neural-
network and, after considerable training, the neural-
network is able to classify each image correctly. However,
when this is later tested on other images, the network
seems to classify every image as trees, even when it
contains a tank. After careful study, the scientists finally
resolve the mystery: in all the images used in the training,

those containing trees were always taken in broad daylight,
while those containing trees were always taken in a darker
setting! Thus, the network had simply learned how to
distinguish between light settings rather than recognizing
the presence of tanks.”

After this example, the significance of choosing
unambiguous training cases should be clearer.
Unfortunately, the same problem can easily apply to
evolutionary computation. As discussed earlier, in fact, the
environment and fitness functions are the only way to
specify (through implicit encoding) what behavior should
be evolved. And in both neural-networks and evolutionary
computation the input data (or environment) can be
ambiguous and thus accommodate multiple behaviors
(many of which are likely to be unwanted, e.g., classifying
light from dark settings).

3. Approaches to Robustness
Perhaps with the exception of finding correlation, and rare
cases of very specific algorithm discovery (i.e. Koza's
symbolic regression, [1], the programs which evolve from
a GP run are useful only in relation to their ability to
behave correctly under any input combination. If a
program were to apply merely to the fitness cases on which
it evolved it would be necessary to evolve a new program
for every different input combination (just like it is done
for linear regression).

Furthermore, to create a set of fitness cases, it is
necessary to know the solution for every fitness case
beforehand, as a reference for assigning fitness to
individuals. Therefore, a successful program would simply
find what is already known, or merely a correlation
between the fitness cases. For these reasons, the Genetic
Programming paradigm is often used in the attempt to
produce robust individuals, which are able to perform
correctly under any allowed input combination beyond
those which they were trained on.

This attempt, however, has not always been successful,
producing in many cases (depending in great part on the
domain) brittle individuals which only worked on the data
on which they were evolved [3]. For this reason, there has
been much effort in trying to find a general, domain-
independent technique to promote robustness.

Here we analyze the main approches for promoting
robustness.

3.1 Fitness Function Approach (Size)
Modifying the fitness function has been shown to have
some degree of success in increasing the robustness of
evolved programs. While evolving a sorting algorithm,
Kinnear noted a connection between size and generality,
and found that modifying the fitness function by adding the
inverse size to the original score yielded programs which
were both smaller in size and more general [2]. In [8] the
connection between size and generality of the solution is
further discussed and exploited.

In trying to understand this phenomena, a simple
approach is to imagine the shorter possible solution which
scores perfectly, call it S’. In S’ every statement of the
code is necessary to obtain a perfect score, so any shorter

solution would not be able to score perfectly. However,
any solution longer than S’ might either be equivalent to S’
or contain S’, and in its additional length there is an
increasing probability of contain additional unnecessary
statements, which might be specific of the given
environment and thus not general (for an example of this,
consider the encapsulating IF statement discussed in the
analysis in section 5) or simply wrong. Thus, the class of
solutions longer than S’ can potentially score perfect and
contain many irrelevant statements which happen to work
for the given data, but would have increasing probability of
misbehaving on other data. On the other hand, the class of
solutions which are shorter than S’ would not be able to
obtain perfect score, and would thus be selected out.

However, depending on the domain and representation
choice, it might turn out that S’ is itself very brittle, in
which case its selection over the longer robust solution
would not be a desired event.

The reader can easily verify this possibility by
considering an instance in which this is true (e.g., doing
linear regression on a set of points which are common both
to y = x and, say, y = abs(x)+e^(abs(x)-x) which are
equivalent for positive values of x).

Another interesting point is that this connection
between size and robustness of the solution seems to be a
form of the Ockham’s (or Occam’s) Razor, a general
principle of inductive learning that essentially states that
the most likely hypothesis is the simplest (or shortest) one
that is consistent with all observations. This same principle
has been previously applied with success to GP in [7].

3.2 Fitness Cases Approach (Number)
The use of fitness cases in promoting robustness of code
can be further divided according to the level of
specification. There is, in fact, one trivial solution to this
problem, which is to make the fitness set exhaustive, much
like a truth table for logic functions. In that case, the
concept of robustness no longer applies and a perfect score
guarantees correct behavior in all cases. Although the latter
method has been employed before [\cite Koza GP I, even-
parity], it has obvious draw-backs.

Firstly, the number of possible input combinations is
often too big to be tractable. Furthermore, the solution to
all input combinations might not be known and, if the
solution to every input combination is already known, then
a look-up table often eliminates the need for the evolution
of an algorithm.

Another more common approach has been to under-
specify the problem through the fitness cases, and merely
consider robustness as a probabilistic outcome (which also
raises the question of how to test for robustness after
evolution). However, depending on the particular problem
domain, brittle solutions might be much easier to find than
robust ones, and if fitness cannot be used to determine
which solution is better, the probability of finding a robust
solution might be small.

A third solution is to increase the number of fitness
cases and improve their selection in the attempt to raise the
probability of finding a robust solution. While this method
would certainly reduce the number of perfect scoring

brittle solutions, and thus promote the evolution of more
robust ones, there has been no general guideline or method
for optimizing this selection. Providing such guideline is
one of the focuses of this paper (see section 4).

Fitness Cases Approach (Noise)
An additional approach which does not rely on the

selection or number of fitness cases has been proposed by
Reynolds. His work applied to the evolution of a corridor
following behavior, for which he introduced the use of
noise in the sensor readings which the program uses as
terminals. Although its first attempts were unsuccessful
[4a], he was later able to demonstrate the validity of this
approach in producing robustness

"The solutions discovered by this process are simple
and robust. It appears that noise in fitness testing
discourages strategies that are brittle, opportunistic, or
overly complicated."[4b]

However, this conclusion is valid only if the premise
that a robust program is more resistant to noise than a
brittle program is true. The latter premise might not be true
for all domains, although what could be generalized is the
fact that weaknesses of brittle code can be exploited to
promote the evolution of more general code.

A comparably similar approach is the use of dynamic
fitness sets, consisting in submitting only a selected subset
of all the fitness cases at any time (at random). This
approach can be considered similar to Reynolds for it
selectively modifies (here eliminates) part of the fitness set
and therefore damages over-specific individuals which rely
on a subset of fitness cases for their score. Again, however,
nothing prevents a brittle individual to perform
equivalently to a robust individual under this setting (and,
especially if a perfect scoring brittle individual is shorter
and less complex than a perfect scoring robust individual,
the brittle individual would likely be produced and thus
selected first).

3.3 Co-Evolution
Co-evolution is another technique which can be used to
improve the generality of evolved code. A simple example
of this would be, for instance, a robot learning obstacle-
avoidance co-evolving with a room which changes its
configuration. While this approach has been successfully
applied to some problems [6], it still presents several
problems.

Firstly, it is not always possible or clear how to co-
evolve the environment to produce results. Take the
problem of classifying pictures of tanks from trees; would
the co-evolution need to create new realistic pictures of
tanks and trees which are different from the existing ones?
Aside from perhaps being able to produce some sort of
noise (see previous section) over the input, this would seem
highly unlikely.

Secondly, even in the case of the obstacle-avoidance
behavior, this works well in simulation, but it might be
harder to implement with real robots training in a real
room. Thirdly, the co-evolution might have unwanted
equilibrium points or oscillations, in which the parties do
not produce the most general and complex behaviors, but
rather oscillate between very specialized and simple ones.

Finally, the complexity of evolving rooms and robot
behaviors can be much larger than needed, since perhaps a
much smaller subset of room configurations is sufficient to
uniquely specify (or recognize) the correct behavior from
unwanted ones. Even if any number n of components were
independent, co-evolution would still have to search
through the space of all combinations of them (O(X^n)) as
opposed to searching them independently (O(nX)).

4. An Alternative Approach: Using
Multiple ‘Tasks’ to Reduce Ambiguity:
In his theory of forms, Plato noted that ideas such as a
circle or a line do not exist in reality, but their essence can
be learned or known by observing a series of objects,
imperfect representations of the pure concept from which
the concept or form can be reconstructed. If all such
examples share nothing more than the attribute of being
circles or lines, then their meaning would be correctly
learned.

So the basic idea is that a single ideal fitness set might
not be easy to produce, and any single fitness set is likely
to be ambiguous and contain superfluous and misleading
information (as discussed previously, see section 2).
However, assuming that each example carries a set of
possible interpretations or attributes, the intersection of
examples which contain significantly different sets of such
interpretations carries a significantly smaller number of
interpretations, and there is a set of such examples whose
intersection is the one single desired interpretation.

It is unlikely to find one unique fitness case which can
only be solved by one solution, just like it is unlikely to
find a context or object to which only one word applies. In
this respect, the relation between the fitness cases and the
information they wish to convey is similar to that between
several examples or manifestations of a concept and the
pure concept itself.

4.1 Scalability and Iterative Refinement:
The main idea is dividing a complex task or environment
into sub-components. For instance, for Koza’s wall-
following robot, we might want to make the task more
complex by adding round corners and other additional
details. But this might be problematic because it is hard to
integrate too many additional details into a fitness set (in
this case the walls of a room). Also, a single room might
contain coincidences which might be exploited
accidentally by the individuals (e.g., move only any of the
wall is closer than 5ft., which would be brittle in a larger
room, for instance). My solution is to use a loop execution
on separate fitness sets (in the case of the robot, use
separate, simpler rooms instead of a complex one).

This not only simplifies the creation of more complex
fitness cases, but also simplifies the analysis of the
performance of individuals and possible causes of
brittleness. Unwanted interactions due to distinct elements
combination is also reduced, and number of tests for n
justifiably distinct elements is reduced from Xn to nX
(e.g., test the ability of an individual to turn left and right
corners without having to incorporate different rooms with

possible combinations of left and right turns). Also,
whenever an individual is found to fail on a given fitness
set, this same fitness set can be added to the vector of
separate fitness sets to create an individual which is forced
to be robust in both situations (simplifying the task of
refining fitness sets iteratively), where the chances of two
very different fitness sets being solved by the same
program by mere chance are much lower.

4.2 Fitness case selection
The need of an exhaustive fitness set can be eliminated by
observing the function and terminal sets and ensuring that
any wrong solution would fail in at least one fitness case of
each subset.

The terminal and function sets restrict the number of
possible solutions. For instance, in the case of linear
regression, if we use a terminal and function set similar to
that used by Koza [1] (cartesian coordinates, with the
addition of +/-sqrt) then four points are enough to uniquely
specify a circle centered in the origin (as long as they are
placed at the intersection with each axis), while any
number of points less than four could be satisfied by a
number of different solutions. Notice, however, that four
points do not constitute an exhaustive fitness set (which
would consist of all the points in the circle). Yet, if
correctly chosen, they are sufficient to guarantee that a
perfect scoring individual uniquely describes a circle.

4.3 Sub-Tasks and Subsumption:
Another additional potential advantage is the fact that
humans can often break-down complex tasks into sub-tasks
(and this is also valid in teaching a complex subject). So,
while we might not know the actual solution to a task, we
might be able to identify simpler independent sub-tasks.
This can be used to reduce the complexity of the fitness set
and to provide additional information on the relative
performance of individuals. For instance, the original set-
up used by Koza for evolving wall-following behavior was
originally used by Mataric in order to show subsumption of
behaviors (by dividing the complex task of wall-following
into: approach, align, stroll, etc.)

To give an example, in the case of the wall-following
robot, we could identify the behavioral subtasks of
reaching a wall, walking along a wall and turning corners.

Structural components can be identified and promoted
through fitness cases as well. In the case of the robot, we
could think that the solution should contain at least (TL),
(TR), (MF) or (MB), and some form of conditional
statement IFLTE.

There is a danger in simplifying a problem by isolating
its separate components, which consists in the loss of
Gestalt information (the whole is more than the sum of its
components). Although the latter is a significant concern, it
can be often compensated for, by using insights on the
search space or by using both separated components and
their combination and including them in the fitness set, or
by ensuring that all the useful information that comes from
the combination of components is conveyed one way or
another.

Furthermore, the advantages of such separation can be
very significant. Three points are of particular importance:

1. It might be easier to produce a robust fitness set for
each component than it would be to produce one for the
combination of all components.

2. The same Gestalt information might otherwise
suggest relationships where mere coincidences are present,
perhaps rewarding programs for finding such 'relations',
thus promoting the evolution of brittle programs.

3. Separating a problem into its sub tasks can convey
more information on the potentials of each program. (It
tells not merely how bad or good a program performed, but
also tells where and what are the program's weak and
strong points). This makes possible to use a fitness function
which breaks the problem down into sub-tasks and takes
them into account (just like a student studying for the GRE
might benefit more from knowing the separate scores in
each subject rather than knowing just the cumulative
score).

Figure 1. shows a classification problem: recognize
which objects are circles given the means to perceive
color, size, shape and weight.

4.4 Additional Information for the Fitness Function:
The fitness function can also be improved by using a
fitness vector instead of a single fitness score. The entries
in the vector can be scores from distinct tasks or from
subtasks. The separate scores in the vector can be
averaged (thus losing information on the score distribution)

Figure 1. Classification problem: Assuming sensors can only return
boolean values for size, shape, weight, color. The classifier is asked to
be able to learn how to recognize roundness (the trivial solution is
* C**) by training over the fitness cases of different objects and their
classification (expected solution) w.r.t. roundness. The +Check, –
Check, AND, and OR are used to see if the fitness set is unambiguous
and find which additional cases make it unambiguous.

legend: (different properties represented here as symbols)
B big C circular H heavy R red
- not big - not circular - not heavy - not red

Object Solution + Check - Check

BC-R Yes 1101

B-H- No 1110

-C-R Yes 0101

-C-- Yes 0100

--H- No 0110

Test ambiguity

AND 0110 (brittle) 0100 (ok)
OR 1110 (brittle) 1101 (brittle)

Include

---R No 0101

-CH- Yes 0110

Test ambiguity

AND 0100 (ok) 0100 (ok)
OR 1111 (ok) 1111 (ok)

or recombined in other ways to preserve such information,
which can then be used in the evolution to place additional
selection pressure toward robustness (a score of [5/10,5/10]
might be preferable than [10/10,0/10] because is more
general). Taking the minimum of the vector is an easy way
to obtain a single score useable in existing GP kernels, yet
retaining part of the additional information. Another
possibility is to take the Nth root of the product of the N
scores.

This fitness function has advantages and disadvantages.
The main advantage is the potential to increases the
evolving pressure toward general solutions since the
beginning of a run.

However, it has two main disadvantages: robust
solutions might be a product of two very brittle individuals,
evolution of which would be discouraged by this fitness
function. Furthermore, it does not account for the
syntactical value of brittle programs (see section 6).

4.5 Checking ambiguity in fitness cases:
A simple test to check the robustness of fitness sets
consists of creating a table in which rows are the fitness
cases and columns are the different concepts which can be
associated to the fitness cases. Each entry is either a 1 or a
0 depending on whether a fitness set does or doesn't
express a given concept. As we discussed in section 4.2,
the terminal and function sets (or more generally, the
perceivable basic concepts) restrict the number of possible
solutions.

A fitness set is robust if the AND results in a zero for all
columns except the one representing the correct concept
and the OR results in a 1 for all columns. In the case of
classification, two tables are necessary: to classify the
presence, and the absence of a concept. The fitness cases
must be split accordingly. The problem illustrated in figure
1 shows how knowledge on what is perceivable (here
color, size, shape and weight) can be used to disambiguate
a fitness set.

The above fitness set is not complete, since light (or not
heavy) and circle both solve all fitness cases. Thus, 'light'
and 'circle' could be confused or taken to be synonyms. To
fix this, an object which would contradict the latter
conclusion (i.e. a heavy circle –CH-) must be added to the
fitness set. Similarly, this fitness set might mislead
anybody to think that a circle is an object which is not
simultaneously red and heavy. This can be corrected by
substituting the H heavy object with a R red object and
labeling it as not circular.

This method isolates the desired concept completely by
ensuring that the only thing that all fitness cases labeled
'yes' have in common is the fact that they are all circles,
and vice-versa. Thus, the smallest fitness set needed to
communicate the concept of circle would be:

Object Solution + Check - Check

BCHR Yes 1111

-C-- Yes 0100

B-HR No 1111

---- No 0100

This would seem ideal, but has two draw-backs. The
first is that it might not always be possible to join all

desired properties or concepts together, and the second is
that it does not leave much room for partial credit and thus
for a gradual growth.

Because of its size, it does not create enough variety of
examples which could otherwise raise the chance of a more
easily treatable fitness case. Thus, we might consider that a
greater number of distinct fitness cases might make it
easier to extract the right concept, the same way that a
student might learn more easily if a greater number of
examples of the same concept are given.

Note that this technique can also help detect
inconsistent, misleading or noisy fitness sets.

5. Application to a Sample Problem:
Wall-Following Behavior
This very same method can be applied to any other
problem, rather than just classification ones, by thinking of
each problem in terms of lexical definitions or behaviors.
However, in order to use this method to produce more
robust code, it is necessary to identify which elements
might be misleading.

To demonstrate how this method for selecting fitness
cases can be applied to produce robust code which would
otherwise be brittle, we used the problem of the wall-
following robot [1], a fairly canonical problem which is not
usually considered a classification problem.

Figure 2. Wall-following behavior robust w/respect toposition and
orientation. legend: (different properties represented here as symbols)

P (x=12.1, y=9.2, a=*) O (x=*, y=*, a=270) W -
- (x=13.6, y=13.6, a=*) - (x=*, y=*, a=0) - -

Object Solution + Check - Check

WPO - 111 -

WP- - 110 -

W-O - 101 -

Test ambiguity

AND 100 (ok) -
OR 111 (ok) -

Generation 6: standardized fitness=2/3 and 166/3
hits (55/56, 56/56, 55/56).

(IFLTE SS (MF) (IFLTE S00 MSD (IFLTE SS (MF)
(IFLTE S00 MSD (TR) (TL)) S06) (TL)) S06)

Generation 22: standardized fitness=0 and 56
hits (56/56, 56/56, 56/56).

(IFLTE SS (MF) (IFLTE S00 MSD (IFLTE S00
MSD (IFLTE SS (MF) (IFLTE S00 MSD (TR) (TL))
S06) (TL)) (IFLTE S00 MSD (TR) (TL))) (IFLTE SS
(TR) (IFLTE S00 MSD (TR) (TL)) S06))

In particular, this task has been shown to often produce
very brittle solutions [3], in a similar way to what was
observed by Reynolds for the similar problem of obstacle-
avoidance behavior [5].

"... programs were found to be quite 'brittle'. ... They
will not even work in the same obstacle course if any of the
vehicle's initial conditions (position and orientation) is
slightly perturbed." [4a]

In the case of the wall-following problem, a robot is
asked to use information from its 12 sensors to guide it
along the walls of a room.

However, brittle code is produced if the robot
'memorizes' certain aspects of the room, rather than
extracting more general rules, and uses correlation which
might be mere coincidences. So, for instance, it might not
start moving unless the walls in front of it are closer than
those on its back.

As a disclaimer, I would like to point out that I used a
simulated wall-following behavior because it is a
somewhat intuitive problem which has been shown to be
brittle. Aside from this, I am not making any other claims
such as relations with actual (not simulated) evolution of
controllers for robots.

Just to give an idea of why some of these individuals
are brittle with respect to initial position and orientation,
we examined numerous such brittle individuals, and a
fairly common instance was an individual which had a
perfect score in a given room with a given initial position,
but would not score any points in the same room when the
initial position was changed, because the essential program
(the S’ we described in section 3) was encapsulated in an
IF statement which was based on the initial position.
Clearly, the same program would not have survived if the
training set consisted of two or more trials, where the
initial position was changed (it becomes less and less
probable to evolve such an IF statement which would be
irrelevant or a mere coincidence, and yet be present in both
cases).

We have decided to use a set of fitness cases to produce
robustness with respect to both initial position and
orientation. For this, we considered a room as a single
fitness case, and we included the two concepts of position
and orientation as binary entries in the table described
above.

It should be noted that perhaps much other misleading
information is eliminated by this very same fitness set. For
instance, by changing orientation but leaving position
intact, almost all sensor readings change, so that the
likelihood of maintaining misleading coincidences between
them is reduced. However, if any other obvious misleading
relation were to be included (ex: room symmetry or
orientation parallel to walls), it would be easily eliminated
with the addition of other fitness cases or a more careful
selection of the present ones.

we used exactly the same room for all three fitness
cases (the same used by Koza). The fitness was then
computed by taking the average between the score of each
fitness case. All parameters are as specified by Koza [1],
with the exception of the number of generations and the
number of individuals, which were, respectively, 25 and

2000 (where Koza used 50+ generations and 1000
individuals).

Although the results we obtained were very preliminary
(we only executed few runs with these parameters, so that a
meaningful analysis of the likelihood and frequency of
obtaining a solution are not yet possible), we were able to
find a perfect scoring individual as early as in generation
22 (where Koza did not obtain a perfect scoring solution
until after the 50th generation). An almost perfect
individual (scoring 55 and 1/3 out of 56) was found as
early as in generation 6.

These best individuals were then tested in the same
room with several different initial conditions (position and
orientation). All best-of-run individual were extremely
robust to a change in both position and orientation, and
exhibited the same basic behavior (the robot would move
forward until it reached a wall, then proceeded by moving
along the walls).

An extra amount of time (up to 1/20th of the total time)
was allowed to some individuals, since their initial position
would place them much further from the wall in front of
them.

A significant detail is that many such robust evolved
individuals are shorter in comparison to their brittle
counterparts. Figure two shows the code for the 2
individuals mentioned above (again, refer to [1] for an
explanation of functions and terminals; in short,
MoveForward, MoveBack, IFLessThanorEqual, TurnRight,
TurnLeft, Sensors 0-11 and ShortestSensor):

6. Discussion and Future Work:
After a more clear or robust set of fitness cases has been
produced, the fitness function can be modified to extract
and exploit additional information in order to improve the
selection of individual programs.

In the case of the robot, for instance, it is now possible
to select an individual based on whether they are more
general or more specific by looking at how the score is
distributed between the 3 trial. We can even infer whether
a program is robust with respect to position, orientation,
etc. by grouping similar position or orientation fitness
cases. Even within the same fitness cases, it is possible to
group tiles into meaningful groups (i.e. corners, straight
walls, etc.) to know strong and weak points of an
individual program.

In order to make the best use of this additional
information, however, it is important to predict how a
modified fitness function might affect the GP evolution of
a program.

The main issue is: can GP take advantage of this
additional information?

For instance, there is no clear mapping between
generality of parents and that of their offspring. So, for
instance, a very brittle individual might essentially contain
the correct robust solution, making it extremely valuable
and allowing its offspring to potentially inherit a complete
robust solution in one step (and in fact we shown just such
a case in the previous section, namely the encapsulating IF

statement code). At this point, without knowing how such
individuals come to existence and what the tradeoffs in
overly penalizing brittle individuals are, this question
remains unanswered, although we plan to explore it in
future work.

For this task it is helpful to identify three components
which can promote or inhibit the search for a solution.
These components are:

1. the evolution of building blocks,
2. the misleading action of high scoring brittle programs

(which lack both syntactical and conceptual value) and
3. the syntactical value of conceptually wrong or brittle

individuals.
1. Partial or building blocks were first proposed by

Koza [1] and their role in the GP evolution process has
been examined by several authors and has lately been
increasingly questioned. An important distinction is that
between genotypical (based on structure) and phenotypical
(based on behavior) building-blocks. Since it is still not
clear whether the building-block hypothesis has validity,
we consider its possible implication in my discussion. By
grouping the fitness cases according to meaningful and
more basic sub-tasks, in fact, it is possible to promote the
evolution of individual sub-tasks, and by noting which
individuals solve which sub-task, it is conceptually
possible to modify the fitness function to promote the
recombining of complementary building blocks. These
observations, however, are bound to fail if the sub-tasks
yield to incompatible building blocks (or if the building-
block-hypothesis is false) and might not, therefore, apply
to all GP problems.

2. It is conceivable that a confusing data set might steer
the GP toward an incorrect local optima which is easily
obtainable and from which the GP would not be able to
escape. In fact, if the probability to find such a program is
high, it might be found in great numbers and before any
better scoring solution can be found. Thus, such incorrect
solution will be involved in most cross over reproductions,
which might prevent the GP from finding a more complex
but correct result.

3. It is also important to realize that the behavior of a
program is not the only factor in determining its value. The
GP cross-over and mutation, in fact, does not act on
concepts or behavior but rather on syntax, so that a
conceptually wrong individual might be one atom away
from becoming right. Another important factor in this
respect is the presence of introns, as described by
Angeline, which are parts of a program which are inactive,
but which might become active after cross-over. Introns do
not modify behavior, but can play an important role in the
GP process.

These factors are important, and thus we plan to
examine them in more details in future work, by tracing
relations between parents and offspring to find possible
traces (or absence) of either genotypical or phenotypical
building blocks and their role in evolution.

we have also written a version of wall following code in
C (for speed, compared to LISP) which can flexibly
represent any room configuration as a matrix of blocks
(using a ray-tracing algorithm for the sensors), and plan to

evolve robust behaviors of wall-following and obstacle
avoidance with respect to room shape and perform
extensive numbers of runs to determine the likelihood and
frequency of solution, measure their robustness, and
compare these to single-task runs.

7. Conclusion:
The analysis of previous techniques gives many insights on
the dynamics of the evolution of robust code, but none of
the previous approaches addresses the fundamental issue of
creating unambiguous fitness sets. The problems of using
a simple fitness set is illustrated in evolving a wall-
following behavior. To show how the proposed technique
can be used to produce robust non-exhaustive fitness cases,
a robust wall-following behavior was evolved.

The results indicate that non-exhaustive fitness cases
can be organized to produce reliable robustness with
respect to a given attribute. For this reason it can often be
advantageous to consider a solution (or cast a problem) in
terms of a classification (of a behavior, function, etc.) even
when this is not the most obvious one (e.g., the wall-
following and obstacle-avoidance behaviors) so that we
can apply the described techniques to detect noise, promote
more general solutions and iteratively improve training
sets.

While the proposed technique also produces additional
information related to the generality of individuals, it is not
clear how this information can be used successfully by the
fitness function for selection and cross-over, and further
research on the topic is needed.

Acknowledgments
We appreciate the contributions from the following people: E.
Durfee, W. Birmingham, P. Angeline, U.-M. O’Reilly. We also
thank these other individuals for their assistance: R. Bertram, C.
Grasso, J. Polito, S. Stanhope and A. & M. Bersano-Begey.

Bibliography
[1]Koza, J. R. (1992) Genetic Programming: on the

Programming of Computers by Means of Natural
Selection, ISBN 0-262-11170-5, MIT Press, Cambridge,
Massachussetts.

[2] Kinnear, K. E. Jr. (1993a) "Generality and Difficulty in
Genetic Programming: Evolving a Sort", in Proceedings
of the Fifth International Conference on Genetic
Programming, K. E. Kinnear Jr, Ed. Cambridge, MA:
MIT Press.

[3]Ross, S.J., J.M. Daida, C.M. Doan, T.F. Bersano-Begey,
and J.J. McClain, “The Wall Following Robot
Revisited,” 1996. Genetic Programming 1996:
Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University, Cambridge, MA:MIT Press

[4a]Reynolds, C. W. (1994a) "Evolution of Obstacle
Avoidance Behavior: Using Noise to promote Robust
Solutions", in Advances in Genetic Programming, K. E.
Kinnear Jr., Ed. Cambridge, MA: MIT Press.

[4b]Reynolds, C. W. (1994b) "Evolution of Corridor
Following Behavior in a Noisy World", in SAB-94

[5]Reynolds, C. W. (1993) "An Evolved, Vision-Based
Behavioral Model of Coordinated Group Motion", in
From Animals to Animats 2: Proceedings of the Second
International Conference on Simulation of Adaptive
Behavior (SAB92), Meyer, Roitblat and Wilson editors,
MIT Press, Cambridge, Massachussetts, pages 384-392.

[6]Andreas Ronge and Mats G. Nordahl. 1996. Genetic
Programs and Co-Evolution Developing robust general
purpose controllers using local mating in two
dimensional populations. In Voigt, Hans-M., Ebeling
Werner, Rechenberg Ingo, and Schwefel Hans-P
(editors). Parallel Problem Solving from Nature IV,
Proceedings of the International Conference on
Evolutionary Computation. Berlin, Germany: Springer
Verlag. Pages 81-90.

[7]Byoung-Tak Zhang and Heinz Muhlenbein. 1993.
Genetic Programming of Minimal Neural Nets Using
Occam's Razor. In Stephanie Forrest (editor).
Proceedings of the 5th International Conference on
Genetic Algorithms, ICGA-93. University of Illinois at
Urbana-Champaign: Morgan Kaufmann. Pages 342-349.

[8]Justinian Rosca. 1996. Generality Versus Size in Genetic
Programming. In Koza, John R., Goldberg, David E.,
Fogel, David B., and Riolo, Rick L. (editors). Genetic
Programming 1996: Proceedings of the First Annual
Conference. Cambridge, MA: The MIT Press. Pages
381-387.

